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CSE 410: Midterm Review

Exam Logistics

Exam Day

Do have...

Writing implement (pen or pencil)
One note sheet (up to 8 1

2 × 11 inches, double-sided)

You will not need...
Computer/Calculator/Watch/etc...
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Runtime vs IO vs Memory Complexity

Abstract Disk API

Disk : A collection of Files

File : A list of pages, each of size P (∼ 4K )

file.read page(page): Get the data on page page of the
file.
file.write page(page, data): Write data to page page of
the file.

The number of calls to read/write is the IO Complexity
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Runtime vs IO vs Memory Complexity

Complexity

1 const RECORDS_PER_PAGE = sizeof::<Record>() / PAGE_SIZE;

2

3 fn get_element(file: File, position: u32) -> Record

4 {

5 let page = position / RECORDS_PER_PAGE;

6 let data = file.read_page(page);

7 return get_records(data)[position % RECORDS_PER_PAGE];

8 }
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Runtime vs IO vs Memory Complexity

Complexity

1 fn find_element(file: File, key: u32) -> Record

2 {

3 let mut records: Vec<Record> = Vec::new()

4 for page in (0..N)

5 {

6 let data = file.read_page(idx);

7 for record in get_records(data)

8 {

9 records.push(record);

10 }

11 }

12 return records.binary_search(key)

13 }
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Runtime vs IO vs Memory Complexity

Streaming Reads/Writes

1 struct BufferedFile {

2 file: File,

3 buffer: Page,

4 page_idx: u32,

5 record_idx: u16,

6 }

7 impl BufferedFile {

8 fn append(&mut self, record: Record) {

9 self.buffer[self.record_idx] = record;

10 self.record_idx ++;

11 if self.record_idx >= RECORDS_PER_PAGE {

12 self.file.write_page(self.page_idx, self.buffer);

13 self.record_idx = 0; self.page_idx ++;

14 }

15 }

16 }
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Runtime vs IO vs Memory Complexity

Streaming Reads/Writes

1 struct BufferedFile {

2 file: File,

3 buffer: Page,

4 page_idx: u32,

5 record_idx: u16,

6 }

7 impl BufferedFile {

8 fn next(&mut self) -> Record {

9 if self.record_idx >= RECORDS_PER_PAGE {

10 self.file.read_page(self.page_idx)

11 self.page_idx += 1; self.record_idx = 0

12 }

13 self.record_idx += 1

14 return self.buffer[self.record_idx - 1];

15 }

16 ...

17 }

© 2024 Oliver Kennedy, The University at Buffalo, SUNY



CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Complexity

1 fn group_by_sum(input: BufferedFile, output: BufferedFile) {

2 let mut buffers: Vec<BufferedFile> = Vec::new();

3 for _i in (0..B) { buffers.push(BufferedFile::new()); }

4 while !input.done() {

5 let record = input.next();

6 let i = HASH(record.key) % B;

7 buffers[i].append(record)

8 }

9 for i in (0..B) {

10 let local_sums: Map<String,f32> = Map::new()

11 buffer[i].reset()

12 while !buffer[i].done() {

13 let record = buffer[i].next();

14 local_sums[record.key] += record.value;

15 }

16 for key, value in local_sums {

17 output.append( Record { key, value } )

18 } } }
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Serialization

Record Layouts

O(1) field lookup
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Serialization

Record Layouts

O(N) field lookup
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Serialization

Record Layouts

O(1) field lookup
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Serialization

Record Layouts

Fixed: Constant-size fields. Field i at byte
∑

j<i |Fieldj |.
Delimited: Special character or string (e.g., ,) between fields.

Indexed: Fixed-size header points to start of each field.
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Serialization

Page Layouts
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Serialization

Page Layouts

Fixed: Constant-size records. Record i at byte i · |Record |.
Delimited: Special character or string (e.g., \n) between
records.

Indexed: Fixed-size header points to start of each record.
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Serialization

Page Layouts
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Serialization

Page Layouts
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Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

© 2024 Oliver Kennedy, The University at Buffalo, SUNY



CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

2-Pass Sort
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Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

Pass 1: Use O(K ) memory for the initial buffer

Pass 2: Merge O(K ) buffers simultaneously
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Optimizing for IO Complexity with Bounded Memory

Aggregation
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Optimizing for IO Complexity with Bounded Memory

Aggregation
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Optimizing for IO Complexity with Bounded Memory

Aggregation
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Binary Search On Disk

Binary Search
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Binary Search On Disk

Fence Pointers
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Binary Search On Disk

ISAM Index
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Binary Search On Disk

B+ Tree

Like an ISAM index, but not every page needs to be full, and...
Any page (except the root) must be at least half-full

Splitting a full page creates a half-full page.

