
Introduction, SQL
CSE 4/562: Database Systems | Lecture 1

DB. Sys.: T.C.B.: Ch. 1, 2.1-2.2

Oliver Kennedy 2 / 80

Background
• 15+ years studying database systems
• 2 major database systems (DBToaster, Vizier)

Research
• I make the database go brrr (optimizers, data structures)
• I make it easier to write compilers (query languages)
• I make it easier to understand errors (provenance, uncertain data)

Fun
• 🚴, 🍲, 🎲, ⚔️

Contact Info 3 / 80

• Office: Capen 212
• Email: okennedy@buffalo.edu
• Office Hours: Tue 10-11 AM & Thu 1-3 PM, or by appointment

Put “[CSE 4/562]” in the subject line to make sure you get a timely response.

mailto:okennedy@buffalo.edu

Finding Capen 211/212 4 / 80

Logistics 5 / 80

• Course Info/Syllabus
https://odin.cse.buffalo.edu/teaching/cse-4562/2026sp/

• Course Forums: Piazza
https://piazza.com/buffalo/spring2026/cse4562

• Project Submission: Autolab
https://autolab.cse.buffalo.edu/courses/cse462-s26

https://odin.cse.buffalo.edu/teaching/cse-4562/2026sp/
https://piazza.com/buffalo/spring2026/cse4562
https://autolab.cse.buffalo.edu/courses/cse462-s26

Why are databases
awesome?

Databases are everywhere 7 / 80

Databases Tie Together Computer Science 8 / 80

Databases

Theory

Hardware

Systems

Security

Programming Languages

AI/ML

Databases are a state of mind 9 / 80

What is this class about?

High-level view 11 / 80

Data Access
• How do we efficiently compute with large amounts of data?
• How do we efficiently organize data to make access faster?
• How do we make it easier for users to specify data-centric computations?
• How do we scale up data-centric compute?

Data Management
• How do we safely coordinate updates to data?
• How can we safely modify persisted data?

Growing your toolbelt 12 / 80

Techniques
Data Modeling

Cost-Based Optimization
Declarative Specification

Recipes
Join Algorithms

Index Data Structures
Consistency Protocols

Knowledge
The Memory Hierarchy

Data Consistency
The Relational Model

Template for most of this class 13 / 80

For some data oriented problem X…
• Define language that you can use to precisely describe problem X

(what does it mean for a solution to be correct)
• Define language that you can use to rank solutions to problem X

(what does it mean for one solution to be better)
• Explore the design space for problems similar to problem X

(algorithms, data structures, etc… that might work, and their pros/cons)
• Automating this process safely and correctly

(how to write a query compiler/runtime)

General Course Information

Expectations 15 / 80

I expect that you are familiar with…

• … Data Structures
𝑂(⋅) Analysis, Sort Algorithms, Search Trees, Heaps, Hash Tables

• … How to use a database
CSE 350, CSE 4/560, or similar

• … C++
Java, C++, Go, Rust, C#, C, or a similar systems language is usually sufficient.

• … Systems Programming
File IO, Casting structs to byte arrays, Manual memory management

Textbook 16 / 80

$175 $45
Full Index and ToC Abbreviated Index and ToC

Grading 17 / 80

• 20% Programming Assignments (build a DB)
• 40% Code/Journal Reviews (more shortly)
• 15% Midterm Exam (03/05/26)
• 15% Comprehensive Final Exam (currently 05/11/26)
• 10% In-Class Quizzes (Random)

Failure to complete preliminary work in a timely manner will result in a grade of F:
• Checkpoint 0: Jan 26
• AI Quiz: Jan 30

Lectures 18 / 80

I will bring candy to class. Correct question answers will be rewarded.

Especially good questions or insights voiced during class will also be rewarded.

TacoDB

Project 20 / 80

Overview
• I hand you CSV data files and SQL.
• You hand me the results.
• Self-made groups of up-to-three

Checkpoints
0. Setup: Form groups and set up your build system.
1. Intro: C++ Primer; POSIX File IO.
2. SQL: Implement a subset of SQL.
3. Optimizer: Make SQL run fast.
4. Constraints: Make SQL run fast with constrained resources.
5. Indexes: Make SQL run even faster with prep time.

