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What is different about these code snippets?

SELECT R.A, SUM(S.B)

FROM R, S

WHERE R.B = S.B

for r in R:

  lookup[r.B] += [r.A]

for s in S:

  for a in lookup[s.B]:

    result[a] += s.C
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SELECT R.A, SUM(S.B)

FROM R, S

WHERE R.B = S.B

for r in R:

  lookup[r.B] += [r.A]

for s in S:

  for a in lookup[s.B]:

    result[a] += s.C

• The python code preprocesses R and scans S (and not visa versa)
• The python code explicitly creates a lookup table on R.
• The python code explicitly uses a dictionary for the lookup table.
• The python code explicitly encodes the result as a dictionary.
• SQL only states sources, constraints, and output format.
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Details

SQL
(precise about fewer details)

Python
(precise about more details)



SQL is a Declarative 
Language
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iPostgresql

SELECT *

FROM ...
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iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...
Command LogicalPlan PhysicalPlan Results



Existing Systems: Summary 17 / 82

1. Parse the query

2. Make a Dumb™ plan

3. Come up with better plan ideas and pick one

4. Fill in the specific algorithms and data structures



How do we express a 
plan?
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SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20



SQL: Bad for plans? 20 / 82

SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

• Duplication in the language leads to 
duplication in the code.

• It’s harder to reason about all 
possible combinations.
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SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

• Duplication in the language leads to 
duplication in the code.

• It’s harder to reason about all 
possible combinations.

SQL is Order-Independent
SELECT R.A, T.D

FROM R, S, T

WHERE R.B = S.B

  AND S.C = T.C

• Order of operations has a huge effect 
on performance.

• Reordering operations can create 
opportunities to “inline” pairs of 
operators.
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SQL is Composable
SELECT *

FROM R, S, (

  SELECT C, SUM(D) FROM T GROUP BY C

) T,

WHERE R.B = S.B AND S.C = T.C



SQL: Good for plans? 24 / 82

SQL is Composable
SELECT *

FROM R, S, (

  SELECT C, SUM(D) FROM T GROUP BY C

) T,

WHERE R.B = S.B AND S.C = T.C

• Queries define relations: You can use a query in place of any relation.
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1. The language should not be redundant.

2. The language should include order of operations

3. The language should be made of composable building blocks.
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Relational Database
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Relational Database

Relation
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Relational Database

Relation

Schema
Specifies the name of the relation, 
name and type of each column, and 
any other constraints

Officers(

  firstname string,

  lastname string,

  id int

)
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)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]
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Relational Database

Relation

Schema
Specifies the name of the relation, 
name and type of each column, and 
any other constraints

Officers(

  firstname string,

  lastname string,

  id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Columns (degree/arity)

Rows (cardinality)
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Everything is a relation
• Q(R)
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Everything is a relation
• Q(R)
• Q(Q(R))
• Q(Q(Q(R)))
• Q Q moar.

A query language with this property is closed.

Simplifying Assumptions
• All attributes have unique names.
• Each instance is a Bag, Set, or List
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Column

Row

Filter Merge Derive
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SQL Field Operation
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FROM
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WHERE

GROUP, BY/Aggregate

HAVING
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WHERE

GROUP, BY/Aggregate

HAVING
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SQL Field Operation
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HAVING



Feature Check 52 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM Merge Column

JOIN Merge Column + Filter Row

WHERE Filter Row

GROUP, BY/Aggregate Derive Row

HAVING Derive Row + Filter Row



Columns and rows
are different
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Columns
• There is a “small” number (10,000s at most).

• Query planning knows everything about columns.

• Identified explicitly (by name or position)

Rows
• There is a “large” number (Millions, Billions, More)

• Query planning has only statistics (if it has anything).

• Sets/Bags have no explicit identity (Each tuple’s attributes identify it)1

1Technically false: Many DB systems have RowIDs… but these are not intended for the user
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Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• ???

