
 Laasie: Towards One-Size-Fits-All Database (OSFA) Architecture

 by

 Ankur Upadhyay

 The thesis submitted to the faculty of the
 University at Buffalo, The State University of New York
 In partial fulfillment of the requirements for the degree of

 MASTER IN SCIENCE

 In
 Computer Science and Engineering

 Dr. Lukaz Ziarek
 Dr. Oliver Kennedy
 Dr. Bina Ramamurthy

 June, 2014

 ABSTRACT

Variation in application workloads, requirements, and hardware has often leaded to claim that One-Size-

Fits-All databases are dead, as they require precisely adjusting a wide range of parameters to be

competitive. Consequently, several specialized data management systems have emerged in past several

years. Applications with continuously emerging requirements and features require maintaining different

data management systems, which often prove costly to companies and enterprises in terms of

development, maintenance and DBA costs.

The benefits of having a single interface, to work with, are quire compelling: Client applications can be

prototyped quickly, and infrastructure tuning and development can be deferred until the applications

runtime characteristics are better understood. Consequently, a slew of “database building blocks” have

arisen, allowing users to custom-tailor a common core engine to their application’s requirements. The

thesis presents “Abstract Syntax Tree” (AST) as a database building block. Our building block framework,

called Abstract Syntax Tree database, represents data state with the sequence of updates, stored in the

form Abstract Syntax Trees. It provides a simple rewrite-rule-based interface, which allows extremely

fine grained control over a wide variety of database management design aspects, from layout and

indexing, through client side caching behavior. The thesis also presents Laasie, a document store

Abstract Syntax Tree database. Using Laasie, we demonstrate the feasibility of AST-Databases in general,

and then show how Laasie effectively supports a complex use case with highly variable workloads:

collaborative web applications.

 ACKNOWLEDGEMENTS

This project would not have been possible without the continuous support of many people. I would like
to express my special appreciation and thanks to my advisors, Dr. Lukaz Ziarek and Dr. Oliver Kennedy. I
like to thank you for continuously supporting me during my research and taking some time off your busy
schedule to go over several revisions of my thesis and make some sense out of the confusion. I would
also like to thank my committee member, Dr. Bina Ramamurthy, who offered her guidance and support.
I would also like to thank you for your brilliant comments and suggestions and letting my defense be an
enjoyable moment. I would also like to thanks my project mates, Sumit, Daniel, Palanippan, Nikhil,
Subrahnil, Kaushal and Shail, for making this journey beautiful and enjoyable.

I would also like to express my gratitude to my parents, Dr. S. K. Upadhyay and Mrs. Manju Upadhyay,
for always mentally supporting me and motivating me to achieve my aims and goals. My final
acknowledgement is to my sister, Neha Upadhyay, and my brother-in-law, Mr. Peeyush Agrawal, for
always being with me and making me smile during the hard times.

Contents

1 Introduction 3

2 State of the Art 6
2.1 Database systems . 6

2.1.1 Document Databases . 7
2.1.2 Column Databases . 7
2.1.3 Key-Value Databases . 8
2.1.4 Graph Databases . 8

2.2 OSFA (one-size-fits-all) Architecture 9
2.2.1 Related Work . 10

3 AST Databases 13
3.1 AST: Abstract Syntax Tree . 14

3.1.1 AST: Database Building Block 14
3.1.2 Analysing ASTs . 15

3.2 ADB Structure . 16
3.2.1 ADB Reads . 17
3.2.2 ADB Updates . 21

3.3 Optimizations over ADB’s DFG 24
3.3.1 Indexing: Faster reads and writes 24
3.3.2 Triggered AST rewrite rules: Faster Evaluation 28

4 Laasie: An AST Database 30
4.1 Hierarichal Data Model . 31
4.2 BarQL Language . 32

4.2.1 AST Analysis . 36
4.3 Laasie Data Flow Graph . 37

4.3.1 Read in Laasie . 39

1

4.3.2 Update in Laasie . 42
4.3.3 Examples . 44
4.3.4 Self Cleaning DFG . 46
4.3.5 Evaluation of ASTs . 46

4.4 Collaborative Web Applications: Motivating use case for Laasie . 49

5 Benchmark and Experiments 52
5.1 Benchmark Details . 52

5.1.1 YCSB: Yahoo Cloud Benchmark 52
5.2 Collaborative Application Benchmark 54
5.3 Experiments and Results . 55

5.3.1 Experiment setup . 55
5.3.2 YCSB Results . 55
5.3.3 Collaborative Application Benchmark Results 56
5.3.4 Results . 59

6 Conclusion 62

2

Chapter 1

Introduction

In the past several years we have witnessed a split in data management sys-
tems creating several specialized solutions [1, 25, 38, 13, 21, 9, 36]. Relational
databases were prominent over decades, when the query flexibility and the data
relationships are of utmost importance. With an increase in the amount of un-
structured data, where data relationships have been pushed to the back seat, the
database community introduced several “NoSql” [43] databases, that have flexi-
ble schemas and support unstructured data. Each data management system in this
class is specialized to handle a specific category of workloads.

Today an application’s features changes quickly and requirements evolve with
time. With such evolving application and workload characteristics, the mainte-
nance of several specialized database systems can prove costly in terms of de-
velopment and maintenance. Moreover, it is very difficult to predict application
runtime characteristics at an early stage making it harder for developers to choose
the appropriate database management system for their application. An alternative
solution is to provide a tunable One-Size-Fits-All (OSFA) database that can be
tuned according to application requirements and characteristics. The tunable in-
frastructure allows developers to quickly prototype client applications, and tune
and develop the infrastructure only when the application’s runtime characteristics
are better understood. However, an infrastructure which exposes an increasing
amount of tuning options is not an answer since it is neither scalable nor practical
for developers [42].

This observation has lead to another strategy to provide “database building
blocks” to application developers, with which they can build application-specific
database engines. The developers can customize the database engines over time,
which is best suited for varying application and workload characteristics. This

3

allows developers to focus on the client interface of the application, only requiring
them to specialize the infrastructure once the workload characteristics becomes
more clear and better understood.

For building database engines from building blocks, application developers
require very fine grained control over the infrastructure components. The thesis
present the new class of database building blocks called “Abstract Syntax Trees”
(ASTs) that provides fine grained control over infrastructure components to appli-
cation developers. An AST is a tree-like structure which represents the insert/up-
date/delete operations performed over application state variables. The infrastruc-
ture, instead of storing the computed (or reified) value of data components, stores
a sequence of uncomputed updates, represented as ASTs. The reified value of the
state variables can be obtained by evaluating the sequence of updates. We call this
infrastructure an “AST databases” (ADBs).

ASTs, much like the data manipulation language from which they are gener-
ated, are amenable to program analysis techniques [46, 24]. This allows devel-
opers to fetch application and workload characteristics at runtime by analysing
ASTs. With application runtime characteristics in hand, developers will be in
better position to make important tradeoffs during application runtime and frame
application specific optimizations over the stored ASTs. As an example, an AST
database gives full control to user over if, when, and where the evaluation of ASTs
occurs. For update heavy workloads, updates can be made faster by delaying the
ASTs evaluation at the time of the read operations. Similarly, for read heavy
workloads, the ASTs can be evaluated at the time of update operations, similar to
traditional databases. Moreover the ASTs evaluation tasks can be computed at the
server side or can be offloaded to the client side. This decision can be based on
several factors like network bandwidth, server load, client computation capacity,
etc.

One motivating scenario for AST databases is collaborative web applications
like Google Docs [22], Office 365 [15], or Dropbox [18], where an AST database’s
dynamic specialization capability can be fully illustrated. Collaborative applica-
tions allow multiple users to share and edit a single application state. These ap-
plications requires extensive infrastructure support, first to relay/updates between
users, and second to persist application state. The single application may require
different infrastructure behavior for different components of its state. For exam-
ple, a chat system in application may be best served by the log based approach,
where the text written by users get appended to the log, whereas the images may
better be stored as raw entity. Application developers often deploy new features
and functionality, resulting in frequent, live changes to the application’s work-

4

load, schema, and data management needs. This forces application developers to
use hybrid infrastructures cobbled together from multiple distinct data manage-
ment systems. This variability in a collaborative application’s requirements and
characteristics makes AST databases an ideal choice. AST databases provides ap-
plication developers fine grained control over the exact way the application state
is stored and processed. Simultaneously, a single, consistent interface allows the
front end to be developed independently of any infrastructure optimizations. This
allows for rapid prototyping and early experimentation to obtain detailed work-
load characteristics before the infrastructure is specialized.

5

Chapter 2

State of the Art

Variation in application workloads, requirements, and hardware has lead to claims
that One-Size-Fits-All (OSFA) databases are dead [42], as they require precisely
adjusting a wide range of parameters to be competitive. In past several years,
many specialized solutions [1, 25, 38, 13, 21, 9, 36] have been emerged. By
exposing a limited or specialized API, the system can make strong assumptions
about the application workload. A tighter coupling with the applications workload
allows the data management system to provide improved performance, scalability,
and ease-of-management.

The chapter starts with describing the various categories of database systems
in today’s database industry. The following sections discusses the problems aris-
ing with several database systems management, and the approach taken by indus-
try and academia to deal with those problems.

2.1 Database systems
Several categories of database systems have emerged to resolve some of the key
problems confronted by the traditional relational databases. Storing huge amounts
of data (often termed “Big Data”) for faster access is a problem in the forefront.
With the evolution of large sets of unstructured data, data relationships have been
pushed to the back seat, prioritizing faster data access. Several classes of database
systems have been developed which have flexible schemas and give less impor-
tance to data relationships. Such database systems can be classified into four main
categories: key-value databases, wide-column databases, document databases and
graph databases. Furthermore, several hybrid implementations that combine two

6

of these models are also available.
Each solution is different and each performing better under certain workload

conditions. Although there are other important factors which influence the choice
of database solution, performance is a metric of paramount importance because
one of the key promises of these solutions is a fast data access.

2.1.1 Document Databases
Examples: MongoDB, ArangoDB, BaseX, Informix, MakeLogic, etc. Docu-
ment databases are developed to query data without having precise knowledge of
its structure. They are designed for storing, retrieving, and managing document-
oriented information, also known as semi-structured data. Fundamental to doc-
ument databases is the concept of data entities named ‘documents’. They are
analogous to table rows in RDBMS, but are less rigid. Each document is associ-
ated with a unique key, which is a simple string, uniform resource locator (URL),
or a path. A document holds its data in the form of an attribute-value set. At-
tributes can differ across documents, enabling flexible schema. Documents are
independent and hence improves performance and decreases concurrency side ef-
fects. Document databases are described using JSON, XML or derivatives.

2.1.2 Wide Column Databases
Examples: Cassandara, Hadoop, HBase, etc. Column oriented databases sup-
port high performance applications in the business intelligence domain such as
data warehouses, customer relationship management (CRM) systems, and other
ad-hoc inquiry systems where aggregates are computed over large number of sim-
ilar data items. Column oriented data management systems store data tables as
sections of columns of data rather than as rows of data (as stored in traditional re-
lational databases). Column oriented databases are more efficient than traditional
row-oriented databases on workloads consisting of column oriented queries (i.e.
querying/modifying/inserting a notably smaller subset of all columns of data).
However, column oriented databases would not be as efficient as traditional row
oriented databases on the workloads which involves operations like insertion and
extraction of entire rows of the data, like inserting a new row or extracting all
columns of single row. In a nutshell, column oriented databases are well-suited
for OLAP-like workloads (e.g. data warehouses) which typically involve a smaller
number of highly complex queries over all data (possibly terabytes). However,

7

they would not be well suited for OLTP-like workloads which are more heavily
loaded with interactive transactions.

2.1.3 Key-Value Databases
Examples: Membase, Riak, Redis, etc. This class of database is very popular
for web applications. Key-Value Databases are schema-less databases which store
data as values associated with their respective keys. This class of databases is
designed for heavy read workloads and for handling fluid data types that cannot
be easily tabularized. Being a schema-less database, key value databases allow
storage of arbitrary data that are indexed using a single key, and allow efficient
retrieval. However, because they store unstructured data, key-value databases are
not as efficient when searching for a particular subset of data. One needs to either
read every record or build secondary application specific indexes.

