DECLARATIVE LANGUAGES

AND RELATIONAL ALGEBRA
CSE 4/562: Database Systems | Lecture 2

DB. Sys.: T.C.B.: 2.1-2.4, 5.1

SQL vs Python 2/82

What is different about these code snippets?

SELECT R.A, SUM(S.B) for r in R:
FROM R, S lookup[r.B] += [r.A]
WHERE R.B = S.B for s in S:

for a in lookup[s.B]:
result[a] += s.C

Declarative Languages

SELECT R.A, SUM(S.B) for r in R:
FROM R, S lookup[r.B] += [r.A]
WHERE R.B = S.B for s in S:

for a in lookup[s.B]:
resultf[a] += s.C

The python code preprocesses R and scans S (and not visa versa)
The python code explicitly creates a lookup table on R.

The python code explicitly uses a dictionary for the lookup table.
The python code explicitly encodes the result as a dictionary.
SQL only states sources, constraints, and output format.

SQL vs Python 4182

SQL \ Python

(precise about fewer details) Details / (precise about more details)

SOL is a Declarative
Language

Existing Systems

Postgresql

SELECT *
FROM ...

Existing Systems 7182

Postgdresql

SELECT *

SN
FROM ... Query

Existing Systems

Postgresql

Path
SELECT * ath

SN SN
FROM . .. Query

...’

Pathnp

Existing Systems 9/ 82

Postgdresql
SELECT * Pathy, Pathi
FROM — Query — ey — +

Pathnp EvalState

Existing Systems

Postgdresql
Path,, Pathi
SELECT *
FROM —— Query —— ey — + — Results

Pathnp EvalState

Existing Systems

Postgdresql
Path,, Pathi
SELECT *
FROM —— Query —— ey — + — Results
Pathp EvalState
Apache Spark
SELECT *

FROM ...

Existing Systems

Postgresql
Path,, Pathi
SELECT *
FROM —— Query —— ey — + — Results
Pathn EvalState
Apache Spark
SELECT *

SN
FROM . .. Command

Existing Systems

Postgdresql
Path,, Pathi
SELECT *
FROM —— Query —— ey — + — Results
Pathp EvalState
Apache Spark
SELECT *

— — '
FROM . Command LogicalPlan

Existing Systems

Postgdresql
Path,, Pathi
SELECT *
FROM — Query —— .y —— + — Results
Pathy EvalState
Apache Spark
SELECT *

— Command —— LogicalPlan

FROM ... I \

Existing Systems

Postgdresql
Path,, Path;j
SELECT *
FROM — Query —— ey — + — Results
Pathy EvalState
Apache Spark
SELECT *

— Command — LogicalPlan — PhysicalPlan

FROM ... I \

Existing Systems

Postgdresql
Path,, Path;
SELECT *
CROM —— > Query — ey — + — Results
Pathnp EvalState
Apache Spark
SELECT *

— Command —— LogicalPlan — PhysicalPlan —— Results

FROM ... I \

Existing Systems: Summary

1. Parse the query
2. Make a Dumb™ plan
3. Come up with better plan ideas and pick one

4. Fill in the specific algorithms and data structures

How do we express a
plan?

SQL: Bad for plans? 19/ 82

SQL is Redundant

SELECT A, COUNT(DISTINCT B)
FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

SQL: Bad for plans?

SQL is Redundant

SELECT A, COUNT(DISTINCT B)
FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

 Duplication in the language leads to
duplication in the code.

« It's harder to reason about all
possible combinations.

SQL: Bad for plans? 21/ 82

SQL is Redundant SQL is Order-Independent
SELECT A, COUNT(DISTINCT B) SELECT R.A, T.D

FROM R FROM R, S, T

WHERE C > 5 WHERE R.B = S.B

GROUP BY A AND S.C = T.C

HAVING SUM(C) < 20

 Duplication in the language leads to
duplication in the code.

« It's harder to reason about all
possible combinations.

SQL: Bad for plans?

SQL is Redundant

SELECT A, COUNT(DISTINCT B)
FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

 Duplication in the language leads to
duplication in the code.

« It's harder to reason about all
possible combinations.

SQL is Order-Independent

SELECT R.A, T.D
, T

 Order of operations has a huge effect
on performance.

 Reordering operations can create
opportunities to “inline” pairs of
operators.

