
Declarative Languages
and Relational Algebra
CSE 4/562: Database Systems | Lecture 2

DB. Sys.: T.C.B.: 2.1-2.4, 5.1

SQL vs Python 2 / 82

What is different about these code snippets?

SELECT R.A, SUM(S.B)

FROM R, S

WHERE R.B = S.B

for r in R:

 lookup[r.B] += [r.A]

for s in S:

 for a in lookup[s.B]:

 result[a] += s.C

Declarative Languages 3 / 82

SELECT R.A, SUM(S.B)

FROM R, S

WHERE R.B = S.B

for r in R:

 lookup[r.B] += [r.A]

for s in S:

 for a in lookup[s.B]:

 result[a] += s.C

• The python code preprocesses R and scans S (and not visa versa)
• The python code explicitly creates a lookup table on R.
• The python code explicitly uses a dictionary for the lookup table.
• The python code explicitly encodes the result as a dictionary.
• SQL only states sources, constraints, and output format.

SQL vs Python 4 / 82

Details

SQL
(precise about fewer details)

Python
(precise about more details)

SQL is a Declarative
Language

Existing Systems 6 / 82

iPostgresql

SELECT *

FROM ...

Existing Systems 7 / 82

iPostgresql

SELECT *

FROM ...
Query

Existing Systems 8 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Existing Systems 9 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Existing Systems 10 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Existing Systems 11 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...

Existing Systems 12 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...
Command

Existing Systems 13 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...
Command LogicalPlan

Existing Systems 14 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...
Command LogicalPlan

Existing Systems 15 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...
Command LogicalPlan PhysicalPlan

Existing Systems 16 / 82

iPostgresql

SELECT *

FROM ...
Query

Path1,
…,

Pathn

Pathi

+
EvalState

Results

Apache Spark

SELECT *

FROM ...
Command LogicalPlan PhysicalPlan Results

Existing Systems: Summary 17 / 82

1. Parse the query

2. Make a Dumb™ plan

3. Come up with better plan ideas and pick one

4. Fill in the specific algorithms and data structures

How do we express a
plan?

SQL: Bad for plans? 19 / 82

SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

SQL: Bad for plans? 20 / 82

SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

• Duplication in the language leads to
duplication in the code.

• It’s harder to reason about all
possible combinations.

SQL: Bad for plans? 21 / 82

SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

• Duplication in the language leads to
duplication in the code.

• It’s harder to reason about all
possible combinations.

SQL is Order-Independent
SELECT R.A, T.D

FROM R, S, T

WHERE R.B = S.B

 AND S.C = T.C

SQL: Bad for plans? 22 / 82

SQL is Redundant
SELECT A, COUNT(DISTINCT B)

FROM R

WHERE C > 5

GROUP BY A

HAVING SUM(C) < 20

• Duplication in the language leads to
duplication in the code.

• It’s harder to reason about all
possible combinations.

SQL is Order-Independent
SELECT R.A, T.D

FROM R, S, T

WHERE R.B = S.B

 AND S.C = T.C

• Order of operations has a huge effect
on performance.

• Reordering operations can create
opportunities to “inline” pairs of
operators.

SQL: Good for plans? 23 / 82

SQL is Composable
SELECT *

FROM R, S, (

 SELECT C, SUM(D) FROM T GROUP BY C

) T,

WHERE R.B = S.B AND S.C = T.C

SQL: Good for plans? 24 / 82

SQL is Composable
SELECT *

FROM R, S, (

 SELECT C, SUM(D) FROM T GROUP BY C

) T,

WHERE R.B = S.B AND S.C = T.C

• Queries define relations: You can use a query in place of any relation.

Coming up with a planning language... 25 / 82

1. The language should not be redundant.

2. The language should include order of operations

3. The language should be made of composable building blocks.

Relational Databases 26 / 82

Relational Database

Relational Databases 27 / 82

Relational Database

Relation

Relational Databases 28 / 82

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Relational Databases 29 / 82

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Relational Databases 30 / 82

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Columns (degree/arity)

Relational Databases 31 / 82

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Columns (degree/arity)

Rows (cardinality)

Composability 32 / 82

Everything is a relation
• Q(R)

Composability 33 / 82

Everything is a relation
• Q(R)
• Q(Q(R))

Composability 34 / 82

Everything is a relation
• Q(R)
• Q(Q(R))
• Q(Q(Q(R)))

Composability 35 / 82

Everything is a relation
• Q(R)
• Q(Q(R))
• Q(Q(Q(R)))
• Q Q moar.

Composability 36 / 82

Everything is a relation
• Q(R)
• Q(Q(R))
• Q(Q(Q(R)))
• Q Q moar.

A query language with this property is closed.