2.1.4 Graph Databases
Examples: Neo4j, etc. Graph Databases are very popular for social networks
where complex, many-to-many relationships need to be set up. This type of data
relationship is hard to be implemented in most of the other data management sys-
tems. A graph database can be defined as the structure which consists of nodes,
edges, and properties to represent and store data. Nodes are analogous to records
in RDBMS. Edges define the relationship between different graph nodes or data.
Graph Databases are most efficient when dealing with associative and related data.
Graph databases are highly scalable and can easily manage ad-hoc data. In gen-
eral, graph databases allow developers to work with an object-oriented, scalable
network instead of fixed schema.

The table below summarizes the key classes of specialized database solutions.

8

Type of
Database

Examples Specialized for Disadvantages

Document
Databases

MongoDB,
ArangoDB,
BaseX,
etc.

Querying semi-structured
data. Heavy read work-
loads

Not suitable for Up-
date/Insert heavy work-
loads since it requires
updating/inserting in ev-
ery document maintained

Column
Databases

HBase,
Hadoop,
etc.

Querying/Modifying a no-
tably smaller subset of all
columns of data

Not suitable for queries in-
volving all columns of a
row.

Key-
Value
Databases

Riak, Re-
dis, Mem-
base, etc.

Heavy lookup workloads,
continuous data reads and
writes

Searching for particular
record is ineffecient

Graph
Databases

Neo4j,
etc.

Workloads involving
many-to-many relation-
ships

Difficult to scale horizon-
tally.

2.2 OSFA (one-size-fits-all) Architecture
Each database design is motivated to handle a category of workloads arising from
specific use cases. This design consists of several trade-offs which make them
highly efficient for some categories of workloads but inefficient for others. For
instance, column store databases, are especialy effecient for OLAP queries, but
inefficient for OLTP queries. As a consequence, today’s companies and enter-
prises have to manage and integrate several types of data management systems.
Sometimes the presence of different types of data management systems, rather
than making the data management easier, proves to be harder and costlier to com-
panies. Many application developers have to spend engineering effort on database
systems management tasks like copying data from one database to another. This
leads to extra costs in terms of development, maintenance and DBA cost. A single
data management system which covers multiple database use cases would be able
to overcome these issues.

Specialized database engines are expected to outperform the traditional RDBMS
(attempting to be one size fits all solution) in several application areas, including
Data warehousing, Stream processing and scientific and intelligence databases.
Variation in application workloads, requirements, and hardware often makes OSFA
architectures unsuitable and inefficient. However, there is something very ap-

9

pealing about tunable OSFA architectures: client applications can be prototyped
quickly, and infrastructure tuning and specialization can be deferred until the ap-
plication’s runtime characteristics are better known and understood.

A single tunable infrastructure is not an answer, since an infrastructure that
simply exposes an ever increasing amount of tuning options, is neither scalable
nor practical for developers [42]. An alternative approach of providing “database
building blocks” to developers, has often been employed [12, 17]. From these
core components, developers can build customized database engines that are spe-
cialized to their application’s requirements. Such systems allow developers to
focus their efforts on client applications first, only specializing the infrastruc-
ture post-hoc, as the client application matures and its workload characteristics
become better understood. Often, this specialization can be done without sub-
stantive changes to the application’s existing client/server interface-an especially
crucial feature for domains of web applications, where workload characteristics
change frequently.

2.2.1 Related Work
The “building block databases’’ can be categorized into two categories: (1) Lan-
guage based building block databases, and (2) Log based building block databases.

Language Based Building Blocks

Packaging all database technology into a single unit of development, maintenance,
deployment and operation is not an answer since such an infrastructure will not be
appropriate for variation in application workloads experieced by today’s applica-
tions [42]. Instead, an alternative approach of providing RISC-style, specialized
data managers have often been employed [12]. Such data management systems are
often have limited functionality. Low-level RISC style database architectures pro-
vide target applications and end-users with a sufficient, but minimal feature-set,
thus avoiding the overheads of supporting unneeded functionality. More recent
efforts have begun to realize this vision, ranging from general approaches that
exploit programmable and/or algebraic commutators to minimize locking over-
heads [40, 19, 14, 16] to full data management systems. The MonetDB [9]
and LogicBlox [23] systems both express database accesses and manipulations
through low-level, fine-grained, algebraic instruction sets (MIL/X100 and Data-
log/LogiQL, respectively), allowing their respective engines to optimize execution
around a precisely characterized set of required capabilities. For fixed workloads,

10

DBToaster [29] and HyPer-LLVM [34] instead perform aggressive workload com-
pilation, producing minimal, highly-efficient data processing engines.

Recent efforts on compilers for Domain Specific Languages can also be thought
of as belonging to this class of building-block databases. Efforts to optimize DSLs
range from early work on collection programming and object stores [7, 47], to
more recent efforts directed at the compiler pipeline. Compiler toolchains such
as Delite [11] or K3 [41] allow end-users to easily write compilers for domain-
specific data processing languages. By providing developers with a set of core
primitives and a set of universal equivalences and rewrite rules for these prim-
itives, the toolchain makes it easy to bootstrap a compiler that has reasonable
performance out of the box. Developers can then provide additional equivalences
and rewrite rules based on domain knowledge to further improve the performance
of compiled code.

Log Based Building Blocks

The second class of building block databases uses logs as building block. This
strategy allows for an extremely low-cost write primitive that still ensures or-
dering. It then falls to the infrastructure developer to reconstructure, organize,
or persist the log to ensure the appropriate tradeoffs for performance [17], data-
avaliability [3], consistency [28], or replication [8, 6, 48, 44].

OctopusDB [17]: In OctopusDB all data is collected in a central log, i.e. all in-
sert and update operations create logical log-entries in that log. Based on that log,
it may then define several types of optional Storage Views (or materialized views).
A Storage View (SV) represents all or part of the log in a different physical layout.
The Storage view selection is solely based on the workload in hand. This single
abstraction converges the problems of query optimization, view maintenance, in-
dex selection, as well as storage selection into a single problem of storage view
selection.

Though coarse-grained, views give end-users a remarkable level of control
over how and when computation occurs. The cost of appending to the main log
is minimal, placing the full burden of computation on subsequent read operations.
By instantiating views, users increase the computational burden on write opera-
tions (as the views must be maintained), but simultaneously reduce the cost of
some reads. The mechanic of views gives end-users an intuitive way to control
how and when the engine performs computation on the data.

11

Figure 2.1: The Hyder Architecture.

Hyder [8]: Hyder is an another example which uses the log based abstraction
to allow scaling out without partitioning the database or application, making it
well suited for data center environment. Hyder consists of a log-structured multi
version database, stored in a flash memory and shared by many multi-core servers
over a data center network as shown in Figure 2.1. Since it uses a data sharing
architecture (i.e. the main log), all servers can read from and write to the entire
database, which in turn simplifies the application design by avoiding partitioning,
distributed programming, layers of caching and load balancing. Also, in Hyder,
update transactions execute on one machine and write to one shared log. Hence,
it does not require two-phase commit which saves message delays.

12

Chapter 3

AST Databases

The chapter introduces Abstract Syntax Trees (AST) as a “database building block”.
AST databases (ADBs) do not store the computed value (or reified value) of the
application state variables. Instead it stores a sequence of un-evaluated updates,
applied over application state variables. The reified value of the state variables can
be obtained by collecting all the updates and evaluating them. The un-evaluated
updates are expressed in a data manipulation language built over AST database
and are stored within infrastructure in the form of Abstract Syntax Trees (ASTs).
An abstract syntax tree is a tree-like structure which represents the update per-
formed over a state variable. The abstract syntax trees, much like the data ma-
nipulation language, from which they are generated, are amenable to the program
analysis which allows developers to fetch workload or application runtime char-
acteristics from it. AST databases provide developers fine grained control over
infrastructure components, which helps them to make important decisions and ap-
plication specific tradeoffs. As an example, developers have the full control over
if, when, and where the evaluation of AST should occur.

This chapter starts with highlighting the motivation behind using the AST
as a “database building block” and how their amenability to program analysis
helps to fetch application-specific characteristics, which can later be used to build
application-specific optimizations over an ADB infrastructure. The chapter mainly
focuses on the structure of AST databases and how ASTs are stored within its in-
frastructure, and how the AST database’s primary operations (i.e. update, read,
and evaluation) are performed over its structure.

13

=

A +

A 1

Figure 3.1: The Abstract Syntax Tree (AST) of update ‘A=A+1’.

3.1 AST: Abstract Syntax Tree
An Abstract Syntax Tree (AST) is a tree-like structure which is generated by
analysing the syntax of the update represented in the data manipulation language
built over it. Consider the update ‘A=A+1’ which increments the value of state
variable ‘A’ by 1. The update can be represented as abstract syntax tree as shown
in Figure 3.1.

3.1.1 AST: Database Building Block
Chapter 2 discussed several building block databases. These databases are catego-
rized into two main categories (1) Log-Based Building block databases [17, 8, 6],
and (2) Language based building block databases [9, 23, 29, 11].

OctopusDB [17] (a log based building block database) stores a history of up-
dates in the central log and allow developers to initalize different materialized
views, each supporting the specific workload’s requirements. Although this ap-
proach reduces the complexity of creating custom databases, it provides coarse-
grained control over the infrastructure components. As an example, OctopusDB
provides user control of how and when computation of updates should happen.
The computation can be deferred until reads and makes writes extremenly effe-
cient, since it only requires the minimal cost of appending the update to the central
log. On the other hand, if the user defines materialized views, it reduces the cost
of read operations making writes computational heavy. Developers have to make
an important trade-off according to the application workload. Also, it may cause
the unneccessary duplication of data by keeping a copy of it in central log and the

14

materialized view created over it.
On the other hand language based building block databases [9, 23, 34, 29, 11],

focuses on providing domain specific data processing languages which allows
users to easily write workload specific compilers powered with rewrite rules,
which offers the performance comparable to the specialized solutions. The major
advantage of the language based building blocks is that they are amenable to the
post-hoc optimizations. With the evolution of application requirements, the users
can provide additonal equivalences and rewrite rules based on domain knoweldge
to further improve the performance. Although, these databases provides enough
fine grained control over the data storage layer, they focuses on providing appli-
cation developers with a sufficient, but minimal subset of functionalities. Also the
focus of these systems is on data-processing and not persistence.

We propose Abstract Syntax Trees(ASTs) as a “database building block”. An
AST database stores a sequence of un-evaluated updates, represented as ASTs.
Encoding together the ASTs combines the best festures of language and log based
building block databases. Like language based building blocks, ASTs provide
users fine grained control over how the data is stored and accessed by allowing
users to develop the equivalences and rewrite rules. Instead of specifying the
rewrite rules in terms of domain specific data processing language, the user spec-
ify them in terms of ASTs which can be coupled with any language and thus does
not limits the infrastructure to specific category of workloads. Moreover, repre-
senting update history as a sequence of ASTs, provide users much finer grained
control over stored data, unlike log based building block databases. As an exam-
ple, rewrite rules on ASTs provide users much fine grained control over how, when
and where evaluation should happen. An ADB can evaluate ASTs at the time of
update, or can delay it till the time of read operation, or when the infrastructure
is idle. It provide developers the full control over when to trigger the evaluation,
thus helping them to make important decisions and tradeoffs during application
runtime.

3.1.2 Analysing ASTs
ASTs, much like the data manipulation language,from which they are generated,
are amenable to program analysis techniques [46, 24]. By analysing ASTs, im-
portant information about an application update can be extracted, including:

1. AST write set: The write set of an AST include state variables which are
updated/modified (or initialized) by the operation performed. Given an AST

15

(Â), the function ASTW extracts the write set.

2. AST read set: The read set of an AST include state variables on which AST
depends i.e. the state variables whose reified value is required to evaluate
the AST. Given an AST (Â), the function ASTR returns the read set.

The functions ASTW and ASTR are called metadata extraction functions. The im-
plementation of metadata extraction functions is connected to the semantics of the
data manipulation language built over an AST database’s infrastructure.