Starting with Checkpoint 2: Opt-in runtime leaderboard.

Project Details 21 / 80

You may form groups of up to 3.
• Once selected, group changes will only be permitted in extreme circumstances.
• A groupfinding tool is available on Piazza.

Software Stack
• C++ / cmake / ctest
• Template code
‣ SQL Parser
‣ An AST framework / Expression language

• git

• I suggest emacs (with clangd) as an editor.
‣ I will make every effort to assist you with other editors, but you are

responsible for understanding how tools that you choose operate.

Project Details 22 / 80

Typical Project Checkpoint
1. Merge in repository updates
2. Update objectives in your journal and explore design space.
3. Express objectives through one or more tests.
4. Get your code working.
5. Submit to autolab

• If incomplete, reflect on it in your journal and develop a new test case.
• Goto step 2 as needed.

6. Ensure that your journal documents your final design.
7. Schedule a code review meeting.

Journal 23 / 80

1-3 pages summarizing the project:
1. Overview: Provide a high-level overview of the system.

• What does it mean for an implementation to be correct?
• How can you subdivide the high-level objective into smaller ones.
• What does it mean for each smaller objective to be correct?
• What does it mean for an implementation/objective to be good?

2. Design Space: In your own words, what design choices do you have to make.
• What algorithms, data structures, etc… could meet your correctness goals?
• What are the pros/cons of each?
• What did you ultimately choose?

3. Iteration: What challenges did you run into, and how did you address them?
• What system component is behaving incorrectly?
• Relate the observed problem to your correctness goals for the component.
• How should you revise your idea of correctness and test for it?

Project Grading 24 / 80

Checkpoint 0 must be completed by the deadline or you will receive a grade of F

Each checkpoint is worth 12 points total:
• 4 points: Code submission (Team grading)
• 4 points: In-person Code review (Individual grading)
• 4 points: In-person Journal review (Individual grading)

Project Overview 25 / 80

 .sql

SELECT CREATE TABLE

Schema

Optimizer

General Advice

Ways to Fail 27 / 80

• Start your project at the last minute
• Never go to office hours
• Never ask questions (Piazza or in-class)
• Wait until the last minute to submit for the first time

… or …

Academic Integrity 28 / 80

I’m here to help you
learn…

… and to evaluate your
understanding and ability.

Permitted Resources 31 / 80

• Cited References (Journal only)
‣ Wikipedia, Wikibooks, CPPReference: Ok

• Code Not Provided by Course Staff
‣ StackOverflow, ChatGPT, Copilot: Not Ok

• Discussing concepts/ideas with classmates
‣ “A hash index has O(1) lookups”: Ok (except during exams 😇)

• Sharing code or answers with anyone
‣ “Look at how I implemented it”: Not Ok

Generative AI 32 / 80

🏋

Generative AI 33 / 80

Official Policy
You may not use Generative AI when completing any deliverable for this class.
• No Chatbots (ChatGPT, Gemini)
• No Coding Assistants (Copilot, Gemini)

Enforcement
In-Person deliverables drive your grade
• 2/3 of your project grade is your ability to explain and justify your design.
• Significant differences in demonstrated understanding between in-person and

take-home work will be grounds for an academic integrity sanction.

Academic Integrity 34 / 80

Zero Tolerance
If there is “a preponderance of evidence” to suggest that you violated academic
integrity you will fail the class.

Group Responsibility
If your group submits work that violates academic integrity, the entire group will
be penalized.

Share Code, Share Blame
If someone else submits your work or other course materials, you will be
penalized as well.

Questions or concerns?

What are data management systems?