SQL: Good for plans?

SQL is Composable
SELECT *
FROM R, S, (

SELECT C, SUM(D) FROM T GROUP BY C
) T,

WHERE R.B = S.B AND S.C = T.C

SQL: Good for plans?

SQL is Composable
SELECT *
FROM R, S, (

SELECT C, SUM(D) FROM T GROUP BY C
) T,

WHERE R.B = S.B AND S.C = T.C

 Queries define relations: You can use a query in place of any relation.

Coming up with a planning language...

1. The language should not be redundant.
2. The language should include order of operations

3. The language should be made of composable building blocks.

Relational Databases

Relational Database |

Relational Databases

N
N\
Y
N
N\ Relation
_)
. Relational Database |

Relational Databases

4 N
4 N\
4 N\
4 N
Specifies the name of the relation,
Schema \\ name and type of each column, and
any other constraints
Officers(
firstname string,
lastname string,
id int
)
N\ Relation
\,)
. Relational Database |

Relational Databases

Y

Y

Schema]ﬁ\\

|\

Instance

Relation)

Relational Database |

Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(
firstname string,
lastname string,
id int

)
The Data

[Jean Luc, Picard, 2360]
[Benjamin, Sisko, 2365]
[Kathryn, Janeway, 2370]

Relational Databases

(N
~ Ez,\ Columns (degree/arity)
(N
(
Specifies the name of the relation,
. Schema \\ name and type of each column, and
() any other constraints
Officers(
firstname string,
lastname string,
id int
““~.~_--~)
The Data
[Jean Luc, Picard, 2360]
. InstanceJ [Benjamin, Sisko, 2365]
] [Kathryn, Janeway, 2370]
N\ Relation
\, J
X Relational Database |

Relational Databases

(N
~ EI(\ Columns (degree/arity)
(N
(
Specifies the name of the relation,
. Schema \\ name and type of each column, and
() any other constraints
Officers(
firstname string,
lastname string,
id int
'ﬁ\)
\
The Data
[Jean Luc, Picard, 2360]
. InstanceJ [Benjamin, Sisko, 2365]
] [Kathryn, Janeway, 2370]
a\g Relation |
. Relational Database | Rows (cardinality)

Composability 282

Everything is a relation
- Q(R)

Composability 33/ 82

Everything is a relation
» Q(R)
- Q(Q(R))

Composability /82

Everything is a relation
- Q(R)

- Q(Q(R))

- Q(Q(a(Rr)))

Composability 35/ 82

Everything is a relation
- Q(R)
- Q(Q(R))

- Q(Q(Q(R)))
* Q Q moar.

Composability 36/ 82

Everything is a relation
- Q(R)
- Q(Q(R))

- Q(Q(Q(R)))
* Q Q moar.

A query language with this property is closed.

Composability 37/ 82

Everything is a relation
» Q(R)
- Q(Q(R))

- Q(Q(Q(R)))
« Q Q moar.

A query language with this property is closed.
Simplifying Assumptions

- All attributes have unique names.
« Each instance is a Bag, Set or List

Composability 38/ 82

Everything is a relation
» Q(R)
- Q(Q(R))

- Q(Q(Q(R)))
« Q Q moar.

A query language with this property is closed.
Simplifying Assumptions

- All attributes have unique names.
- Each instance is a Bag, Set,orkList

Feature Desiderata 39/ 82

=
A

Feature Desiderata 40/ 82

=
A

,
!i
- N

Feature Desiderata

=
A

,
£\
LA

Feature Desiderata 12 82

=
A

,

£\

LA
=
\/

Feature Desiderata 43/ 82

(T
() (T
SE= ~~»
. ()
~(
¢ 2 (M M

,

!i

LA
=
\/

Feature Desiderata 44 | 82

(T
() (T
== ~~»
L T
~(
¢ 2 (M M

,

!i

LA
=
\/

Feature Desiderata

Filter Merge Derive
()
() T
() {)
Column ‘ R
\ ()
() () M

Row __JY__J

!i
LA
=
\/

Feature Check 46 | 82

SQL Field Operation
SELECT
FROM
JOIN
WHERE
GROUP, BY/Aggregate

HAVING

Feature Check 471 82

SQL Field Operation
SELECT Filter Column + Derive Column
FROM
JOIN
WHERE
GROUP, BY/Aggregate