Example 1 Consider the AST shown in the Figure 3.1. The write set of the AST
includes state variable ‘A’ since it is been updated by the AST. The read set of AST
also includes the state variable ‘A’ since its previous value is required to evaluate
the AST.

3.2 ADB Structure
In its most general form, an AST database, instead of storing the reified value
of state variables, stores an ordered sequence of un-evaluated updates made over
application state variables. The individual update is represented in the form of
an AST. Thus the reified value is never stored in an ADB infrastructure, but the
same can be obtained by evaluating the sequence of ASTs. The AST may depend
upon other ASTs. To evaluate an AST, the infrastructure should be able of fetch
its dependent ASTs from the stored sequence. Thus an AST stored within the
database, should have the sufficient knowledge about the position (in the ASTs
sequence) of ASTs on which it depends. This observation leads us to store ASTs
and their dependencies in a data structure, similar to graph, with each AST stored
in the graph node pointing to its dependent ASTs by outgoing edges. In an ADB-
ecosystem, such a graph structure is called “Data Flow Graph (DFG)”.

A node of the data flow graph stores the AST of an update performed over a
state variable. An ADB maintains the ordered sequence of the nodes in the order
of their creation. Each node in the DFG is labelled with the positive integer, which
specifies their specific position in the ordered sequence.

An ADB’s DFG is denoted as DFG = (V, E) with

• V is ordered sequence of nodes in a DFG. A vertex v = (Â, n, Adj(v)), in
the sequence ‘V’, is considered to be a DFG node storing the AST Â and
having sequence number ‘n’. ‘Adj(v)’ is the associated adjacency list which
is an unordered list containing node’s direct neighbors.

16

=

A 1

=

A +

A 1

A

=

B A
A

Node #1 Node #2 Node #3

Figure 3.2: An ADB’s Data Flow Graph.

• E is the set of ordered pair of DFG nodes called edges. An edge e = (x,y)z

is considered to be a directed edge from vertex x to vertex y. The AST
stored in node x is said to be dependent upon the AST stored in node y. The
dependency between the two ASTs is denoted by z.

Example 2 An example of an ADB’s DFG is shown in the Figure 3.2. The DFG
consists of three nodes, each containing the AST of an update performed on
database state. The directed edges in a DFG denote the dependencies between
connected ASTs. The reified value of state variables can be obtained by evaluat-
ing the ASTs of updates performed over them. For example, the value of the state
variable ‘A’ can be obtained by evaluating the ASTs stored in node #1 and node
#2 (of Figure 3.2). Similarly, the value of the state variable ‘B’ can be obtained by
evaluating the AST stored in node #3. Since the AST depends upon ‘A’, evaluating
value of ‘B’ requires first evaluating the reified value of ‘A’.

An ADB exposes two primitive operations:

1. The Data Flow Graph (DFG) may be queried by program analysis such as
dependency analysis, slicing [46], and similar techniques [24].

2. The sequence of ASTs, or Data Flow Graph (DFG), may be modified (a new
AST can be added or the several ASTs can be combined together) through
deterministic, piecewise graph transformations [27, 32, 2].

3.2.1 ADB Reads
To obtain the reified value of state variables, the ASTs stored in an ADB’s DFG
needs to be computed. Collecting and evaluating all ASTs, when only a particular

17

state variable (or subset of state variables) is required, is unnecessary and ineffi-
cient. However, in order to obtain the full reified database state requires evaluation
of all stored ASTs. In order to make the read operations efficient, ADB relies on
the program analysis technique called program slicing. Program Slicing reduces
the amount of computation needed to obtain the reified value of state variables.

Program Slicing

Program slicing is a common and powerful compiler technique which can be used
for program analysis and optimizations. Program slicing is the computation of the
set of program statements, the program slice, that may affect the values at some
point of interest, referred to as a slicing criteria. Intuitively, given a sequence of
instructions and a slicing criteria, a slice is is the minimal subset of instructions
that is still guaranteed to produce equivalent values for the specified outputs.

Example 3 For example, consider the simple sequence of updates:

1. A = 1

2. B = A + 2

3. C = A + 3

4. D = B + C

If the user intends to read the state variable ‘C’, the slice with respect to ‘C’ can
be computed to return computations 1 and 3.

Computing Program Slice on ADB’s DFG

Computing a slice, with respect to a particular state variable, on an ADB’s DFG
requires two steps:

1. Finding the DFG node storing the AST of the latest update performed over
the state variable.

2. Finding the set of descendant nodes of the node fetched in the previous step.
The descendant nodes contains all the ASTs which are required to obtain the
reified value of the state variable.

18

Given an ADB’s DFG and slicing criteria variable (A), function READV iterates
over the ordered sequence of nodes in reverse order and finds the first node con-
taining the update’s AST performed over the state variable, desired to be read.
Once the appropriate node is fetched, function READD applies Breadth First
Search [20] on it, to collect all the descendent nodes. The function READD elim-
inate the duplicate ASTs (from the set of descendent nodes) encountered during
the traversal. Also, the function READD uses a priority queue to temporarily store
the DFG nodes during traversal. Since the DFG nodes are ordered in the order of
their creation, the use of a priority queue [33] ensures that the descendant nodes
are collected in the same order while traversal.

Example 4 Consider the following sequence of the updates performed over the
application state variables:

1. A=1

2. B=A+1

3. A=A+1

4. B=B+1

5. C=A

6. D=B+C

The sequence of updates are stored in an ADB’s DFG, as shown in Figure 3.3. The
DFG contains six nodes, each containing the AST of the computation performed.
Suppose if the user intents to collect all the updates performed over state variable
‘B’, the function READV will iterate over the ordered sequence of DFG nodes
in reverse order and select the node containing the computation ’B=B+1’, since
it is the latest operation performed on ‘B’. Function READD will then follow the
selected node’s outgoing edges to collect the descendant nodes. The two functions
together will select the nodes containing the computation ‘B=B+1’, ‘B=A+1’,
and ‘A=1’. The three ASTs collected can then be evaluated to obtain the reified
value of state variable ‘B’.

19

SN#1
A=1

SN #2
B=A+1

SN #3
A=A+1

SN #4
B=B+1

SN #5
C=A

SN #6
D=B+C

A B
A

B

A

C

Figure 3.3: An ADB’s DFG

Algorithm 1 READV (DFG(V, E), A)
Require: DFG(V, E), An ADB’s DFG.
Require: A:A, The state variable desired to be read.
Ensure: rootNode:rootNode, The DFG’s node containing the latest update’s

AST over application state variable, A.
for node ∈ Reverse(V) do
component← ASTW (node.Â)
if component == A then
rootNode = node

Break
end if

end for

Algorithm 2 READD(DFG(V, E), sourceNode)
Require: DFG(V, E), An ADB’s DFG.
Require: sourceNode, The source node from which BFS is to be applied.
Ensure: descendants, The set of descendants of the selected root nodes.

Create Priority Queue Q.
Enqueue sourceNode onto Q

while Q 6= Empty do
node← Dequeue(Q)
for adjNode ∈ Adj(node) do

if adjNode not in Q then
descendants = descendants ∪ adjNode

Enqueue adjNode onto Q

end if
end for

end while

20

Evaluation The ASTs collected from functions READV and READD are evalu-
ated to obtain the reified value. Because an ADB stores the ordered sequence of
update ASTs, user has the full control to decide where, when and how to evalu-
ate the collected ASTs. The evaluation can happen at the server side, or can be
offloaded to the client side. The user can also decide when to perform at the eval-
uation. It can be performed at the time when update has been applied to database,
or when the user reads from the database, or when the infrastructure is idle (i.e.
not processing any update or read requests). Moreover, the evaluation can be par-
titioned such that part of the evaluation happens at the time of update and part
of it happens at the time of read. This decision can be based on several factors
such as server load, network bandwidth, client computation capacity, workload
specifications, etc.

3.2.2 ADB Updates
In the ADB ecosystem, an update to an application state variable represented as an
Abstract Syntax Tree, is appended to the stored sequence of ASTs. This changes
the existing DFG’s state. Since a sequence of ASTs is stored in the DFG, an
update to an ADB requires two steps:

1. Create a new DFG node to store the update’s AST.

2. Connect the new node with existing DFG nodes to track any AST read
dependencies. Recall that the AST read set can be obtained by metadata
extraction function ASTR. The new node created in the previous step is con-
nected to each node containing the latest update to a read dependency (of
the new AST) by an outgoing edge.

When an update represented by Abstract Syntax Tree Â is applied to ADB
infrastructure, it transforms its DFG(V, E), to the state represented by D̂FG(V̂, Ê)
with

• V̂ = V ∪UPDAT EV (Â)

• Ê = UPDAT EE(DFG(V, E), Â)

The function UPDAT EV creates a new DFG node that stores the new update’s
AST (Â). Once the new DFG node is created, the function UPDAT EE creates an
edge between the new node and the existing nodes which contain the latest writes
for the new AST’s read dependencies. The nodes of an ADB’s DFG are labeled

21

with the sequence number, which specifies the order in which the AST is appended
to the database state. The function UPDAT EE iterates over the sequence of the
nodes in reverse order til it finds the first node containing an update on the new
AST’s read dependency. The node found contains the latest update over the AST
dependency. The directed edge is created from new AST node created by function
UPDAT EV , to the node found by function UPDAT EE . The process is repeated for
every AST dependency. The function UPDAT EE requires O(m ∗ n) time, where
m is the number of AST read dependencies and n is the number of DFG nodes.

Algorithm 3 UPDAT EE(DFG(V, E) Â)
Require: DFG(V, E), The current ADB’s DFG.
Require: Â, The AST of the new update.
Ensure: D̂FG(V̂, Ê), The modified DFG
newNode←UPDAT EV (Â)
V̂ = V ∪ newNode

dependencies← ASTR(Â)
for dep ∈ dependencies do

for node ∈ Reverse(V) do
component← ASTW (node.Â)
if dep == component then

Break
end if
Ê = E ∪ E(newNode,node)dep

end for
end for

Example 5 An example of an ADB update is shown in Figure 3.4. The initial
ADB stage consists of three nodes each containing the ASTs of the computations
performed on the database. Consider an update ‘A=A+2’ performed on ADB in-
frastructure. The metadata extraction functions, ASTR and ASTW will be applied
on update’s ADB to extract the read (i.e. A) and write set (i.e. A) of the AST re-
spectively. Function UPDAT EV will create the new graph node to store the update
AST. Function UPDAT EE will connect the newly created node to the DFG node
containing operation ’A=A+1’, since this is the latest computation performed on
the read set of the AST (i.e. A).

22

=

A 1

=

A +

A 1
A

Apply

=

A 1

=

A +

A 1

=

A +

A 2

A A

=

A +

A 2

New ADB state

=

B A

A

=

B A

A

SN #1 SN #2

SN #3

SN #1
SN #2

SN #3

SN #4

Figure 3.4: An ADB’s DFG transformation after an update operation.

23

3.3 Optimizations over ADB’s DFG
This section describes some of the optimizations which can be built over an ADB’s
DFG to make its primary operations (read, write, and evaluation) efficient.

3.3.1 Indexing: Faster reads and writes
Recall that an ADB maintains its sequence of DFG nodes in the order of their
creation. In order to process update and read requests, the infrastructure iterates
over the ordered sequence of nodes in reverse order. To append a new update,
the function UPDAT EE iterates over the DFG node sequence in reverse order
to find the nodes containing the latest update performed over the new update’s
dependencies, if any. Similarly, to process the read requests, the function READV
iterates over the DFG node sequence to find the node containing the latest update
performed over the application component, desired to be read.

The update and read functions can avoid iterating over the sequence of DFG
nodes with the help of a special DFG node called an Index Node. An Index node is
a Hash Map (a structure that maps keys to values) built over an ADB’s DFG. The
keys are application state variables. The values are the DFG nodes that contains
the latest update performed respective keys.