On deleting the P
2 th record, steal record from adjacent page.

If no records can be stolen, must be able to merge with an
adjacent page.
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Binary Search On Disk

B+ Tree

With P records / key+pointer pairs per page:
get(k)

O(1) Memory complexity

O(logP(N)) IO complexity

Contrast: O(log2(N)) in binary search

put(k, v)

O(1) Memory complexity

O(logP(N)) IO complexity

O(logP(N)) reads
O(logP(N)) writes; O(1) amortized writes
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Write-Optimized Data Structures

LSM Tree

Insight: Updating one record involves many redundant writes in a
B+ Tree
Building Block: Sorted Run

Originally: ISAM Index

Now: Sorted Array + Fence Pointers (optional Bloom Filter)
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Write-Optimized Data Structures

LSM Tree

In-Memory Buffer

Level 1: B records

Level 2: 2B records

Level 3: 4B records

Level i: 2i+1B records
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Write-Optimized Data Structures

LSM Tree

put(k,v)

Append to in-memory buffer.

If buffer full, sort, and write sorted run to level 1.

If level 1 already occupied, merge sorted runs and write result
to level 2.

If level 2 already occupied, merge sorted runs and write result
to level 3.

...

If level i already occupied, merge sorted runs and write result
to level i+1.
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Write-Optimized Data Structures

LSM Tree

get(k,v)

Linear scan for k over in-memory buffer.

If not found, look up k in level 1.

If not found, look up k in level 2.

...
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Write-Optimized Data Structures

LSM Tree

update(k,v)

exactly as put

... but when merging sorted runs, if both input runs contain a
key, only keep the newer copy of the record.

delete(k)

exactly as update, but write a ’tombstone’ value.

If get encounters a tombstone value, return ”not found”.

When merging into lowest level, can delete tombstone.
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Write-Optimized Data Structures

β − ϵ Trees

Like B+ Tree, but directory pages contain a buffer.

Writes go to the root page buffer.

When the root page buffer is full, move its buffered writes to
level 2 buffers.

When a level 2 buffer is full, move its buffered writes to level
3 buffers.

...

When the last directory level buffer is full, apply the writes to
the relevant leaves.
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Shortcutting Reads

Set

add(k): Updates the set.

test(k): Returns true iff add(k) was called on the set.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY



CSE 410: Midterm Review

Shortcutting Reads

Lossy Set

add(k): Updates the set.

test(k):
Always returns true if add(k) was called on the set.
Usually returns false if add(k) was not called on the set.
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Shortcutting Reads

Bloom Filters

A specific implementation of a lossy set.

O(N) memory to store N keys with a fixed false-positive rate.

... but with a very small constant (1 byte per key ≈ 1− 2%
false positive rate).
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Shortcutting Reads

Bloom Filters

Before

Read file

Find and return record for key

After

If in-memory bloom filter returns false, return not-found

Read file

Find and return record for key

© 2024 Oliver Kennedy, The University at Buffalo, SUNY



CSE 410: Midterm Review

Dataframe Storage

Tidy Data

Movies Title Lang Runtime
Princess Bride English 98
Princess Bride Spanish 98

Die Hard English 132
Die Hard Polish 132
The Matrix English 136
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Dataframe Storage

Tidy Data

Movies Title Lang Runtime
Princess Bride [English, Spanish] 98

Die Hard [English, Polish] 132
The Matrix English 136

Variable-length data is awkward to store and access
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Dataframe Storage

Tidy Data

Lang Title Lang
Princess Bride English
Princess Bride Spanish

Die Hard English
Die Hard Polish

Runtime Title Runtime
Princess Bride 98

Die Hard 132
The Matrix 136
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Dataframe Storage

Functional Dependencies

Runtime Title Runtime
Princess Bride 98

Die Hard 132
The Matrix 136

Each value for Title identifies a single value for Runtime.

Functional Dependency: Title → Runtime
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Dataframe Storage

Functional Dependencies

R A B C D
1 1 4 1
1 2 4 2
2 3 2 3
3 5 1 4
4 4 4 5

Functional Dependencies:

A → C

B → A,C ,D

A,C → D

D → A,B,C
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Dataframe Storage

Keys

R A B C D
1 1 4 1
1 2 4 2
2 3 2 3
3 5 1 4
4 4 4 5

B → A,C ,D

D → A,B,C

B,D are keys
⟨A,C ⟩ is a key
⟨A,B⟩ is a super-key
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Dataframe Storage

Normal Forms

Super-key: A set of attributes with an FD to the rest of the
table.