Databases at 50,000 ft. 37 / 80

Analysis: Answering user-provided questions about data
What kind of tools can we give users?
• Declarative Languages: Separate the “what?” from the “how?”
• Organizational Data Structures: Indexes, Column Layouts
• Optimizers: Find faster ways to answer the same question

Manipulation: Safely persisting and sharing data updates
What kind of tools can we give users?
• Transactions: Declarative frameworks for data manipulation
• Concurrency Primitives: Rules for “correct” parallel updates
• Incremental View Maintenance: Tricks for monitoring complex properties

Filesystems vs Databases 38 / 80

vs

Filesystems vs Databases 39 / 80

vs

{"firstName": "John",

 "lastName": "Smith",

 "age": 25,

 "address": { "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": 10021 },

 "phoneNumbers": [{ "type": "home",

 "number": "212 555-1234" },

 { "type": "fax",

 "number": "646 555-4567" }]}

Databases exploit the
data’s structure

Language for Structure 41 / 80

Singletons
• Primitive: Basic building blocks (Int, Float, Char, String).
• Tuple: Several ‘fields’ of different types (N-tuple has N fields)
‣ A tuple has a “schema” defining the types (and names) of each field
‣ Sometimes you’ll hear me call this a “record”

Collections
A collection of elements of the same type
• Set: All of the records are unique, but have no order.
• Bag: No constraints at all.
• List: Elements of the collection are arranged in a specific order.
• Map: Each element is identified by a unique “key”

Relational Databases 42 / 80

Relational Database

Relational Databases 43 / 80

Relational Database

Relation

Relational Databases 44 / 80

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Relational Databases 45 / 80

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Relational Databases 46 / 80

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Columns (degree/arity)

Relational Databases 47 / 80

Relational Database

Relation

Schema
Specifies the name of the relation,
name and type of each column, and
any other constraints

Officers(

 firstname string,

 lastname string,

 id int

)

Instance

The Data

[Jean Luc, Picard, 2360]

[Benjamin, Sisko, 2365]

[Kathryn, Janeway, 2370]

Columns (degree/arity)

Rows (cardinality)

Example 48 / 80

Your data is currently an Unordered Set of Tuples with 100 attributes each.

Tomorrow, you will repeatedly be asked …
• …for the value of 1 specific attribute
• …but only from 5 specific tuples identified by a second attribute

Can you do better than a CSV file?

Example Answer 49 / 80

Better Idea:
Rewrite the data into a 99-Tuple of Maps, with the first attribute as the key.

Declarative Query Languages 50 / 80

Write the query without thinking about:
• How the data is organized
• What algorithms you will use to answer the question
• What supplemental data structures you need/have available

Write the logic once, and the database adapts it to the current data organization.

SQL

SQL 52 / 80

• Developed by IBM (for System R) in the 1970s
• Standard used by many database implementations
‣ SQL-86: Original standard
‣ SQL-89: Minor revisions (e.g., integrity constraints)
‣ SQL-92: Major revisions, basis for modern SQL
‣ SQL-99: Support for XML, Window Queries, Recursive CTEs
‣ SQL-2003: Major changes to XML support
‣ SQL-2008: Minor extensions
‣ SQL-2011: Temporal databases
‣ SQL-2016: Support for JSON, listagg
‣ SQL-2023: Better JSON standardization, Property Graphs

SQL 53 / 80

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

SQL 54 / 80

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

A list of attributes from relations in relation-list

SQL 55 / 80

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

A list of attributes from relations in relation-list

A list of relation names (with optional range variables)

SQL 56 / 80

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

A list of attributes from relations in relation-list

A list of relation names (with optional range variables)

Comparisons and other boolean predicates, combined with
AND, OR, and NOT

SQL 57 / 80

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

A list of attributes from relations in relation-list

A list of relation names (with optional range variables)

Comparisons and other boolean predicates, combined with
AND, OR, and NOT

(optional) keyword indicating the answer should be a set

SELECT 58 / 80

CREATE TABLE R(

 A int,

 B int,

);

INSERT INTO R VALUES(1, 1);

INSERT INTO R VALUES(2, 2);

INSERT INTO R VALUES(3, 2);

CREATE TABLE S(

 B int,

 C char,

);

INSERT INTO S VALUES(2, 'a');

INSERT INTO S VALUES(2, 'b');

INSERT INTO S VALUES(3, 'c');

SELECT R.A, S.C

FROM R, S

WHERE R.B = S.B

SELECT: Step 1 59 / 80

Compute every combination of tuples from relation-list.