Faster Reads

The read function READV can avoid unnecessary iteration over the DFG nodes by
using index nodes. The improved process is illustrated in the function READ−
INDEXV . Function READ− INDEXV requires O(1) time to fetch a node through
an Index node, as opposed to the function READV which requires O(n) time for
iterating over all dependencies (where n is the number of dependencies). Once
the DFG node containing the latest update is fetched, the function READD can be
used to collect the descendant nodes in DFG.

Example 6 Consider the ADB’s DFG of the ADB-Read example in the Section 3.2.1
with the presence of an index node as shown in Figure 3.5. If the user intents to
read state variable ‘B’, the function READ− INDEXV uses the index mappings to
select the node containing the AST of update ‘B=B+1’. Once a node is selected,
function READD collect all the descendant nodes. Functions READ− INDEXV
and READD, collect the ASTs of computations ‘B=B+1’, ‘B=A+1’, and ‘A=1’.

24

Algorithm 4 READ− INDEXV (DFG(V, E), A, Î)
Require: DFG(V, E), An ADB’s DFG.
Require: A:A, The state variable desired to be read.
Require: Î, DFG’s Index node.
Ensure: rootNode:rootNode, The DFG node containing the latest update over

the state variable desired to be read.
rootNode = Index-Map(Î).get(A) #
fetch the DFG node from the index mappings (Index-Map)

SN#1
A=1

SN #2
B=A+1

SN #3
A=A+1

SN #4
B=B+1

SN #5
C=A

SN #6
D=B+C

A B
A

B

A

C

A B C DIndex Node

Figure 3.5: An ADB’s DFG with Index Node.

Faster Updates

The update function UPDAT EE avoids unnecessary iteration over ordered se-
quence of DFG nodes, with the help of index node which maps the application
component to the DFG node containing the latest update performed over the re-
spective application component. The new function UPDAT E− INDEXE :

1. Uses metadata extraction function ASTR to fetch the read dependencies, if
any.

2. Uses mapping maintained by Index node to fetch the nodes containing the
latest updates performed over the read dependencies. The Index node fetches
the required DFG nodes in O(1) time as opposed to iterating over the se-
quence of nodes which requires O(n) time, where n is number of nodes in
DFG. The overall time complexity of UPDAT E− INDEXE is O(m), as op-
posed to UPDAT EE , whose time complexity is O(m ∗ n) (m is the number
of read dependencies of new update and n is the number of DFG nodes).

The state variable used as an index key can be fetched from the metadata
extraction function ASTW . If the index has been initialized for this key, the new
entry has to be inserted in the Index node mappings. If the existing component has

25

Algorithm 5 UPDAT E− INDEXE(DFG(V, E), Â, Î)
Require: DFG(V, E), The current ADB’s DFG.
Require: Â, The new update’s AST
Require: Î:indexNode, DFG’s Index node.
Ensure: DFG(V̂, Ê), The modified DFG
newNode←UPDAT EV (Â)
V̂ = V ∪ newNode

deps← ASTR(Â)
indexMap← Index-Map(Î)
for dep ∈ deps do
node← indexMap(dep)
Ê = E ∪ E(newNode,node)dep

end for

been updated, the respective entry in Index node mapping has to be modified to
point to the new update since it is now the latest update over respective component.
The function UPDAT E − INDEXI makes the appropriate changes to the Index
node.

Algorithm 6 UPDAT E− INDEXI(Â, Î)

Require: Â, The AST of the new update.
Require: Î, DFG’s Index node.
newNode←UV (Â)
Index-Map(Î).put(ASTW (Â), newNode)

Example 7 Consider the ADB update example discussed in Section 3.2.2 adapted
to the use of an Index Node. The index node maintains the mapping between
the state variables, A and B, to the DFG nodes containing the ASTs of updates
‘A=A+1’ and ‘B=A’ respectively. When an update ‘A=A+2’ is applied, the DFG
nodes containing the AST over its read dependencies can be directly accessded
through Index node. After connecting the new node to its dependency nodes, the
function UPDAT E − INDEXI updates the index node’s mapping and points the
key A to the the update AST’s node. The transformation is shown in the Figure 3.6.

26

ADB State

=

A 1

=

A +

A 1
A

Apply

=

A 1

=

A +

A 1

=

A +

A 2

A A

=

A +

A 2

New ADB state

=

B A

A

=

B A

A

Hash
Index

A

B

Hash
Index

A

B

SN #1 SN #2

SN #3

SN #1
SN #2

SN #3

SN #4

Figure 3.6: An ADB’s DFG transformation in the presence of index node.

27

=

A +

A 1

=

A +

A 2

=

A +

2
+

A 1

Partial
eval rule

Figure 3.7: The Partial evaluation triggered rule.

3.3.2 Triggered AST rewrite rules: Faster Evaluation
AST rewrite rules give developers full control over how update evaluation should
occur. AST rewrite rules that suite workload specific characteristics can be framed
to make the evaluation of ASTs efficient. A rewrite rule consists of

1. A pattern that identifies an ADB’s DFG subgraph.

2. A procedure or declarative specification that rebuilds the subgraph.

Example 8 An example of a rewrite rule is shown in Figure 3.7. The figure illus-
trates a partial evaluation AST rewrite rule that merges two ASTs that satisfy the
commutative property, and stores them in a partially evaluated form.

AST databases let developers to specify where and when the AST rewrite rules
should be applied on the database state. AST rewrite rules can be applied at the
time when update is performed, when the client reads from the ADB infrastruc-
ture, when the infrastructure is idle. Moreover evaluation of the ASTs can be
partitioned at different times. This decision can be based upon workload charac-
teristics or server load.

Example 9 The example of evaluation partition is shown in Figure 3.8. First the
partial evaluation rewrite rule is applied at the time when update is performed,
then the second partial evaluation rewrite rule is applied when the system is idle,
and the third partial evaluation rewrite rule is applied when a client reads from
the database infrastructure.

28

=

A 1

=
+

A 1

=

A +

A 2

AA A

=
A +

A 3

Partial
eval rule

=

A +

3+

A 2

=
A +

A 1

=

A 1
AA

Partial
eval rule

=

A +

+ 3

+

A 1

2

=

A 1

A
Partial

eval rule

=

A 7

Figure 3.8: The figure illustrates the partition of ASTs evaluation.

29

Chapter 4

Laasie: An AST Database

Laasie is a document store, Abstract Syntax Tree database, specialized for hier-
arichal structured data. Laasie, like a generic AST database, stores a sequence
of updates performed over data components. Laasie is amenable to post-hoc spe-
cialization for an application’s data characteristics and access patterns. Laasie,
specifically, is specialized for an ADB’s primary operations:

1. Updating a reified state by appending new ASTs to the sequence of ASTs
stored in its Data Flow Graph (DFG).

2. Accessing data by a varient of static program slicing [46].

3. Using pattern-matching over the DFG’s structure to identify and apply po-
tential AST rewrites.

Laasie presently includes support for a simple hierarchical data manipulation
language based on Monad Algebra [31, 10] known as BarQL [30]. However,
Laasie allows interchangeable support for different underlying languages.

The chapter describes the semantics of BarQL language, the structure of the
Laasie infrastructure and focusses on the enhancements made in Laasie infras-
tructure over the general AST databases (discussed in previous chapter) to make
it specialized for a hierarichal data model. The chapter starts by describing the
hierarichal data model and the semantics of the BarQL language. The rest of this
chapter is dedicated to the structure of the Laasie infrastructure and explaining
how it performs an AST database’s primary operations: read, write, and evalua-
tion.

30

/A

/A/B

/A/B/E

/A/C /A/D

/A/B/F /A/D/H/A/C/G

Data Hierarchy
branch of /A/C/G

Figure 4.1: The figure shows the sample hierarichal data model. The hierarichal
tree consists of three levels. The data hierarchy branch of key ‘/A/C/G’ is high-
lighted in the hierarichal tree.

4.1 Hierarichal Data Model
A hierarichal data model is a data model in which the data is organized into a
tree-like structure. This structure allows representing information using parent-
child relationships: each parent can have many children, but each child has only
one parent (also known as 1-to-many-relationship). In the Laasie ecosystem, indi-
vidual state variables (or keys) are represented by their full path specifications or
URLs. A full path specification points to a value by following the tree hierarchy,
in which path components separated by the delimiting character ‘/’ represent each
tree level.

Example 10 A sample hierarichal data model is shown in Figure 4.1. The hier-
arichal tree consists of three levels with each level consisting the full path specifi-
cations (or URLs) of the keys at the respective level. Different levels of hierarichal
data are referred to as the levels of the data hierarchy. For example, the key ‘/A/C’
lies at the second level of the data hierarchy, whereas the key ‘/A/C/G’ lies at the
third level of the data hierarchy.

The individual branches (the paths from the root node to different leaf nodes)
of the hierarichal tree are referred to as the data hierarchy branch of the key at
the last level of the branch. The data hierarchy branch of the key ‘/A/C/G’ is
highlighted in the Figure 4.1. The branch consists of three levels with ‘/A’ in its
first level, ‘/A/C’ in its second level, and ‘/A/C/G’ in its third level.

31

c ∈ Constant :→ p k ∈ Key
p ∈ Primitive Q ∈ Query : τ→ τ

v ∈ Value τ ∈ Type : p | {ki→ τi} | null
θ ∈ BinaryOp

Q := Q.k | Q⇐ Q |map Q using Q | Q op[θ] Q
| agg[θ](Q) | agg[⇐](Q) | filter Q using Q
| if Q then Q else Q | Q◦Q | c | null | /0

Figure 4.2: Domains and grammar for BarQL.
.

4.2 The BarQL Language
BarQL [30] is a functional update query language based upon the Monad Al-
gebra [31, 10]. Laasie’s clients represent updates to application state as BarQL
queries. Update BarQL queries consists of computations. In Laasie these are not
evaluated but appended to the sequence of previous update ASTs stored in the
infrastructure. The consequence of this is a simplified semantics for out-of-order
appends and encoding of modifications (updates or deletes) as increments (i.e.
deltas) rather than fixed writes (e.g. var=3). In short, BarQL allows the operational
semantics of updates to be managed functionally. BarQL is intended to be simple,
expressive, and amenable to program analysis. BarQL is intentionally limited to
operations with the linear computation complexity in the size of the input data;
neither the pair-with nor cross product operations are included. Cross-products
can be transmitted to clients more efficiently in their factorized form, and clients
are expected to be capable of computing cross products locally.

The domains and grammar of BarQL are shown in Figure 4.3. In the BarQL
ecosystem, update/modify/insert queries are divided into three components. The
first component signifies the BarQL token which classifies the query as the up-
date query. The second component signifies of the full path specification of the
application key which needs to be updated. The third component represents the
computation that needs to be performed.

Example 11 The BarQL query ‘w /A:=3’, instructs to write primitive value 3 to
application key ‘/A’. On the other hand, the read queries consists of BarQL token
which classifies it as read request, and the full path specification of the application

32

key desired to be read. For example, the BarQL query ‘r /A’ instructs Laasie to
return the updates performed on application key ‘/A’.

The computations in a BarQL query consists of either BarQL functions or val-
ues. The values in BarQL function can be null or collections. Note that collections
is the set of mappings. At the base, a singleton can be defined as a collection
where all keys except one map to null value. By convention, when referring to
collections we will implicitly assume the presence of this mapping for all keys
that are not explicitly specified in the functions themselves.

In BarQL, functions are monad structures that represent computation. The
rules for Primitive Constant, Null and Empty Set all define operations that take an
input value and produce a constant value regardless of input. The rule Primitive
Constant produces the primitive constant, the Null produces the null value, and
the rule EmptySet produces an empty set. Empty Set is defined as the collection
that is a total mapping, where all keys map to null value.

The Identity operation passes through the input value unchanged. Subscript-
ing and Singleton are standard operations. In comparison to Monad Algebra,
these operations correspond to not only the singleton operation over sets, but also
the tuple constructor and projection operations. Because collection elements are
identified by keys, we can reference specific elements of the collection in much
the same way as projection on a tuple.