Key: A minimal super-key.

1st Normal Form: No Nesting, Lists, etc...

2nd Normal Form: All FDs have a super-key on the left.
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Joins

Recovering Denormalized Data

Lang Title Lang
Princess Bride English
Princess Bride Spanish

Die Hard English
Die Hard Polish

Runtime Title Runtime
Princess Bride 98

Die Hard 132
The Matrix 136

We want to re-combine Lang and Runtime
Goal: Pair every element of Lang with the corresponding element
of Runtime
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Joins

Cartesian Product

R A B
1 2
2 1

S B C
1 3
1 4
2 5

R× S A R.B S.B C
1 2 1 3
1 2 1 4
1 2 2 5
2 1 1 3
2 1 1 4
2 1 2 5
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Joins

Product + Filter

Filter(R.B = S .B,R× S) A R.B S.B C
1 2 2 5
2 1 1 3
2 1 1 4

(This is called a Join)

(Since the filtering condition is an equality, it’s an equi-join)
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Joins

Equivalent SQL queries

SELECT ∗
FROM R, S
WHERE R .B = S .B

SELECT ∗
FROM R JOIN S ON R.B = S .B

SELECT ∗
FROM R NATURAL JOIN S

(Natural join = equi-join on all attributes with the same name)
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Joins

Nested Loop Join

f o r r i n R :
f o r s i n S :

i f c o n d i t i o n ( r , s ) :
output <r , s>
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Joins

Block-Nested Loop Join

f o r [ r1 . . . rB ] i n R :
f o r s i n S :

f o r r i n [ r1 . . . rB ]
i f c o n d i t i o n ( r , s ) :

output <r , s>
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Joins

Sort-Merge Join

s o r t R
s o r t S
wh i l e Some( r ) = R . peek ( ) && Some( s ) = S . peek ( ) :

i f r . key = s . key :
# For s i m p l i c i t y , om i t t i n g ca se where mu l t i p l e rows i n R , S , have same key v a l u e .
output <r , s>
r . nex t ( ) ; s . nex t ( )

e l s e i f r . key < s . key :
r . nex t ( )

e l s e ;
s . nex t ( )
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Joins

In-Mem (1-Pass) Hash Join

h a s h t a b l e = {}
f o r r i n R ;

h a s h t a b l e [ r . key ] += [ r ]
f o r s i n S :

f o r r i n h a s h t a b l e [ s . key ] :
output <r , s>

© 2024 Oliver Kennedy, The University at Buffalo, SUNY



CSE 410: Midterm Review

Joins

On-Disk (2-Pass) Hash Join

f o r i i n 0 . . N:
r p a r t i t i o n s [ i ] = new f i l e
s p a r t i t i o n s [ i ] = new f i l e

f o r r i n R :
r p a r t i t i o n s [ hash ( r . key ) mod i ] += r

f o r s i n S :
s p a r t i t i o n s [ hash ( s . key ) mod i ] += s

f o r i i n 0 . . n ;
i n mem hash j o i n ( r p a r t i t i o n s [ i ] , s p a r t i t i o n s [ i ] )
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Joins

Join Summary

Alg. Runtime Mem IO Notes
NLJ O(|R| × |S|) O(1) O(|R| × |S|)

BNLJ O(|R| × |S|) O(B) O
(

|R|×|S|
B

)
B-size buffer

SMJ O(|R| + |S| + |R ▷◁ S|) + O(sort) O(1) + O(sort) O(|R| + |S|) + O(sort) Equi-join only
1PHJ Expected O(|R| + |S| + |R ▷◁ S|) O(|R| + |S|) O(|R| + |S|) Equi-join only

2PHJ Expected O(|R| + |S| + |R ▷◁ S|) O
(

|R|+|S|
N

)
O(|R| + |S|) Equi-join only; N-size
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Data Layouts

Row Layouts
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Data Layouts

Columnar Layouts
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Data Layouts

Dictionary Encoding

People Name Country
r1 Carl Sweden
r2 Ethan United States Of America
r3 Eric United States Of America
r4 Oliver United Kingdom
r5 Paul United States Of America
r6 Matt United States Of America
r7 Kelin China