Composability 37 / 82

Everything is a relation
• Q(R)
• Q(Q(R))
• Q(Q(Q(R)))
• Q Q moar.

A query language with this property is closed.

Simplifying Assumptions
• All attributes have unique names.
• Each instance is a Bag, Set or List

Composability 38 / 82

Everything is a relation
• Q(R)
• Q(Q(R))
• Q(Q(Q(R)))
• Q Q moar.

A query language with this property is closed.

Simplifying Assumptions
• All attributes have unique names.
• Each instance is a Bag, Set, or List

Feature Desiderata 39 / 82

Feature Desiderata 40 / 82

Feature Desiderata 41 / 82

Feature Desiderata 42 / 82

Feature Desiderata 43 / 82

Feature Desiderata 44 / 82

Feature Desiderata 45 / 82

Column

Row

Filter Merge Derive

Feature Check 46 / 82

SQL Field Operation

SELECT

FROM

JOIN

WHERE

GROUP, BY/Aggregate

HAVING

Feature Check 47 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM

JOIN

WHERE

GROUP, BY/Aggregate

HAVING

Feature Check 48 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM Merge Column

JOIN

WHERE

GROUP, BY/Aggregate

HAVING

Feature Check 49 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM Merge Column

JOIN Merge Column + Filter Row

WHERE

GROUP, BY/Aggregate

HAVING

Feature Check 50 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM Merge Column

JOIN Merge Column + Filter Row

WHERE Filter Row

GROUP, BY/Aggregate

HAVING

Feature Check 51 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM Merge Column

JOIN Merge Column + Filter Row

WHERE Filter Row

GROUP, BY/Aggregate Derive Row

HAVING

Feature Check 52 / 82

SQL Field Operation

SELECT Filter Column + Derive Column

FROM Merge Column

JOIN Merge Column + Filter Row

WHERE Filter Row

GROUP, BY/Aggregate Derive Row

HAVING Derive Row + Filter Row

Columns and rows
are different

Columns vs Rows 54 / 82

Columns
• There is a “small” number (10,000s at most).

• Query planning knows everything about columns.

• Identified explicitly (by name or position)

Rows
• There is a “large” number (Millions, Billions, More)

• Query planning has only statistics (if it has anything).

• Sets/Bags have no explicit identity (Each tuple’s attributes identify it)1

1Technically false: Many DB systems have RowIDs… but these are not intended for the user

Filtering 55 / 82

Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• ???

Filtering Columns
• ???

Filtering 56 / 82

Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• ???

Filtering Columns
• Explicit list of columns to keep

Filtering 57 / 82

Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• Condition, or “Predicate” for which rows to keep

Filtering Columns
• Explicit list of columns to keep

Filtering 58 / 82

Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• Condition, or “Predicate” for which rows to keep

Filtering Columns
• Explicit list of columns to keep

Language
Code Meaning
Filter($a = b$, In) Relation In, keeping only rows where 𝑎 = 𝑏
Project([a, b, c], In) Relation In, keeping only columns a, b, c

Filtering 59 / 82

Design Questions
• How do we indicate which columns/rows to keep/discard?

Filtering Rows
• Condition, or “Predicate” for which rows to keep

Filtering Columns
• Explicit list of columns to keep

Language
Code Shorthand Meaning
Filter($a = b$, In) 𝜎𝑎=𝑏(In) Relation In, keeping only rows where 𝑎 = 𝑏
Project([a, b, c], In) 𝜋𝑎,𝑏,𝑐(In) Relation In, keeping only columns a, b, c

Merging Rows 60 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• ???

Merging Rows 61 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name

Merging Rows 62 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name
‣ Relations must be “Union-compatible” (same schema) to be paired.
‣ Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Merging Rows 63 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name
‣ Relations must be “Union-compatible” (same schema) to be paired.
‣ Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Language
Code Meaning
Union(In1, In2) All rows from both relations In1 and In2

Merging Rows 64 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Rows
• Pair columns of the same name
‣ Relations must be “Union-compatible” (same schema) to be paired.
‣ Some engines (e.g., Apache Spark) implicitly add columns of nulls.

Language
Code Shorthand Meaning
Union(In1, In2) In1 ∪ In2 All rows from both relations In1 and In2

Merging Columns 65 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• ???

Merging Columns 66 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows

Merging Columns 67 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Merging Columns 68 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Language
Code Meaning
Product(In1, In2) Every possible pair of rows from In1, In2

Merging Columns 69 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Language
Code Shorthand Meaning
Product(In1, In2) In1 × In2 Every possible pair of rows from In1, In2

Merging Columns 70 / 82

Design Questions
• Which rows/columns pair with which other rows/columns?