The merge function combines two (or more) sets, replacing undefined entries
in one collection (keys for which a collection maps to null) with their values from
the other collection:

({A:=1} ⇐ {B:=2})(null) = {A→ 1, B→ 2}

If a key is defined in both collections, the right input takes precedence:

({A:=1} ⇐ {A:=2})(null) = {A→ 2}

The merge operator can be combined with singleton and identity to define up-
dates to collections:

(id⇐ {A:=3})({A→ 1, B→ 2}) = {A→ 3, B→ 2}

Subscripting can be combined with merge, singleton, and identity to define
point modifications to collections:

33

(id⇐ {A:=(id.A⇐ {B:=2})}) ({A→ {C→ 1}}) = {A→ {B→ 2, C→ 1}}

If a key is defined in both collections, the right input takes precedence:

({A:=1} ⇐ {A:=2})(null) = {A→ 2}

The merge operator can be combined with singleton and identity to define up-
dates to collections:

(id⇐ {A:=3})({A→ 1, B→ 2}) = {A→ 3, B→ 2}

Subscripting can be combined with merge, singleton, and identity to define
point modifications to collections:

(id⇐ {A:=(id.A⇐ {B:=2})}) ({A→ {C→ 1}}) = {A→ {B→ 2, C→ 1}}

Primitive binary operators are defined monadically with operation PrimBinOp,
and include basic arithmetic, comparisons, and boolean operations. These opera-
tions can be combined with identity, singleton, and merge to define updates. For
example, to increment A by 1, we write:

{id⇐ {A:=id.A+1}}({A→ 2}) = {A→ 3}

BarQL provides constructs for mapping, flattening and aggregation. The map
operation is analogous to its definition in Monad Algebra, save that key names
are preserved. The Map operation applies the computation to all the child of the
input collection. For example, to increment all children of the root by 1, the map
operation can be written as follows;

(map id using (id+1))({A→ 1, B→ 2}) = {A→ 2, B→ 3}

To increment the child C of each component of the root by 1, the map opera-
tion can be written as follows:

(map id using (id ← {C:=id.C+1})) ({A → {C → 1}, B → { C → 2, D →
1}}) = {A→ {C→ 2}, B→ {C→ 3, D→ 1}}

34

The Flatten operation is also similar to the one in Monad Algebra, expect that
it is based on⇐, rather than ∪ as in Monad Algebra.

To overwrite the child C of each component of the root by 5, the flatten oper-
ation can be written as follows:

(flatten id using {C:=2})({A→ {C→ 1}, B→ { C→ 3, D→ 1}}) = {A→
{C→ 2}, B→ {C→ 2, D→ 1}}

The Filter operation can be used for eliminating/deleting the application com-
ponents which are no longer needed or of no interest. To delete the collection
from C whose child C’s value is not 1, the filter operation can be written as:

(filter id using {C:=1})({A→ {C→ 1}, B→ { C→ 2, D→ 1}}) = {A→
{C→ 1}

Finally, BarQL also supports Conditionals and Composition of queries. The
rules for these reductions are standard.

4.2.1 AST Analysis
Recall that the ASTs stored in an AST database (as defined in chapter 3) represent
updates performed over the application state variables. The ASTs are generated
by analysing the syntax of the updates represented in data manipulation language,
built over ADB infrastructure. In the Laasie ecosystem, BarQL is the data manipu-
lation language on which, similar to any programming language, program analysis
techniques can be applied.

The BarQL ASTs are amenable to program analysis. This allows developers to
fetch the following metadata information from the ASTs.

1. AST write set: The write set of an AST includes the keys which are updated
by the AST. Given the AST Â, the function ASTW generates the URLs of
the keys in AST write set.

2. AST read set: The read set of an AST includes the keys on which AST
depends i.e. the keys whose value is required to evaluate the AST. Given
the AST Â, the function ASTR generates the URLs of the keys in AST read
set.

35

/A/C

:=

+

.

. B

id A

2

Figure 4.3: The AST of the computation /A/C:=id.A.B+2

3. Data Hierarchy branch: Given the URLs of the keys in AST read and write
set, the function ASTDH returns the data hierarchy branch of respective keys.
The number of levels in the data hierarchy branch is equal variable’s data
hierarchy tree level.

The functions ASTW , ASTR, and ASTDH are called metadata extraction func-
tions. The implementation of metadata extraction functions is connected to the
semantics of the BarQL language.

Example 12 Consider the AST of the update ‘/A/C:=id.A.B+2’ as shown in Fig-
ure 4.4. Since the update has been performed over the key ‘/A/C’, the function
ASTW will return ‘/A/C’ in write set. In order to evaluate the AST, the value of
key ‘/A/B’ is required and the function ASTR will return the key ‘/A/B’ in read set.
Given the URL ‘/A/C’, the function ASTDH generates the data hierarchy branch
consisting of two levels, with first level containing the key ‘/A’ and the second level
containing the key ‘/A/C’.

4.3 Laasie Data Flow Graph
Laasie stores sequences of update ASTs in its Data Flow Graph (DFG). Because
Laasie is specifically developed for a hierarichal data model, its DFG is different
than that of a generic AST database (discussed in Chapter 3). The main differ-
ence between the two is the index structure built over the data flow graph. Recall
that a hash index is used over the DFG of a generic AST database when fetching
sequences of updates required to evaluate the reified value of individual data com-
ponents. As opposed to a generic AST database, which deals with disjoint state

36

#1
/A/B/D :=

1

#2
/A/B/E :=

2

#3
/X/Y/W := /A/

B/D

#4
/X/Y/Z := /A/B/

E

/A/B/D /A/B/E

/A/B/D /A/B/E /X/Y/W /X/Y/Z

/A/B /X/Y

/A /X

/

Hierarichal Data Model

DFG

Figure 4.4: The DFG and the hierarichal model of the keys

variables, Laasie is specifically built for a hierarichal data model where state vari-
ables (or keys) may overlap (for example the key ‘/X’ is a superset of key‘/X/Y’).
The Laasie infrastructure should be able to support queries involving user defined
patterns over keys (for example, find all the updates performed over keys starting
with ‘/X’) in addition to individual keys.

Consider the data flow graph and the hierarichal model shown in Figure 4.5.
The data flow graph stores the AST of four updates to the database’s state. DFG
nodes are connected to other nodes which store ASTs of the dependent keys. The
figure also shows the hierarichal model of the keys whose updates are stored in the
DFG. Consider a query which finds all the updates performed over keys starting
with ‘/X/Y’. The keys which satisfy the query pattern are ‘/X/Y/W’ and ‘/X/Y/Z’.
Collecting updates performed over key ‘/X/Y’ is equivalent to collecting the up-
dates performed over keys ‘/X/Y/W’ and ‘/X/Y/Z’. Similarly, collecting updates
performed over key ‘/X’ is equivalent to collecting updates over data component
‘/X/Y’. This can be generalized to say that collecting update performed over key,
lying at the nth level of data hierarichal tree, is equivalent to collecting updates
performed over its child keys, lying at (n+1)th level of data hierarichal tree.

This observation suggests that queries involving patterns over keys can be sup-
ported efficiently with a tree-like index structure over DFG nodes storing update
ASTs. The index tree, similar to the data hierarichal tree, can be constructed over

37

Index
Level #1

Index
Level #2

Index
Level #2

Index
Level #3

Index
Level #3

#1
/A/B/D := 1

#2
/A/B/E := 2

#3
/X/Y/W := /A/B/D

/A /X

/A/B /X/Y

/A/B/D /A/B/E /X/Y/W

#4
/X/Y/Z := /A/B/E

/X/Y/Z

/A/B/D /A/B/E

Figure 4.5: The Index tree, similar to hierarichal tree, built over DFG.

the DFG nodes containing update ASTs as shown in Figure 4.6. An important
point to note here is that the depth (i.e. number of levels) of the index tree is
equal to the highest level of the data hierarichal tree on which the updates are per-
formed. This constraint is always enforced on the index tree, since it ensures that
the full data hierarchy branches of the data components (on which the updates are
performed) are present in the index tree.

The Laasie DFG denoted as LDFG=(V, E, IR) with

1. V is the set of vertices (or nodes) in Laasie’s DFG. Nodes in the data flow
graph can be categorized as index nodes and storage nodes. Index nodes
are the part of the index tree, while storage nodes store the AST of the
updates performed over application state variables. As opposed to nodes in
a generic ADB’s DFG which maintains an adjacency list, nodes in Laasie’s
DFG maintains a mapping from the node’s outgoing edge labels to the DFG
nodes pointed by the edges. This makes the traversal over the index tree
efficient. The mappings maintained in each node are represented by the
function MAP(node), where node is the DFG node.

2. E is a set of node ordered pairs. An edge e = (x,y)z is considered to be a
directed edge from storage node x to storage node y. The AST stored in node
x is said to be dependent upon the AST stored in node y. The dependency

38

attribute between the two ASTs is denoted by z.

3. IR is the root index node i.e. index node at the first level of the index tree.

4.3.1 Read in Laasie
Recall that the hash index, built a over generic AST database’s DFG, maps appli-
cation state variables to the nodes storing the latest update AST. Once the latest
update is found, the updates over its read dependencies can be found by perform-
ing breadth first search from the storage node containing latest update AST. Recall
that while applying breach first search, actions have to be taken to eliminate du-
plicate nodes encountered and to maintain the original order of the updates (by
using a priority queue).

The Laasie infrastructure traverses the tree index to find the source node from
which the breadth first search can be applied to collect the descendant nodes.
Given a key to be read, the respective data hierarchy branch is traversed in the
index tree. The function ReadI is used to traverse the index tree. The function uses
metadata extraction function ASTDH to find the data hierarchy branch of the data
component. In a nutshell, the function ReadI follows the index node’s outgoing
edges with label of the data component present at the respective level of the data
hierarchy branch.

Algorithm 7 ReadI(LDFG(V, E, IR), URLA)
Require: LDFG(V, E, IR), The current ADB’s DFG.
Require: URLA, The URL of the data component, A.
Ensure: rootNode, The root node containing the latest operation over data com-

ponent A.
rootNode = IR
dataHierarchy← ASTDH(URLA)
for U ∈ dataHierarchy do
nextNode = MAP(rootNode).get(U)
if nextNode 6= null then
rootNode = nextNode

end if
end for

Once the source node is returned by function ReadI , breadth first search can
be applied to collect all the descendant nodes. The function ReadD is used to

39

Algorithm 8 ReadD(LDFG(V, E, IR), sourceNode)
Require: LDFG(V, E, IR), An ADB’s DFG.
Require: sourceNode, The source node from which BFS has to be applied.
Ensure: descendants, The set of descendants of the selected root nodes.

Create Priority Queue Q
Q← Enqueue(sourceNode)
descendants = /0

descendants = descendants ∪ sourceNode

while Q 6= Empty do
node← Dequeue(Q)
for mapping ∈ MAP(node) do
dependentNode← mapping.getNode()
if dependentNode not in Q then

if TYPE(dependentNode) 6= INDEX then
descendants = descendants ∪ dependentNode

end if
Enqueue dependentNode onto Q

end if
end for

end while

40

collect the descendant nodes. ReadD applies breadth first search over the source
node and eliminates duplicate nodes encountered during traversal. The function
also eliminates index nodes while traversing and keeps only storage nodes in the
set of descendant nodes since index nodes do not store any update ASTs.

Note that, depending upon the state variable, the function ReadI can return
the storage or index node. The common strategy of applying breadth first search
remains same irrespective of the type of node returned by function READI . How-
ever, if the node returned is an index node, the function READD has to make
sure to eliminate the index nodes (encountered during traversal) from the set of
descendant nodes, since they do not store the update ASTs.

4.3.2 Update in Laasie
Recall that in a generic AST database, new update gets appended to the stored
sequence of updates by creating new DFG nodes and connecting to other nodes
storing its dependent ASTs, which are fetched using the hash index. Appropriate
changes are made to the hash index to point to the new update. The update process
in the Laasie infrastructure follows the similar process. The only difference is that
the nodes containing the dependent ASTs are fetched by traversing the index tree
and appropriate changes have to made to the index tree point to the new update.

Given an update AST Â, the function U pdateV is used to create a new DFG
storage node which stores the update’s AST. Once the new node is created, the
function U pdateE connects it to the existing DFG nodes which contains the lat-
est updates on new update’s dependent data components. Recall that the AST
read dependencies can be extracted using metadata extraction function ASTR. The
function U pdateE uses the approach similar to ReadI to traverse the index tree for
fetching the dependent DFG nodes.