Filtering Columns
• ???
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Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• Condition, or “Predicate” for which rows to keep

Filtering Columns
• Explicit list of columns to keep

Language
Code Meaning
Filter($a = b$, In) Relation In, keeping only rows where 𝑎 = 𝑏
Project([a, b, c], In) Relation In, keeping only columns a, b, c
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Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• Condition, or “Predicate” for which rows to keep

Filtering Columns
• Explicit list of columns to keep

Language
Code Shorthand Meaning
Filter($a = b$, In) 𝜎𝑎=𝑏(In) Relation In, keeping only rows where 𝑎 = 𝑏
Project([a, b, c], In) 𝜋𝑎,𝑏,𝑐(In) Relation In, keeping only columns a, b, c
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• ???
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name
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Design Questions
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Merging Rows
• Pair columns of the same name
‣ Relations must be “Union-compatible” (same schema) to be paired.
‣ Some engines (e.g., Apache Spark) implicitly add columns of nulls.
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name
‣ Relations must be “Union-compatible” (same schema) to be paired.
‣ Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Language
Code Meaning
Union(In1, In2) All rows from both relations In1 and In2
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name
‣ Relations must be “Union-compatible” (same schema) to be paired.
‣ Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Language
Code Shorthand Meaning
Union(In1, In2) In1 ∪ In2 All rows from both relations In1 and In2
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• ???
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want



Merging Columns 68 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Language
Code Meaning
Product(In1, In2) Every possible pair of rows from In1, In2
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Language
Code Shorthand Meaning
Product(In1, In2) In1 × In2 Every possible pair of rows from In1, In2
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Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Language
Code Shorthand Meaning
Product(In1, In2) In1 × In2 Every possible pair of rows from In1, In2
Join($a = b$, In1, In2) In1 ⋈

𝑎=𝑏
In2 Shorthand for 𝜎𝑎=𝑏(In1 × In2)
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Cartesian Product
• 𝑅 × 𝑆: Every pair of one tuple from 𝑅 and 𝑆

Join
• 𝑅 ⋈

𝑎>𝑏
𝑆: Only include pairs where the predicate 𝑎 > 𝑏 is true

Equi-Join
• 𝑅 ⋈

𝑎=𝑏
𝑆: A join that only uses equality predicates (e.g., 𝑎 = 𝑏 ∧ 𝑐 = 𝑑)

• 𝑅 ⋈
𝑎
𝑆: If the equi-join columns have the same name, we just write the name(s)

Natural Join
• 𝑅 ⋈ 𝑆: If the join predicate is omitted, assume an equi-join between all columns 

with the same name.
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• ???
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• A + B AS C or C = A + B

Language
Code Meaning
Project([A, B, C = $A+B$], In) As Project, but derive C
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• A + B AS C or C = A + B

Language
Code Shorthand Meaning
Project([A, B, C = $A+B$], In) 𝜋𝐴,𝐵,𝐶=𝐴+𝐵(In) As Project, but derive C
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• ???
• ???
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• “Group By” attributes2
• ???

2We’ll eventually talk about other grouping strategies (e.g., Window Functions)
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• “Group By” attributes3
• “Aggregate functions”

Code
GroupBy([A, B], [SUM(C) AS C, AVG(D) AS D], In)

Group tuples by 𝐴 and 𝐵; For each group compute SUM(𝐶), AVG(𝐷)

3We’ll eventually talk about other grouping strategies (e.g., Window Functions)
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Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• “Group By” attributes4
• “Aggregate functions”

Code Shorthand
GroupBy([A, B], [SUM(C) AS C, AVG(D) AS D], In) Σ𝐴,𝐵,𝐶=SUM(𝐶),𝐷=AVG(𝐷)(In)

Group tuples by 𝐴 and 𝐵; For each group compute SUM(𝐶), AVG(𝐷)

4We’ll eventually talk about other grouping strategies (e.g., Window Functions)
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Filter Merge Derive
Column 𝜋 ×, ⋈ 𝜋

Row 𝜎 ∪ Σ
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SELECT A, B, ...

FROM R, S, ...

WHERE A = B AND ...

𝜋𝐴,𝐵,…

𝜎𝐴=𝐵∧…

×

×

…

𝑅

𝑆
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• If you have not yet formed a group contact me!.
• Finish the AI quiz ASAP.
• Checkpoint 1 posted and available.
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