Merging Columns
• Pair all rows
‣ Use filter to keep only the rows you want

Language
Code Shorthand Meaning
Product(In1, In2) In1 × In2 Every possible pair of rows from In1, In2
Join($a = b$, In1, In2) In1 ⋈

𝑎=𝑏
In2 Shorthand for 𝜎𝑎=𝑏(In1 × In2)

A note on join terminology... 71 / 82

Cartesian Product
• 𝑅 × 𝑆: Every pair of one tuple from 𝑅 and 𝑆

Join
• 𝑅 ⋈

𝑎>𝑏
𝑆: Only include pairs where the predicate 𝑎 > 𝑏 is true

Equi-Join
• 𝑅 ⋈

𝑎=𝑏
𝑆: A join that only uses equality predicates (e.g., 𝑎 = 𝑏 ∧ 𝑐 = 𝑑)

• 𝑅 ⋈
𝑎
𝑆: If the equi-join columns have the same name, we just write the name(s)

Natural Join
• 𝑅 ⋈ 𝑆: If the join predicate is omitted, assume an equi-join between all columns

with the same name.

Derive Columns 72 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• ???

Derive Columns 73 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• A + B AS C or C = A + B

Derive Columns 74 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• A + B AS C or C = A + B

Language
Code Meaning
Project([A, B, C = $A+B$], In) As Project, but derive C

Derive Columns 75 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Columns
• A + B AS C or C = A + B

Language
Code Shorthand Meaning
Project([A, B, C = $A+B$], In) 𝜋𝐴,𝐵,𝐶=𝐴+𝐵(In) As Project, but derive C

Derive Rows 76 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• ???
• ???

Derive Rows 77 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• “Group By” attributes2
• ???

2We’ll eventually talk about other grouping strategies (e.g., Window Functions)

Derive Rows 78 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• “Group By” attributes3
• “Aggregate functions”

Code
GroupBy([A, B], [SUM(C) AS C, AVG(D) AS D], In)

Group tuples by 𝐴 and 𝐵; For each group compute SUM(𝐶), AVG(𝐷)

3We’ll eventually talk about other grouping strategies (e.g., Window Functions)

Derive Rows 79 / 82

Design Questions
• How do we specify which columns/rows to combine?
• How do we specify how to define the new row/column?

Deriving Rows
• “Group By” attributes4
• “Aggregate functions”

Code Shorthand
GroupBy([A, B], [SUM(C) AS C, AVG(D) AS D], In) Σ𝐴,𝐵,𝐶=SUM(𝐶),𝐷=AVG(𝐷)(In)

Group tuples by 𝐴 and 𝐵; For each group compute SUM(𝐶), AVG(𝐷)

4We’ll eventually talk about other grouping strategies (e.g., Window Functions)

Summary 80 / 82

Filter Merge Derive
Column 𝜋 ×, ⋈ 𝜋

Row 𝜎 ∪ Σ

SQL to RA 81 / 82

SELECT A, B, ...

FROM R, S, ...

WHERE A = B AND ...

𝜋𝐴,𝐵,…

𝜎𝐴=𝐵∧…

×

×

…

𝑅

𝑆

Reminders 82 / 82

• If you have not yet formed a group contact me!.
• Finish the AI quiz ASAP.
• Checkpoint 1 posted and available.

	SQL is Redundant
	SQL is Redundant
	SQL is Redundant
	SQL is Order-Independent
	SQL is Redundant
	SQL is Order-Independent
	SQL is Composable
	SQL is Composable
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Everything is a relation
	Simplifying Assumptions
	Everything is a relation
	Simplifying Assumptions
	Columns
	Rows
	Design Questions
	Filtering Rows
	Filtering Columns
	Design Questions
	Filtering Rows
	Filtering Columns
	Design Questions
	Filtering Rows
	Filtering Columns
	Design Questions
	Filtering Rows
	Filtering Columns
	Language
	Design Questions
	Filtering Rows
	Filtering Columns
	Language
	Design Questions
	Merging Rows
	Design Questions
	Merging Rows
	Design Questions
	Merging Rows
	Design Questions
	Merging Rows
	Language
	Design Questions
	Merging Rows
	Language
	Design Questions
	Merging Columns
	Design Questions
	Merging Columns
	Design Questions
	Merging Columns
	Design Questions
	Merging Columns
	Language
	Design Questions
	Merging Columns
	Language
	Design Questions
	Merging Columns
	Language
	Cartesian Product
	Join
	Equi-Join
	Natural Join
	Design Questions
	Deriving Columns
	Design Questions
	Deriving Columns
	Design Questions
	Deriving Columns
	Language
	Design Questions
	Deriving Columns
	Language
	Design Questions
	Deriving Rows
	Design Questions
	Deriving Rows
	Design Questions
	Deriving Rows
	Design Questions
	Deriving Rows