The Laasie infrastructure enforces a constraint on the index tree which asserts
that the depth of the index tree is always equal to the highest level of the data
hierarchy tree on which the updates are performed. This constraint ensures that
full data hierarchy branches of all keys (on which the updates are performed) are
present in the index tree. Thus the modification of the index tree depends upon the
data hierarchy level of the data component being updated. If the data hierarchy
level of the component is greater than the depth of the index tree, new levels are
inserted. The number of levels to be inserted is equal to the difference between
the data hierarchy level of the updated key and the depth of the tree. If the data
hierarchy level of the updated key is less than the depth of the index tree, no new
levels need to be inserted but the existing index node changes to point to the new

41

Algorithm 9 U pdateE(LDFG(V, E, IR), Â)
Require: LDFG(V, E, IR), The current ADB’s DFG.
Require: Â, The AST of the new update.
Ensure: L̂DFG(V̂, Ê, IR), The modified DFG containing the new node and its

dependency edges
newNode←U pdateV (Â)
V̂ = V ∪ newNode

readDepSet← ASTR(Â)
for readDep ∈ readDepSet do
rootNode← IINDEX (LDFG(V, E, IR), readDep)
Ê = E ∪ E(newNode,rootNode)readDep

end for

Algorithm 10 U pdateI(LDFG(V̂, Ê, IR), Â)

Require: DFG(V̂, Ê, IR), The modified DFG.
Require: Â, The AST of the new update.
Ensure: DFG(V̂, Ê, ^IR), The DFG with modified index structure.
newNode←U pdateV (Â)
previousNode = IR
currentNode = IR
URLW ← ASTW (Â)
dataHiearchy← ASTDH(URLW)
for component ∈ dataHiearchy do
currentNode = MAP(previousNode).get(component)
if Type(currentNode) 6= INDEX then
indexNode← Node(INDEX)
MAP(previousNode).put(component, indexNode) #
Add the new entry to the node mapping. It is equivalent of adding the new edge to DFG.
currentNode = indexNode

end if
previousNode = currentNode

end for
MAP(currentNode).put(URLW , newNode)
^IR = IR

42

update as it is now the latest update performed.
The function U pdateI is used to modify the index tree in case of an update. the

function traverses the data hierarchy branch of the updated data component in the
index tree. If the full data hierarchy branch does not exist, it creates the level of
the index node at the missing levels. If the full data hierarchy branch is available,
it points the last level index node to the node containing the latest update AST.

4.3.3 Examples
This section illustrates the read and update processes with the examples.

Update Example Consider the Laasie DFG as shown in Figure 4.7a. The DFG
consists of two storage nodes which initialize the collections ‘/A’ and ‘/X’. Since
the highest data hierarchy level on which the updates are performed is one (i.e.
‘/A’ and ‘/X’), the DFG consists of only one level of the index node. Figure 4.7b
shows the modified DFG after the update has been performed over the key ‘/A/B’.
The function U pdateV creates a new node to store the update AST and the func-
tion U pdateE connects it to its dependent nodes. Note that the update is been
performed on the key which lies at the second level of the data hierarchy and the
current depth of the index tree is one. Thus, one more level of the index node is is
inserted (Index level #2) as shown in figure. Figure 4.7c shows the modified DFG
after an update overwrites key ‘/A/C’. The update is performed on a key which
lies at the second level of the data hierarchy, which is the current depth of the in-
dex tree. Thus no new levels are inserted in the index tree, but an outgoing edge is
created from second level index node to the new node containing the update AST.
Figure 4.7d shows the modified DFG after the update has been performed over the
key ‘/X/Y’. The update overwrites the key with the primitive constant 10. Similar
to the previous case, no new levels of are added in the index tree, but new index
nodes are added in the second level of the index tree as shown in the figure.

Read Example Consider the Laasie DFG as shown in Figure 4.7d. Suppose the
user intents to collect the sequence of operations performed over key ‘/A/B’. The
function ReadI iterates over the index tree to find the storage node 2 (SN #2 in
Figure 4.7d) as the source node. The function ReadD collects all the descendant
nodes which stores the dependent ASTs. The function returns the storage nodes
#1, #2, and #3. Next consider a user request for all the updates over the key ‘/A’. In
this case the function ReadI returns the index node at level #2 as the source node.

43

Index
Level

#1

SN #1
/A:={B:=1, C:=2}

SN #2
/X:={Y:=1, C=Z:=2}

/A /X

(a) Initial Laasie DFG

Index
Level

#1

SN #1
/A:={B:=1, C:=2}

SN #2
/X:={Y:=1, C=Z:=2}

/X
Index
Level

#2

SN #3
/A/B:=id.X.Y

+id.A.B

/A

/A /A/B

/A/B /X/Y

(b) Laasie DFG after update
‘/A/B:=id.A.B+id.X.Y’

Index
Level

#1

SN #1
/A:={B:=1,

C:=2}

SN #2
/X:={Y:=1,
C=Z:=2}

/X
Index
Level

#2

SN #3
/A/B:=id.X.Y

+id.A.B

/A

/A /A/B

/A/B /X/Y

SN #4
/A/C:=4

/A/C

(c) Laasie DFG after update ‘/A/C:=4’

Index
Level

#1

SN #1
/A:={B:=1,

C:=2}

SN #2
/X:={Y:=1,
C=Z:=2}

Index
Level

#2

SN #3
/A/B:=id.X.Y

+id.A.B

/A

/A /A/B

/A/B /X/Y

SN #4
/A/C:=4

/A/C

SN #5
/X/Y:=10

Index
Level

#2

/X

/X /X/Y

(d) Laasie DFG after update ‘/X/Y:=10’

Figure 4.6: Laasie Update Example
44

Index
Level

#1

SN #1
/A:={B:=1,

C:=2}

SN #2
/X:={Y:=1,
C=Z:=2}

Index
Level

#2

SN #3
/A/B:=id.X.Y

+id.A.B

/A

/A /A/B

/A/B /X/Y

SN #4
/A/C:=4

/A/C

SN #5
/X/Y:=10

Index
Level

#2

/X

/X /X/Y

(a) Initial Laasie DFG

Index
Level

#1

SN #1
/A:={B:=1,

C:=2}

SN #2
/X:={Y:=1,
C=Z:=2}

Index
Level

#2

SN #3
/A/B:=id.X.Y

+id.A.B

/A

/A /A/B

/A/B /X/Y

SN #4
/A/C:=4

/A/C

SN #5
/X/Y:=10

Index
Level

#2

/X

/X /X/Y
SN #6
/A:=2

(b) Laasie DFG after update ‘/A:=2’

Figure 4.7: The figure illustrates the Laasie DFG’s self cleaning capability.

Given the source node, the function ReadD collect all the descendant nodes of it.
The index nodes encountered during the traversal will be eliminated returning the
storage nodes #1, #2, #3 and #4 as the descendant nodes.

4.3.4 Self Cleaning DFG
Laasie stores sequences of updates, suggesting that the space requirements to store
these updates can be huge in case of large number of updates over keys. In such a
case, the infrastructure developer needs to detect and delete the unwanted nodes on
timely basis. The main advantage of using the tree-like data structure for storing
updates is that it automatically detects the unwanted nodes. The Laasie infrastruc-
ture is developed in Java, and deletion of the unwanted nodes can be left to the
JVM’s garbage collector.

Example 13 Consider the Laasie DFG shown in the Figure 4.8a. The Laasie
DFG shown consists of two levels of index nodes since the highest level on which
the updates are performed is two (‘/A/B’, ‘/A/C’, and ‘/X/Y’). Consider an update

45

that overwrites the whole collection ‘/A’ with primitive constant 2. Since the up-
date has been performed over the data component which lies at the first level of
data hierarchy, the update function Laasie−U pdateI points the first level index
node to the new node containing the update. This leaves the index node at level
#2 and storage nodes #1, #3, and #4 unreferenced (as shown in figure 4.8b) which
can later be collected JVM garbage collector.

4.3.5 Evaluation of ASTs
The update ASTs collected by functions READI and READD need to be evaluated
to obtain a key’s reified value. Like any other AST database, Laasie provides user
with full control over where and when this evaluation happens. The evaluation can
happen server side or can be offloaded to clients. The user can also decide when
to perform the evaluation. It can be performed when update has been applied to
database, when the user reads from the database, when the infrastructure is idle
(i.e. not processing any client requests). This decision can be based on factors
like server load, network bandwidth, workload characteristics and requirements,
or client computation capacity.

Triggered AST rewrites

As an AST database, Laasie supports the triggered AST rewrites. An AST rewrite
rule consists of:

1. A pattern that identifies an data flow graph subgraph.

2. A procedure or declarative specification that rebuilds the subgraph.

AST rewrite rules can be specified over the Laasie infrastructure which better
suites the workload characteristics and requirements. Although check is made for
the specified rewrite patterns on every application update by default, the Laasie
infrastructure provides user the full control over when such checks should be trig-
gered.

Partial Evaluation One such example of a triggered AST rewrite rule is par-
tial evaluation, which combines two composable update ASTs and stores them in
partially evaluated form. For example, consider the AST of an update ‘A:=A+1’.
If the Laasie client increments the value of key A by 2, the two ASTs, which are

46

=

A +

A 1

=

A +

A 2

=

A +

+ 2

A 1

Apply Partial
Eval rule

Figure 4.8: Since the two computations are composable in nature, they will be
stored in the partially evaluated form when applied to partial evaluation rewrite
rule.

=

A 1

=

A +

Apply Triggered
Merge rule

<=

=

A 1

=

A 2

A +

A 2

=

A 3

Figure 4.9: The two computations update the same application key. They will
be merged together when merged rewrite rule is triggered. The resulting merged
AST can be evaluated further.

composable in nature, will be stored in the partially evaluated form subject to par-
tial evaluation rewrite rule. The process is illustrated in Figure 4.9. Because of
the partial evaluation rewrite rule, the underlying DFG structure will store only
the result of the AST transformation instead of storing the two ASTs separately.
This makes the underlying infrastructure more space efficient and gives developer
more fine grained control over the infrastructure.

Triggered Merge Another example of the triggered AST rewrite is triggered
merge which merges the new value of the application key updated with its pre-
vious value and store the result of the merge operation. Consider the DFG con-
taining the AST of the update ‘A:=1’. If the Laasie client increments the value
of A by 1, the triggered merge rule merges new BarQL update function AST with

47

previous existing AST resulting in the new merged AST as shown in Figure 4.10.
The resulting AST can be evaluated further resulting in the final AST of result
‘A:=3’. Similar to the partial evaluation rewrite rule, the triggered merge rewrite
rule makes the underlying infrastructure more space efficient and gives developer
more fine grained control over database insfrastrucutre.

4.4 Collaborative Web Applications: Motivating use
case for Laasie

Applications like Google Docs [22], Office 365 [15], or Dropbox [18] signify
a shift from traditional desktop applications towards a more collaborative envi-
ronment where multiple users can simultaneously view and edit the same docu-
ment(s) in near real time. This class of collaborative applications are based upon
client/server model, where application core functionality lies at the client side and
server is used to persist the shared application state. The server’s role is to relay
edits/updates made (to shared application state) by any user to all other connected
users. Such applications present a challenge, because the state machine replica-
tion [39] capabilities that they employ require a combination of persistence and
publish/subscribe capabilities that to the best of my knowledge is not provided by
existing data management systems [4].

Data management in this domain is hindered by by challenges such as:

1. Non Uniform State: A single web application may need to store and access
many different classes of data (e.g., key/value pairs, searchable indexes, GIS
or graph data, etc. . .).

2. Evolving requirements. Centralized hosting allows web application devel-
opers to rapidly deploy new features and functionality, resulting in frequent,
live changes to the application’s workload, schema, and data management
needs.

3. Bursty, unpredictable growth. Termed the slashdot effect, a prominent
exposure of the web application (e.g., on a news aggregator site), can result
in a sudden, unexpected dramatic growth in traffic as users begin to refer
their friends.