𝑅 ⋈ 𝑆 R.A R.B S.B S.C
1 1 2 a
1 1 2 b
1 1 3 c
2 2 2 a
2 2 2 b
2 2 3 c
3 2 2 a
3 2 2 b
3 2 3 c

SELECT: Step 2 60 / 80

Apply the rule from condition.

𝑅 ⋈ 𝑆 R.A R.B S.B S.C
1 1 2 a

1 1 2 b

1 1 3 c

2 2 2 a
2 2 2 b
2 2 3 c

3 2 2 a
3 2 2 b
3 2 3 c

SELECT: Step 3 61 / 80

Keep only columns listed in target-list

𝑅 ⋈ 𝑆 R.A S.C
2 a
2 b
3 a
3 b

SELECT 62 / 80

1. Compute every combination of tuples from relation-list.
2. Apply the rule from condition.
3. Keep only columns listed in target-list
4. Delete duplicates if DISTINCT is specified.

In general, do not do this.

Databases 64 / 80

We use an inefficient language to define the “what” because it is general.

A good optimizer will often find a better way (the “how”) if one exists.

Example Data 65 / 80

Example 1 66 / 80

Wildcards (*, tablename.*) are special targets that select all attributes.

SELECT * FROM Trees;

Trees CREATED_AT TREE_ID BLOCK_ID THE_GEOM TREE_DBH STUMP_DIAM CURB_LOC STATUS HEALTH SPC_LATIN SPC_COMMON STEWARD GUARDS SIDEWALK USER_TYPE PROBLEMS ROOT_STONE ROOT_GRATE ROOT_OTHER
'08/27/2015' 180683 348711 'POINT (-73.84421521958048 40.723091773924274)' 3 0 'OnCurb' 'Alive' 'Fair' 'Acer rubrum' 'red maple' 'None' 'None' 'NoDamage' 'TreesCount Staff' 'None' 'No' 'No' 'No'
'09/03/2015' 200540 315986 'POINT (-73.81867945834878 40.79411066708779)' 21 0 'OnCurb' 'Alive' 'Fair' 'Quercus palustris' 'pin oak' 'None' 'None' 'Damage' 'TreesCount Staff' 'Stones' 'Yes' 'No' 'No'
'09/05/2015' 204026 218365 'POINT (-73.93660770459083 40.717580740099116)' 3 0 'OnCurb' 'Alive' 'Good' 'Gleditsia triacanthos var. inermis' 'honeylocust' '1or2' 'None' 'Damage' 'Volunteer' 'None' 'No' 'No' 'No'
'09/05/2015' 204337 217969 'POINT (-73.93445615919741 40.713537494833226)' 10 0 'OnCurb' 'Alive' 'Good' 'Gleditsia triacanthos var. inermis' 'honeylocust' 'None' 'None' 'Damage' 'Volunteer' 'Stones' 'Yes' 'No' 'No'
'08/30/2015' 189565 223043 'POINT (-73.97597938483258 40.66677775537875)' 21 0 'OnCurb' 'Alive' 'Good' 'Tilia americana' 'American linden' 'None' 'None' 'Damage' 'Volunteer' 'Stones' 'Yes' 'No' 'No'

… and 683783 more

Example 2 67 / 80

In English, what does the following query compute?

SELECT tree_id, spc_common, boroname

FROM Trees

WHERE boroname = 'Brooklyn'

Example 2 68 / 80

What is the ID, Common Name and Borough of Trees in
Brooklyn?

Q TREE_ID SPC_COMMON BORONAME
204026 'honeylocust' 'Brooklyn'
204337 'honeylocust' 'Brooklyn'
189565 'American linden' 'Brooklyn'

… and 177289 more

Example 3 69 / 80

In English, what does the following query compute?

SELECT latitude, longitude

FROM Trees, SpeciesInfo

WHERE Trees.spc_common = SpeciesInfo.name

 AND SpeciesInfo.has_unpleasant_smell = 'Yes';

Example 3 70 / 80

What are the coordinates of Trees with bad smells?