HAVING

Feature Check 48 | 82

SQL Field Operation
SELECT Filter Column + Derive Column
FROM Merge Column
JOIN
WHERE
GROUP, BY/Aggregate

HAVING

Feature Check 49 | 82

SQL Field Operation
SELECT Filter Column + Derive Column
FROM Merge Column
JOIN Merge Column + Filter Row
WHERE
GROUP, BY/Aggregate

HAVING

Feature Check 50 / 82

SQL Field Operation
SELECT Filter Column + Derive Column
FROM Merge Column
JOIN Merge Column + Filter Row
WHERE Filter Row
GROUP, BY/Aggregate

HAVING

Feature Check 51/ 82

SQL Field Operation
SELECT Filter Column + Derive Column
FROM Merge Column
JOIN Merge Column + Filter Row
WHERE Filter Row

GROUP, BY/Aggregate Derive Row

HAVING

Feature Check 52/ 82

SQL Field Operation
SELECT Filter Column + Derive Column
FROM Merge Column
JOIN Merge Column + Filter Row
WHERE Filter Row
GROUP, BY/Aggregate Derive Row

HAVING Derive Row + Filter Row

Columns and rows
are different

Columns vs Rows 54 | 82

Columns
« There is a “small” number (10,000s at most).

« Query planning knows everything about columns.

- ldentified explicitly (by name or position)

Rows

- There is a “large” number (Millions, Billions, More)

- Query planning has only statistics (if it has anything).

- Sets/Bags have no explicit identity (Each tuple’s attributes identify it)’

Technically false: Many DB systems have RowlIDs... but these are not intended for the user

Filtering 55/ 82

Design Questions
- How do we indicate which columns/rows to keep/discard?

Filtering Rows
. 777

Filtering Columns
. 777

Filtering 56/ 82

Design Questions
- How do we indicate which columns/rows to keep/discard?

Filtering Rows
. 777

Filtering Columns
« Explicit list of columns to keep

Filtering i

Design Questions
- How do we indicate which columns/rows to keep/discard?

Filtering Rows
 Condition, or “Predicate” for which rows to keep

Filtering Columns
« Explicit list of columns to keep

Filtering 38/ 82

Design Questions
- How do we indicate which columns/rows to keep/discard?

Filtering Rows
- Condition, or “Predicate” for which rows to keep

Filtering Columns

« Explicit list of columns to keep

Language

Code Meaning

Filter($a = b$, In) Relation 1n, keeping only rows where a = b

Project([a, b, c], In) Relation 1In, keeping only columns a, b, c

Filtering 59/ 82

Design Questions
- How do we indicate which columns/rows to keep/discard?

Filtering Rows
 Condition, or “Predicate” for which rows to keep

Filtering Columns

« Explicit list of columns to keep

Language

Code Shorthand Meaning

Filter($a = b$, In) 0, (In) Relation In, keeping only rows where a = b

Project([a, b, cI, In) m,, (In) Relation In, keeping only columns a, b, ¢

Merging Rows 60/ 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Rows

. 277

Merging Rows 61/ 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Rows
 Pair columns of the same name

Merging Rows 62/ 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Rows

* Pair columns of the same name
» Relations must be “Union-compatible” (same schema) to be paired.
» Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Merging Rows 63 / 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Rows

* Pair columns of the same name
» Relations must be “Union-compatible” (same schema) to be paired.
» Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Language
Code Meaning
Union(Inl, In2) All rows from both relations In; and In,

Merging Rows 64 | 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Rows

* Pair columns of the same name
» Relations must be “Union-compatible” (same schema) to be paired.
» Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Language
Code Shorthand Meaning
Union(Inl, In2) In; UIn, All rows from both relations In; and In,

Merging Columns 65/ 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Columns
. 777

Merging Columns 66 / 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Columns
« Pair all rows

Merging Columns 67/ 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Columns
« Pair all rows
» Use filter to keep only the rows you want

Merging Columns 68 / 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Columns

« Pair all rows
» Use filter to keep only the rows you want

Language
Code Meaning
Product(Inl, In2) Every possible pair of rows from In,, In,

Merging Columns 69 / 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Columns

« Pair all rows
» Use filter to keep only the rows you want

Language
Code Shorthand Meaning
Product(Inl, In2) In, X In, Every possible pair of rows from In;, In,

Merging Columns 70 / 82

Design Questions
« Which rows/columns pair with which other rows/columns?