These challenges, combined with general performance and scalability require-
ments, result in developers frequently resorting to hybrid infrastructures cob-
bled together from multiple distinct data management systems. Collaborative

48

Socket API REST API

Laasie Data Flow Graph (DFG)

Rewrite
Engine

Rewrite
Rules

C
lie

nt
s

In
fr

as
tr

uc
tu

re

Client App

Cache

Evaluator

Client App

Cache

Evaluator

Browser App

Cache

Evaluator

Developer CodeDFG Language RuntimeInfrastructure

General Application/Domain-Specific

Figure 4.10: Laasie’s system architecture.

applications have received considerable interest, both from industry [45], and
academia [35, 37]. At present, most efforts to support collaborative applica-
tions are client-side, providing a client-driven persistence and notification ser-
vice [45], techniques for automatically extracting shared state from single-site ap-
plication [26], or generic collaborative widgets [45]. Infrastructure efforts to date
have primarily focused on traditional one-size-fits-all engineering efforts [45], or
on accessing specific properties such as reliability [35].

The same variability that makes collaborative applications hard for any one
data management system to support makes Laasie an ideal fit. Laasie’s AST trig-
gered rewrite rules allow extremely fine grained control over the exact way the
application state is stored. Simultaneously, a single, consistent interface allows
the front-end to be developed independently of any infrastructure optimizations.
This allows for rapid prototyping and early experimentation to obtain detailed
workload characteristics before the infrastructure is specialized.

A high level view of Laasie’s architecture is shown in Figure 4.11. Typical
clients interact with Laasie’s server through a thin library component. This com-
ponent maintains a replica of one or more slices of core DFG. When reified values
are needed, this library layer is capable of evaluating the appropriate cached slice.
To maintain the reified state, client sends BarQL queries to a Laasie server, where
they are parsed and composed with the existing sequence of ASTs and subjected
to rewrite rules. The server-side reqrite rules may evaluate the update, or leave it
intact as a delta (or both). If appropriate, the updated state is then reflected back
to the client during the nect update.

We expect that Laasie will be used alongside a set of library datatypes built
on top of the thin caching library, using Laasie as a replication layer. When such

49

datatypes are used, datatype-specific rewrite rules (or templates for rewrite rules)
may also be possible. This approach completely hides the underlying data man-
agement system from developers, while retaining both generality and Laasie’s
ability to specialize.

Client caches stay up-to-date using a form of State Machine Replication [39].
As discussed above, read requests include a summary of AST nodes already
cached at the client. When slicing, labeled nodes are replaced with placehold-
ers, allowing the server to send only DFG nodes inserted since the client was
last updated, in effect replaying these updates against the client’ state. A simi-
lar approach that uses push-based semantics (e.g., as in LiveObjects [35]) is also
possible, but beyond the scope of the thesis.

50

Chapter 5

Benchmark and Experiments

The chapter discusses the evaluation of Laasie and demonstrate the feasibility of
AST databases. We evaluated our document store database, Laasie, against several
other commercial and open source data management systems. The experiments
uses two benchmark suites - Yahoo Cloud Benchmark (YCSB) and the Collabora-
tive application benchmark. The evaluation shows that on benchmark workloads
not optimized for use with Laasie (YCSB), Laasie’s performance was within an
order of magnitude of the significantly more mature comparison points. On a
benchmark designed to simulate the persistence and data replication requirements
of a collaborative application, Laasie outperformed and/or showed better scaling
characterstics than a commercial document store.

5.1 Benchmark Details
The evaluation uses two benchmark suites: Yahoo Cloud Benchmark (YCSB) and
a collaborative application benchmark.

5.1.1 YCSB: Yahoo Cloud Benchmark
The Yahoo Cloud services benchmark is a standard benchmarking framework
which facilitates the performance comparisons of the new generation of cloud
serving systems. The benchmark focuses on systems that provide online read-
/write access to data. The framework consists of a workload generating client and
a package of standard workloads that cover interesting parts of the performance
space (read-heavy workloads, write-heavy workloads, scan workloads, etc.). An

51

important aspect of YCSB framework is its extensibility: the workload generator
makes it easy to define new workload types, and it is also straightforward to adapt
the client to benchmark new data serving systems. The YCSB framework and
workloads are available in open source so that developers can use it to evaluate
systems, and contribute new workload packages that model interesting applica-
tions.

YCSB Benchmark Workloads

YCSB is a Java-based benchmark that uses synthetic workloads to emulate access
patterns typical to cloud services. Each workload represents a mix of read/write
operations, data sizes, request distributions, and so on, and can be used to evaluate
systems at one particular point in performance space. Each operation in workloads
is randomly choses to be one of:

1. Insert: Insert a new record.

2. Update: Update a record by replacing the value of one field.

3. Read: Read a record, either one randomly chosen field or all fields.

4. Scan: Scan records in order, starting at a randomly chosen record key. The
number of records to scan is randomly chosen.

Due to unimplemented support for scan in Bar-QL, the scan operations in YCSB
are not taken into account for performance comparison of Laasie with other sys-
tems.

The YCSB benchmark consists of following six workloads:

1. Workload A: 50% reads, 50% writes.

2. Workload B: 95% reads, 5% writes.

3. Workload C: 100% reads.

4. Workload D: 95% reads, 5% inserts, with recently inserted records accessed
more frequently.

5. Workload E: 95% scans, 5% inserts.

6. Workload F: 50% reads, 50% read/modify/writes.

52

5.1.2 Collaborative Application Benchmark
The Laasie group has developed a suite of benchmarks that simulate different col-
laborative applications to justify Laasie’s usefulness for such kind of applications.
The next section goes over the details of the benchmarks developed. The collabo-
rative application benchmark consists of three real time collaborative applications:
Paint, Spreadsheet and Text Editor.

Paint The paint workload corresponds to a collaborative paint application where
several users can draw and change the pixel colors. The workload starts by ini-
tializing the empty user paramaterized rectangular grid. The rectangular grid is
treated as collection that consists of a mapping of pixels (identified by x,y coordi-
nates) and the color. The user can update a particular pixel’s color. The workload
also includes shape drawing operations. For testing purpose the shapes and the
colors are generated randomly by Laasie workload generator.

Spreadsheet The spreadsheet workload corresponds to a collaborative spread-
sheet application where several users can write, delete or update a sheet’s cell
values. The workload starts by initializing the user defined schema (i.e. a rect-
angular grid in the spreadsheet) with default values. The spreadsheet is treated
as a collection that contains the mapping of cells (identified by x, y coordinates)
and their respective values. The spreadsheet cells are capable of storing functions
(with dependencies) as well. The write operations consists of updating or deleting
existing cells and inserting new cells. For testing purpose the cell values and the
functions are generated randomly by Laasie workload generator.

Text Editor The text workload corresponds to a collaborative text editor appli-
cation where several users can write to a shared document. The workload starts
by initializing an empty document. The document is treated as a collection that
consists of several lines. The line, in turn, is also collection that consists of a list
of words. The write operations consists of deleting, updating the existing lines
(or words) or inserting the new lines (or words). The schema of the application
continuously grows due to the higher percentage of inserts operations. For testing
purpose the words are generated randomly by Laasie workload generator.

53

5.2 Experiments and Results
As comparison points, we used a relational database: MySql v14.14 [5] with both
the InoDB and MEMORY engines, and a commercial document store: MongoDB
v2.4.7 [13], each used without replication.

5.2.1 Experiment setup
All experiments were executed on a 2x16-core 1.8 GHz Opteron (32 cores total)
with 128GB of RAM, two 146GB 15k RPM disks in a RAID1 configuration, and
running Redhat Enterprise Linux version 6 and OpenJDK 1.7.0 45. All bench-
marks were run with separate client and server binaries, both on the same ma-
chine, using each engine’s native Java drivers: MongoDB Java Driver v2.10.1 and
MySQL JDBC connector 5.1.17. All data management systems tested were given
unrestricted access to the full hardware resources; MySQL’s MEMORY engine’s
memory limits were set at 10GB. Unless otherwise noted, Laasie was configured
to inline and evaluate (i.e., checkpoint) operations more than 1000 versions old,
every 1000 operations.

5.2.2 YCSB Results
The YCSB benchmark evaluates database performance according to throughput
and latency at varying levels of client parallelism. Before each trial, each database
was reset to its initial state and populated with 100,000 records, sized 1k each.
Due to unimplemented support for scans in Bar-QL, we did not obtain perfor-
mance results on YCSB workload E.

Each YCSB workload was run for 100,000 operations to hide startup costs.
For every YCSB workload, the throughput had been calculated against the read
latency, update latency (resp, write latency) for workload A and workload B (resp,
for workload F) by varying the number of threads performing operations on back-
end database. The overall throughput was measured in operations per second and
latencies were measured in milli-seconds. Update operations corresponds to up-
dating the existing records in database, whereas the write (or insert) operations
corresponds to inserting the new records into the database on the fly.

54

Results

Results for YCSB benchmark are shown in the figures 5.1, and 5.2. The YCSB
benchmark evaluates applications for use as a persistence layer in a traditional
cloud service. Although this is not the primary target use-case for Laasie, it pro-
vides the well known datapoint for evaluating its performance characterstics.

From the graphs of Workload A, B and C it can be observed that Laasie was
not as performant as other commercial and stable data management systems (i.e.
MySQL and MongoDB). Laasie consistently achieved performance between 10
and 20 thousand operations per second, generally no more than a factor of 2-3
slower than other data management systems we compared against. But it can
be seen from the graphs that Laasie performed consistently throughout the work-
loads, showing the feasibility of AST databases. MongoDB’s heavy optimization
for read (and not insert) based workloads is evident in Workloads B and C.

For Workload D, which contains 95% read operations and 5% insert (inserting
new values in database on the fly) operations, Laasie performance was better than
MongoDB. Laasie achieved a performance of 17 thousand operations per second
with 16 threads, as opposed to MongoDB which achieved the throughput of 10
thousand operations per second with same number of threads. This shows Laasie
scales better than MongoDB for workloads with insert operations. Laasie repre-
sent inserts in the form of ASTs, with additional metadata information. Keeping
this extra information does not hurts Laasie’s performance, and helps it to accom-
modate inserts more easily than other data management systems.

The performance bottleneck in Laasie was a consequence of coarse-grained
reader/writer locking around the Directed Acyclic graph it maintains. Replace-
ment of coarse-grained locking with concurrent graph structure data structure
is expected to substantially improve the Laasie’s performance, bringing it inline
with other data management systems. The read/modify/write operations of YCSB
workload F can be implemented in BarQL. Although YCSB models this operation
as an explicit read and write, an BarQL implementation could be written directly
into Laasie, reducing the access cost by one network roundtrip.

5.2.3 Collaborative Application Benchmark Results
The Collaborative application benchmark is composed of synthetic workloads,
which better highlight the benefits afforded by Laasie. The performance of Laasie
was compared with that of MongoDB using the collaborative benchmark. Each
synthetic workload creates the specialized database schema that simulates user

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5000 10000 15000 20000 25000 30000

La
te

nc
y(

m
s)

Throughput(op/sec)

Laasie-read
Laasie-update

Mongo-read
Mongo-update

Mysql(disk)-read
Mysql(disk)-update

Mysql(mem)-read
Mysql(mem)-update

(a) Workload a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000 70000

La
te

nc
y(

m
s)

Throughput(op/sec)

Laasie-read
Laasie-update

Mongo-read
Mongo-update

Mysql(disk)-read
Mysql(disk)-update

Mysql(mem)-read
Mysql(mem)-update

(b) Workload b

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000

La
te

nc
y(

m
s)

Throughput(op/sec)

Laasie-read
Mongo-read

Mysql(disk)-read
Mysql(mem)-read

(c) Worklaod c

Figure 5.1: YCSB Results

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

La
te

nc
y(

m
s)

Throughput(op/sec)

Laasie-read
Mongo-read

Mysql(disk)-read
Mysql(mem)-read

(a) Workload d

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5000 10000 15000 20000 25000

La
te

nc
y(

m
s)

Throughput(op/sec)

Laasie-read
Laasie-update

Mongo-read
Mongo-update

Mysql(disk)-read
Mysql(disk)-update

Mysql(mem)-read
Mysql(mem)-update

(b) Workload f

Figure 5.2: YCSB Results

57

manipulations of a shared application state. These tests highlight two optimiza-
tions in Laasie:

1. Laasie clients maintain the local cache of the application state thus receiv-
ing only the updates which are required in addition to evaluate the reified
application state at the client side.