Q LATITUDE LONGITUDE
40.59378755 −73.9915968
40.69149917 −73.97258754
40.74829709 −73.98065645
40.68767857 −73.96764605
40.739991 −73.86526993

… and more

Example 3 71 / 80

Range variables make it easier to refer to tables.
 SELECT Trees.latitude, Trees.longitude

 FROM Trees, SpeciesInfo

 WHERE Trees.spc_common = SpeciesInfo.name

 AND SpeciesInfo.has_unpleasant_smell = 'Yes';

Example 3 72 / 80

Range variables make it easier to refer to tables.
 SELECT Trees.latitude, Trees.longitude

 FROM Trees, SpeciesInfo

 WHERE Trees.spc_common = SpeciesInfo.name

 AND SpeciesInfo.has_unpleasant_smell = 'Yes';

… is the same as …
 SELECT T.latitude, T.longitude

 FROM Trees T, SpeciesInfo S

 WHERE T.spc_common = S.name

 AND S.has_unpleasant_smell = 'Yes';

Example 3 73 / 80

Range variables make it easier to refer to tables.
 SELECT Trees.latitude, Trees.longitude

 FROM Trees, SpeciesInfo

 WHERE Trees.spc_common = SpeciesInfo.name

 AND SpeciesInfo.has_unpleasant_smell = 'Yes';

… is the same as …
 SELECT T.latitude, T.longitude

 FROM Trees T, SpeciesInfo S

 WHERE T.spc_common = S.name

 AND S.has_unpleasant_smell = 'Yes';

… is (usually) the same as …
 SELECT latitude, longitude

 FROM Trees, SpeciesInfo

 WHERE spc_common = name

 AND has_unpleasant_smell = 'Yes';

Expressions 74 / 80

Primitive-valued expressions can appear as targets. They define new columns.

 SELECT tree_id,

 stump_diam / 2 AS stump_radius,

 stump_area = 3.14 * stump_diam * stump_diam / 4

 FROM Trees;

Use = or AS to assign names to these attributes.

If you do not specify a name, the database will pick one for you. Often this is
meant to be human-readable, but the SQL spec only says what to do when there is
a bare reference to an attribute.

Expressions 75 / 80

 SELECT tree_id, spc_common FROM Trees WHERE spc_common LIKE '%maple'

SQL uses single quotes for string literals. Use ''' to escape a quote.

LIKE is used for string matches (% matches 0 or more characters)

Union 76 / 80

UNION merges the rows of two queries.

 SELECT tree_id FROM Trees WHERE spc_common = 'red maple'

 UNION [ALL]

 SELECT tree_id FROM Trees WHERE spc_common = 'sycamore maple'

By the spec, the queries must be union compatible, although some engines are
more flexible.

UNION computes a set (no duplicates), while UNION ALL computes a bag (duplicates
allowed).

Aggregate Queries 77 / 80

 SELECT [DISTINCT] target-list

 FROM relation-list

 WHERE condition

 GROUP BY grouping-list

 HAVING group-condition

The target-list now contains grouped attributes and aggregate expressions.

Grouped attributes must appear in the grouping-list.

group-condition is applied after aggregation, and may use aggregate expressions.

Aggregate Queries 78 / 80

 SELECT spc_common, count(*) FROM Trees GROUP BY spc_common

Q SPC_COMMON COUNT
'Schubert chokecherry' 4888

'American beech' 273
'American elm' 7975

'American hophornbeam' 1081
'American hornbeam' 1517

… and more

Reminders

Reminders 80 / 80

• In-class lectures start with the second lecture next Tuesday.
• Complete the AI Quiz on Autolab.
• Make a group and complete Checkpoint 0.

	Background
	Research
	Fun
	Data Access
	Data Management
	For some data oriented problem X…
	 General Course Information
	 TacoDB
	Overview
	Checkpoints
	Software Stack
	Typical Project Checkpoint

	 General Advice
	Official Policy
	Enforcement
	Zero Tolerance
	Group Responsibility
	Share Code, Share Blame

	 What are data management systems?
	Analysis: Answering user-provided questions about data
	Manipulation: Safely persisting and sharing data updates
	Singletons
	Collections
	Better Idea:

	 SQL
	Reminders