Merging Columns

« Pair all rows
» Use filter to keep only the rows you want

Language
Code Shorthand Meaning
Product(Inl, In2) In,; x In, Every possible pair of rows from Iny, In,

Join($a = b$, Inl, In2) In, " In, Shorthand for o,_,(In; x In,)

a=

A note on join terminology...

Cartesian Product
« R x S: Every pair of one tuple from R and S

Join

‘R " S: Only include pairs where the predicate a > b is true
a>

Equi-join
‘R) S: A join that only uses equality predicates (e.g.,a = b A c = d)

« R S: If the equi-join columns have the same name, we just write the name(s)

Natural Join

« R x S:If the join predicate is omitted, assume an equi-join between all columns
with the same name.

Derive Columns 72182

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Columns
. 777

Derive Columns 73/ 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Columns
*A+BASCorC=A+8B

Derive Columns 7] 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Columns
*A+BASCorC=A+8B

Language

Code Meaning

Project([A, B, C = $A+B$], In) As Project, but derive C

Derive Columns 75 / 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Columns

*A+BASCorC=A+8B

Language

Code Shorthand Meaning

Project([A, B, C = $A+B$], In) 7, po_a,p(In) As Project, but derive C

Derive Rows 76 | 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Rows
. 777
. 777

Derive Rows 7] 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Rows

« “Group By” attributes?
. 777

2\We'll eventually talk about other grouping strategies (e.g., Window Functions)

Derive Rows 78 | 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Rows

- “Group By” attributes?
- “Aggregate functions”

Code
GroupBy ([A, B], [SUM(C) AS C, AVG(D) AS D], In)

Group tuples by A and B; For each group compute SUM(C), AVG(D)

3We'll eventually talk about other grouping strategies (e.g., Window Functions)

Derive Rows 79/ 82

Design Questions
- How do we specify which columns/rows to combine?
- How do we specify how to define the new row/column?

Deriving Rows
« “Group By” attributes*
- “Aggregate functions”

Code Shorthand
GroupBy([A, BI, [SUM(C) AS C, AVG(D) AS DI, In) X, pc_sum(c)p-ave(p)In)

Group tuples by A and B; For each group compute SUM(C), AVG(D)

“We'll eventually talk about other grouping strategies (e.g., Window Functions)

Summary 80 / 82

Filter Merge Derive
Column T X, M T
Row o U >

SELECT A, B, ..
/UA_BA
FROM R, S,
WHERE A = B AND ... R y

Reminders 82/ 82

« If you have not yet formed a group contact mel.
* Finish the Al quiz ASAP.
« Checkpoint 1 posted and available.

	SQL is Redundant
	SQL is Redundant
	SQL is Redundant
	SQL is Order-Independent
	SQL is Redundant
	SQL is Order-Independent
	SQL is Composable
	SQL is Composable
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Simplifying Assumptions
	Everything is a relation
	Simplifying Assumptions
	Columns
	Rows
	Design Questions
	Filtering Rows
	Filtering Columns
	Design Questions
	Filtering Rows
	Filtering Columns
	Design Questions
	Filtering Rows
	Filtering Columns
	Design Questions
	Filtering Rows
	Filtering Columns
	Language
	Design Questions
	Filtering Rows
	Filtering Columns
	Language
	Design Questions
	Merging Rows
	Design Questions
	Merging Rows
	Design Questions
	Merging Rows
	Design Questions
	Merging Rows
	Language
	Design Questions
	Merging Rows
	Language
	Design Questions
	Merging Columns
	Design Questions
	Merging Columns
	Design Questions
	Merging Columns
	Design Questions
	Merging Columns
	Language
	Design Questions
	Merging Columns
	Language
	Design Questions
	Merging Columns
	Language
	Cartesian Product
	Join
	Equi-Join
	Natural Join
	Design Questions
	Deriving Columns
	Design Questions
	Deriving Columns
	Design Questions
	Deriving Columns
	Language
	Design Questions
	Deriving Columns
	Language
	Design Questions
	Deriving Rows
	Design Questions
	Deriving Rows
	Design Questions
	Deriving Rows
	Design Questions
	Deriving Rows