Country: Avg of 17 bytes per record.
Idea: Factorize!
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Data Layouts

Dictionary Encoding

People Name CountryID
r1 Carl 1
r2 Ethan 2
r3 Eric 2
r4 Oliver 3
r5 Paul 2
r6 Matt 2
r7 Kelin 4

Countries CountryID Country
1 Sweden
2 United States Of America
3 United Kingdom
4 China

CountryID: 1 byte per record.
Country: +51 bytes.© 2024 Oliver Kennedy, The University at Buffalo, SUNY
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Data Layouts

Run-Length Encoding

People Country
r1 Sweden
r2 United States Of America
r3 United States Of America
r4 United Kingdom
r5 United States Of America
r6 United States Of America
r7 China

Country: Lots of redundancy
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Data Layouts

Run-Length Encoding

Idea 1: Run-Length encode!

People Country
1 record Sweden
2 records United States Of America
1 record United Kingdom
2 records United States Of America
1 record China

Idea 1: Replace each ’run’ of the same value with (length, value)
pairs.
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Data Layouts

Run-Length Encoding

People Country
{r1} Sweden

{r2, r3, r5, r6} United States Of America
{r4} United Kingdom
{r7} China

Idea 2: Group together IDs for each distinct value.
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Concurrency Control

Data Model

Question: What is our atomic unit of data?

One record?

One page of data?

One data table?

System-dependent; Let’s talk about ’objects’ instead

(An object can be a record, a range of records, a page of data, a
data table, a partition, etc...)
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Concurrency Control

Processes/Transactions

A process (i.e., transaction) is something that interacts with the
data.

A transaction can read from an object.

A transaction can write to an object.

We model a process as a sequence of read and write operations.

We model several processes interacting with data as a sequence of
read and write operations called a schedule.
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Concurrency Control

Schedules

Given

Objects A, B

Process P1: R(A), R(B), W(A)

Process P2: R(B), W(A)

The following is a schedule:
P1 P2
R(A)

R(B)
R(B)
W(A)

W(A)
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Concurrency Control

Serial Schedules

Question: What does it mean for a schedule to be correct?

Trivial Definition: Run all the processes, one at a time.
(no concurrency bugs at least)

P1 P2
R(A)
R(B)
W(A)

R(B)
W(A)

P1 P2
R(B)
W(A)

R(A)
R(B)
W(A)

We will assume that these are both correct: Both are Serial
Schedules.
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Concurrency Control

Some Interleaved Schedules are Correct

P1 P2
R(A)

R(B)
R(B)
W(A)

W(A)

This schedule is indistinguishable, from the perspective of P1 or
P2, from the serial schedule where P1 runs to completion first and
then P2 runs to completion. It should be correct too.

A Serializable schedule is one where, given the available
information, we can guarantee that there is no perceptible
difference to processes accessing the data.

Problem: How do we formalize the idea of serializability in a
general way?© 2024 Oliver Kennedy, The University at Buffalo, SUNY
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Concurrency Control

Conflict Equivalence

Given two operations from different processes, we call the
processes a Conflict iff:

The operations act on the same object.

At least one of the operations is a read.

Note that a conflict isn’t necessarily bad... it’s just a point where
the two processes risk potential problems.

We call two schedules S1 and S2 Conflict Equivalent if we can
reach S2 by starting with S1 and swapping the order of adjacent
non-conflicting operations from different processes.
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Concurrency Control

Conflict Serializable

A schedule is conflict serializable if it is conflict equivalent to
some serial schedule.
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Concurrency Control

Checking Conflict Serializability

Make a happens-before graph:

1 Create one node for each process
2 For each conflict, create an edge from the process of the

earlier operation to the process of the later operation.

A cycle in the graph means there can not be a conflict equivalent
serial schedule.
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Concurrency Control

2-Phase Locking

Rules:

A process must Lock an object before reading/writing it.

A process must Unlock all of its held locks before it ends.

Only one process may hold the lock on an object at a time.

Once a process releases a lock, it may never again acquire a
new lock (the 2-phase rule).

If processes follow the rules above, the resulting schedule will
always be conflict serializable.
(However, some conflict serializable schedules can not be created
by 2-phase locking.)
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Concurrency Control

Reader/Writer Locks

Since Read/Read operations are not conflicts, we can relax the
third rule and allow 2 processes to hold a lock concurrently if both
are reading:

If a process holds the writer lock for an object, no other
process may hold a reader or writer lock on it.

If a process holds a reader lock for an object, no other process
may hold a writer lock on it.
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