Day 29
Hash Functions
The mutable.Set\[T\] ADT

add(element: T): Unit
 Store one copy of element if not already present

apply(element: T): Boolean
 Return true if element is present in the set

remove(element: T): Boolean
 Remove element if present, or return false if not
The `mutable.Set[T]` ADT and Maps

add(element: T): Unit
Store one copy of `element` if not already present

apply(element: T): Boolean
Return true if `element` is present in the set

remove(element: T): Boolean
Remove `element` if present, or return false if not

Maps are like Sets, but where `T` is a 2-tuple: `(key, value)`
The identity of the `element` is determined by `key`
The Map $[K, V]$ ADT

add(key: K, value: V): Unit
 // AKA put(...)
 Insert (key, value) into the map. If key already exists, replace it.

apply(key: K): V
 // AKA get(...)
 Return the value corresponding to key

remove(key: K): V
 Remove the element associated with key and return the value
Map Implementations

Map[\(K, V\)] as a **Sorted Sequence**
- apply
- add
- remove

Map[\(K, V\)] as a **balanced Binary Search Tree**
- apply
- add
- remove
Map Implementations

Map[K,V] as a Sorted Sequence
- apply \(O(\log(n)) \) for Array, \(O(n) \) for Linked List
- add \(O(n) \)
- remove \(O(n) \)

Map[K,V] as a balanced Binary Search Tree
- apply
- add
- remove
Map Implementations

Map \([K, V]\) as a Sorted Sequence
- apply \(O(\log(n))\) for Array, \(O(n)\) for Linked List
- add \(O(n)\)
- remove \(O(n)\)

Map \([K, V]\) as a balanced Binary Search Tree
- apply \(O(\log(n))\)
- add \(O(\log(n))\)
- remove \(O(\log(n))\)
Finding Items

For most of these operations, the expensive part is finding the record...
For most of these operations, the expensive part is finding the record...

So...let's skip the search
Assigning Bins

Idea: What if we could assign each record to a location in an Array

- Create and array of size N
- Pick an $O(1)$ function to assign each record a number in $[0,N)$
 - ie: If our records are names, first letter of name $\rightarrow [0,26)$
Assigning Bins

A B C D ... P ... Z
Assigning Bins

Athos

B C D ... P ... Z
Assigning Bins

Athos B C D ... Porthos ... Z
Assigning Bins

Athos B C D'Artagnan ... Porthos ... Z
Assigning Bins

Pros
● $O(1)$ insert
● $O(1)$ find
● $O(1)$ remove

Cons
● Wasted space (3/26 slots used in the example)
● Duplication (What about inserting Aramis)
Assigning Bins Buckets

Pros
- $O(1)$ insert
- $O(1)$ find
- $O(1)$ remove

Cons
- Wasted space (3/26 slots used in the example)
- Duplication (What about inserting Aramis)
Bucket-Based Organization

Wasted Space
- Not ideal...but not wrong
- $O(1)$ access time might be worth it
- Also depends on the choice of function

Duplication
- We need to be able to handle duplcates
Dealing with Duplication

How could we address the duplication problem?
Dealing with Duplication

How could we address the duplication problem?

Idea: Make buckets bigger!
Bigger Buckets

Fixed Size Buckets (B elements)

Pros
- Can deal with up to B dupes
- Still $O(1)$ find

Cons
- What if more than B dupes?

Arbitrarily Large Buckets (List)

Pros
- No limit to number of dupes

Cons
- $O(n)$ worst-case find
Buckets + Linked Lists

<table>
<thead>
<tr>
<th>Athos</th>
<th>B</th>
<th>C</th>
<th>D'Artagnan</th>
<th>...</th>
<th>Porthos</th>
<th>...</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>...</td>
<td>Ø</td>
<td>...</td>
<td>Ø</td>
</tr>
</tbody>
</table>

The diagram illustrates buckets and linked lists, with Athos, B, C (empty), D'Artagnan, ..., Porthos, ..., Z (empty) represented.
Picking a Hash Function

Desirable features for $h(x)$:

- Fast — needs to be $O(1)$
- "Unique" — As few duplicate bins as possible
Picking a Hash Function
Picking a Hash Function

apply(k) is $O(1)$
Picking a Hash Function

apply(k) is O(1) ...but unachievable

Ideal!
Picking a Hash Function
Picking a Hash Function

Elements/Bucket

Buckets

apply(k) is $O(n)$
Picking a Hash Function

Worst Case!

apply(k) is $O(n)$
Picking a Hash Function
Picking a Hash Function

apply(k) is something like $O(1)$?
Picking a Hash Function

apply(k) is something like $O(1)$?

