Parallel Queries
Easy Automation

Shared Memory
- RAM
- Cache
- Shared Fileserver

NUMA
- AMD RAM
- Filesystems

Message Passing
- Bus (motherboard)
- Network
- CPU interconnect

(Shared Nothing)
\[
\begin{align*}
 v &= \text{Foo}(\text{data}) \\
 \text{Bar}(\text{data}) &= \text{Foo}(\text{data}) \\
 \text{Foo}(\text{data}) &= \text{Foo}(\text{data}_1) \oplus \text{Foo}(\text{data}_2) \\
 \text{Pluck Bar}(\text{Foo}(\text{data})) \\
 \text{Core data} &\rightarrow \text{"foo"} & \text{"bar"} &\rightarrow \text{output}
\end{align*}
\]
\[\text{Bar}(\text{Foo}(\text{data},)) \]

\[\cong \]

\[\text{Bar}(\text{Foo}(\text{data}_2)) \]

\[\text{Bar} \]

\[\begin{array}{ccc}
 \pi_0 & \to & \pi_1 \\
 \text{R} & & \text{R}
\end{array} \]

\[\bigcup \]

\[\begin{array}{ccc}
 \pi_0 & \to & \pi_1 \\
 \text{R} & & \text{R}
\end{array} \]

\[\text{Data Parallelism} \]

\[\text{Pipeline Parallelism} \]
- Possibility 1:
 - Each output "unit" goes to a different Bar.

- Possibility 2:
 - Each unit copied to all Bars.
Each "unit"
1) Goes to random Bar
2) Goes to specific Bar
3) Goes to all Bars

\[\Pi(t_1) \cup \Pi(t_2) = \Pi(t_1 \cup t_2) \]
\[\sigma(t_3) \cup \Pi(t_2) \cup \Pi(t_3) \cup \Pi(t_4) \]
Unit of computation: 1 tuple

Unit of computation: Group "+1"

Unit of computation: tuple²
All R tuples such that R is in R → S

All R tuples such that R in R ⊆ S → ε

All sets of S in R → ε

All sets of R in R → ε

All sets of R → ε

All sets of R → ε