2. Read/Modify/Update operations are performed by composing the transfor-
mation to the collection of AST’s maintained by Laasie server, rather than
performing the update at client side.

Both systems (i.e. Laasie and MongoDB) were tested by instantiating multi-
ple client threads to perform read and write operations. For Laasie, to simulate
client-side caching, each client thread taken on the role of reader or writer. For
MongoDB, client threads acted as both client reader. The ratio of read requests
to write requests was varied from 10% to 90% (Heavy Reads, and Heavy Writes
respectively).

5.2.4 Results
Figure 5.3 demonstrates the relationship between write throughput and write la-
tency. MongoDB achieved the throughput between 10 and 15 thousand operations
per second before becoming saturated. Laasie achieved as much as 2-4 times the
throughput on spreadsheet and paint benchmarks. Although due to limited support
for string manipulation, performance suffered on the text editor benchmark.

Figures 5.4 show the benefits of the (trivially supported) client-side caching
and coherency capabilities of Laasie. These figures show the per-client latency
to obtain fresh state. As refreshing the state requires a full copy in MongoDB,
we obtained an equivalent per-client latency based on maximum observed read
throughput of the server. The key takeaway from these figures is that the server
side cost of updating a client to the latest state is not a blocking factor - even at 32
clients, the performance of the server is unchanged.

58

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000 25000 30000 35000

W
rit

e
La

te
nc

y

Write Throughput

Laasie (1 reader)
Laasie (8 readers)

Laasie (16 readers)
Mongo (Heavy Writes)
Mongo (Heavy Reads)

(a) Excel

 0

 1

 2

 3

 4

 5

 6

 0 10000 20000 30000 40000 50000 60000 70000

W
rit

e
La

te
nc

y

Write Throughput

Laasie (1 reader)
Laasie (8 readers)

Laasie (16 readers)
Mongo (Heavy Writes)
Mongo (Heavy Reads)

(b) Paint

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000 12000 14000

W
rit

e
La

te
nc

y

Write Throughput

Laasie (1 reader)
Laasie (8 readers)

Laasie (16 readers)
Mongo (Heavy Writes)
Mongo (Heavy Reads)

(c) Text

Figure 5.3: Latency v/s throughput benchmark comparison of Laasie and Mon-
goDB

59

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20 25 30 35

R
ef

re
sh

 D
el

ay
 p

er
 C

lie
nt

 (m
s)

Number of Clients

Laasie (3021 writes/sec offered)
Laasie (14226 writes/sec offered)
Laasie (24164 writes/sec offered)

MongoDB (Heavy Writes)
MongoDB (Heavy Reads)

(a) Excel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

R
ef

re
sh

 D
el

ay
 p

er
 C

lie
nt

 (m
s)

Number of Clients

Laasie (11710 writes/sec offered)
Laasie (39593 writes/sec offered)
Laasie (59044 writes/sec offered)

MongoDB (Heavy Writes)
MongoDB (Heavy Reads)

(b) Paint

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35

R
ef

re
sh

 D
el

ay
 p

er
 C

lie
nt

 (m
s)

Number of Clients

Laasie (1798 writes/sec offered)
Laasie (1589 writes/sec offered)
Laasie (1565 writes/sec offered)

MongoDB (Heavy Writes)
MongoDB (Heavy Reads)

(c) Text

Figure 5.4: Latency v/s throughput benchmark comparison of Laasie nad Mon-
goDB

60

Chapter 6

Conclusion

Specialized database solutions address some of the key issues which are not ad-
dressed efficiently by traditional relational database solutions. Storage and effi-
cient retrieval of unstructured data stands out among all these issues. By exposing
a limited or specialized API, each specialized solution makes strong assumptions
about the application workloads. A tighter coupling with the application’s work-
load allows data management system to provide improved performance, scala-
bility, and ease of management. But this also reduces the system’s capacity for
post-hoc optimizations. Moreover, maintenance of several data management sys-
tems at application back-end can be costly, labor-intensive task.

The thesis argued for building block databases by proposing Abstract Syn-
tax Tree (AST) as a database building block. AST databases (ADBs) stores the
sequence of updates performed over the database state in its Data Flow Graph
(DFG). The most recent database state can be obtained by evaluating the sequence
of ASTs. ASTs can be coupled with any domain specific data manipulation lan-
guage, decoupling an application’s semantics from the underlying data manage-
ment engine. Much like the data manipulation language, ASTs are amenable to
program analysis techniques (such as static program slicing) which permits a great
deal of flexibility in how the data is stored, accessed, and manipulated. One of
the motivating use cases for AST databases is the collaborative web applications.
Application’s evolving requirements, and unpredictable growth often forces de-
velopers to restore to hybrid infrastructures cobbled together from distinct data
management systems.

The thesis also presented the prototype of a document store AST database,
called Laasie, which demonstrated the feasibility of AST databases in general.
Laasie is specialized for ADB’s primary operations like appending new updates,

61

accessing data by static program slicing, and AST rewrites. We evaluated Laasie
against commercial and open source data management systems like MySQL, and
MongoDB. The evaluation showed that Laasie’s performance was within an order
of magnitude of commercial systems on the workloads which are not optimized
for use with Laasie. Also, on collaborative application benchmark (the main use
case of ADBs), Laasie outperformed and/or showed better scaling characteristics
than a commercial document store.

62

Bibliography

[1] D. J. Abadi. Consistency tradeoffs in modern distributed database system
design. Computer-IEEE Computer Magazine, 45(2):37, 2012.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The lorel
query language for semistructured data. International journal on digital li-
braries, 1(1):68–88, 1997.

[3] S. Abiteboul and V. Vianu. Collaborative data-driven workflows: think
global, act local. In Proceedings of the 32nd symposium on Principles of
database systems, pages 91–102. ACM, 2013.

[4] S. Agarwal, D. Bellinger, O. Kennedy, A. Upadhyay, and L. Ziarek. Monadic
logs for collaborative web applications. WebDB, 2013.

[5] D. Axmark and M. Widenius. Mysql introduction. Linux Journal,
1999(67es):5, 1999.

[6] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei,
J. D. Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed data structures
over a shared log. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 325–340. ACM, 2013.

[7] D. S. Batory, T. Leung, and T. Wise. Implementation concepts for an exten-
sible data model and data language. ACM Transactions on Database Systems
(TODS), 13(3):231–262, 1988.

[8] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-a transactional record man-
ager for shared flash. In CIDR, pages 9–20, 2011.

[9] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in
monetdb. Communications of the ACM, 51(12):77–85, 2008.

63

[10] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming
with complex objects and collection types. Theoretical Computer Science,
149(1):3–48, 1995.

[11] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun.
A domain-specific approach to heterogeneous parallelism. In Proceedings
of the 16th ACM symposium on Principles and practice of parallel program-
ming, pages 35–46. ACM, 2011.

[12] S. Chaudhuri and G. Weikum. Rethinking database system architecture:
Towards a self-tuning risc-style database system. In VLDB, pages 1–10,
2000.

[13] C. Chodorow. Introduction to mongodb. In Free and Open Source Software
Developers European Meeting (FOSDEM), 2010.

[14] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic
and lattices for distributed programming. In Proceedings of the Third ACM
Symposium on Cloud Computing, page 1. ACM, 2012.

[15] M. Corp. Office 365. http://office.microsoft.com/.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: ama-
zon’s highly available key-value store. In ACM SIGOPS Operating Systems
Review, volume 41, pages 205–220. ACM, 2007.

[17] J. Dittrich and A. Jindal. Towards a one size fits all database architecture. In
CIDR, pages 195–198, 2011.

[18] Dropbox, Inc. Dropbox. https://www.dropbox.com.

[19] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. ACM
SIGMOD Record, 18(2):399–407, 1989.

[20] S. Even. Graph algorithms. Cambridge University Press, 2011.

[21] B. Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[22] Google. Google docs. http://docs.google.com.

64

[23] T. J. Green, M. Aref, and G. Karvounarakis. Logicblox, platform and lan-
guage: a tutorial. In Datalog in Academia and Industry, pages 1–8. Springer,
2012.

[24] T. Grust and A. Ulrich. First-class functions for first-order database engines.
arXiv preprint arXiv:1308.0158, 2013.

[25] J. Han, E. Haihong, G. Le, and J. Du. Survey on nosql database. In Pervasive
computing and applications (ICPCA), 2011 6th international conference on,
pages 363–366. IEEE, 2011.

[26] M. Heinrich, F. Lehmann, F. J. Grüneberger, M. Gaedke, T. Springer, and
A. Schill. Enriching single-user web applications non-invasively with shared
editing support. Science of Computer Programming, 2013.

[27] J. Hidders and J. Paredaens. Goal, a graph-based object and association
language. 1993.

[28] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free co-
ordination for internet-scale systems. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, volume 8, pages 11–
11, 2010.

[29] O. Kennedy, Y. Ahmad, and C. Koch. Dbtoaster: Agile views for a dynamic
data management system. In CIDR, pages 284–295, 2011.

[30] O. Kennedy and L. Ziarek. Barql: Collaborating through change. arXiv
preprint arXiv:1303.4471, 2013.

[31] K. Lellahi and V. Tannen. A calculus for collections and aggregates. In
Category Theory and Computer Science, pages 261–280. Springer, 1997.

[32] M. Levene and A. Poulovassilis. The hypernode model and its associated
query language. In Information Technology, 1990.’Next Decade in Informa-
tion Technology’, Proceedings of the 5th Jerusalem Conference on (Cat. No.
90TH0326-9), pages 520–530. IEEE, 1990.

[33] R. G. Miller Jr. Priority queues. The Annals of Mathematical Statistics,
pages 86–103, 1960.

[34] T. Neumann. Efficiently compiling efficient query plans for modern hard-
ware. Proceedings of the VLDB Endowment, 4(9):539–550, 2011.

65

[35] K. Ostrowski and K. Birman. Storing and accessing live mashup content in
the cloud. SIGOPS Review, 44(2), Apr. 2010.

[36] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A comparison of approaches to large-scale data analysis. In
Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of data, pages 165–178. ACM, 2009.

[37] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek. High-level programming
of embedded hard real-time devices. In Proceedings of the 5th European
conference on Computer systems, pages 69–82. ACM, 2010.

[38] E. Redmond and J. Wilson. Seven Databases in Seven Weeks. Pragmatic
Bookshelf; O’Reilly, 2012.

[39] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319,
1990.

[40] M. Shapiro and N. Preguiça. Designing a commutative replicated data type.
arXiv preprint arXiv:0710.1784, 2007.

[41] P. Shyamshankar, Z. Palmer, and Y. Ahmad. K3: Language design for build-
ing multi-platform, domain-specific runtimes. In International Workshop on
Cross-model Language Design and Implementation (XLDI). Citeseer, 2012.

[42] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era:(it’s time for a complete
rewrite). In Proceedings of the 33rd international conference on Very large
data bases, pages 1150–1160. VLDB Endowment, 2007.

[43] C. Strauch, U.-L. S. Sites, and W. Kriha. Nosql databases. URL: http://www.
christof-strauch. de/nosqldbs. pdf (07.11. 2012), 2011.

[44] H. Tam Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi. Logbase: A
scalable log-structured database system in the cloud. 2012.

[45] The Apache Software Foundation. Apache wave.
http://incubator.apache.org/wave/.

[46] M. Weiser. Program slicing. In Proceedings of the 5th international confer-
ence on Software engineering, pages 439–449. IEEE Press, 1981.

66

[47] L. Wong. Kleisli, a functional query system. Journal of Functional Pro-
gramming, 10(1):19–56, 2000.

[48] L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan. Partial memoization
of concurrency and communication. ACM Sigplan Notices, 44(9):161–172,
2009.

67