Almost Ideal!

...and achievable
Other Functions

First Letter of UBIT Name
- Unevenly distributed, $O(n)$ worst case apply
First Letter of UBIT Name

36 'j's

No 'u's
Other Functions

First Letter of UBIT Name
- Unevenly distributed, $O(n)$ worst case apply

Identity Function on UBIT #
- Need a 50m+ element array
Other Functions

First Letter of UBIT Name
- Unevenly distributed, $O(n)$ worst case apply

Identity Function on UBIT #
- Need a 50m+ element array
- **Problem**: For reasonable N identity function returns something $> N$
Other Functions

First Letter of UBIT Name
- Unevenly distributed, $O(n)$ worst case apply

Identity Function on UBIT #
- Need a 50m+ element array
- **Problem:** For reasonable N identity function returns something $> N$
- **Solution:** Cap return value of function to N with modulus
 - $(x: \text{Int}) => x \% N$
Identity of UBIT # mod 26
Comparison

UBIT # % 26

strstr(UBITName, 0, 1)
Comparison

UBIT # % 26

This still relies on UBIT # being "randomly distributed"

\texttt{substr(UBITName, 0, 1)}
Picking a Hash Function

Wacky Idea: Have $h(x)$ return a random value in $[0, N)$

(This makes apply impossible...but bear with me)
Random Hash Function

\[n = \text{number of elements in any bucket} \]

\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E} [b_{i,j}] = \frac{1}{N} \]
Random Hash Function

\[n = \text{number of elements in any bucket} \]

\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E} \left[\sum_{i=0}^{n} b_{i,j} \right] = \frac{n}{N} \]
Random Hash Function

\[n = \text{number of elements in any bucket} \]
\[N = \text{number of buckets} \]
\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

Only true if \(b_{ij} \) and \(b_{i'j} \) are uncorrelated for any \(i \neq i' \)

\[\mathbb{E} \left[\sum_{i=0}^{n} b_{i,j} \right] = \frac{n}{N} \]

The expected number of elements in any bucket j

(h(i) can’t be related to h(i’))
Random Hash Function

\[n = \text{number of elements in any bucket} \]
\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

Expected runtime of insert, apply, remove: \(O(n/N) \)

Worst-Case runtime of insert, apply, remove: \(O(n) \)
Hash Functions In the Real-World

Examples
- SHA256 ← Used by GIT
- MD5, BCRYPT ← Used by unix login, apt
- MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
- hash(x) ~ uniform random value in [0, INT_MAX)
- hash(x) always returns the same value for the same x
- hash(x) is uncorrelated with hash(y) for all x ≠ y
Hash Functions + Buckets

Everything is: \(O\left(\frac{n}{N}\right) \)

Let’s call \(\alpha = \frac{n}{N} \) the load factor.
Hash Functions + Buckets

Everything is: \(O \left(\frac{n}{N} \right) \)

Let’s call \(\alpha = \frac{n}{N} \) the load factor.

Idea: Make \(\alpha \) a constant
Idea: Make α a constant

Fix an α_{\max} and start requiring that $\alpha \leq \alpha_{\max}$
Hash Functions + Buckets

Everything is: \(O\left(\frac{n}{N}\right) \)

Let's call \(\alpha = \frac{n}{N} \) the load factor.

Idea: Make \(\alpha \) a constant

Fix an \(\alpha_{\text{max}} \) and start requiring that \(\alpha \leq \alpha_{\text{max}} \)

What do we do when this constraint is violated?