CSE 250
Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

Day 25
Traversing and Balancing Trees
A **Set** is an **unordered** collection of **unique** elements.
(order doesn't matter, and at most one copy of each item)
A **Set** is an **unordered** collection of **unique** elements.

(order doesn't matter, and at most one copy of each item key)
The `mutable.Set[T]` ADT

add(element: T): Unit
Store one copy of `element` if not already present

apply(element: T): Boolean
Return true if `element` is present in the set

remove(element: T): Boolean
Remove `element` if present, or return false if not
A **Bag** is an *unordered* collection of *non-unique* elements.

(order doesn't matter, and multiple copies with the same key is OK)
The mutable Bag[T] ADT

add(element: T): Unit
 Register the presence of a new (copy of) element

apply(element: T): Boolean
 Return the number of copies of element in the bag

remove(element: T): Boolean
 Remove one copy of element if present, or return false if not
<table>
<thead>
<tr>
<th>Property</th>
<th>Seq</th>
<th>Set</th>
<th>Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Order</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enforced Uniqueness</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Iterable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
(Rooted) Trees
(Even More) Tree Terminology

Rooted, Directed Tree - Has a single root node (node with no parents)

Parent of node \(X\) - A node with an out-edge to \(X\) (max 1 parent per node)

Child of node \(X\) - A node with an in-edge from \(X\)

Leaf - A node with no children

Depth of node \(X\) - The number of edges in the path from the root to \(X\)

Height of node \(X\) - The number of edges in the path from \(X\) to the deepest leaf
(Even More) Tree Terminology

Level of a node - Depth of the node + 1

Size of a tree \((n)\) - The number of nodes in the tree

Height/Depth of a tree \((d)\) - Height of the root/depth of the deepest leaf
(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children

Complete Binary Tree - All leaves are in the deepest two levels

Full Binary Tree - All leaves are at the deepest level, therefore every vertex has exactly 0 or 2 children, and $d = \log(n)$
Computing Tree Height

The height of a tree is the height of the root

The children of the root are each roots of the left and right subtrees

So we can compute height recursively:

\[
\begin{align*}
 h(\text{root}) &= \begin{cases}
 0 & \text{if the tree is empty} \\
 1 + \max(h(\text{root.left}), h(\text{root.right})) & \text{otherwise}
 \end{cases}
\end{align*}
\]
Computing Tree Height

```scala
def height[T](root: Tree[T]): Int = {
  root match {
    case EmptyTree => 0
    case TreeNode(v, left, right) =>
      1 + Math.max( height(left), height(right) )
  }
}
```

\[
h(root) = \begin{cases}
0 & \text{if the tree is empty} \\
1 + \max(h(root.left), h(root.right)) & \text{otherwise}
\end{cases}
\]
Computing Tree Height

```scala
def height[T](root: Tree[T]): Int = {
  root match {
    case EmptyTree => 0
    case TreeNode(v, left, right) =>
      1 + Math.max(height(left), height(right))
  }
}
```

Case classes have a nice mapping onto functions with multiple cases.

\[
h(\text{root}) = \begin{cases}
0 & \text{if the tree is empty} \\
1 + \max(h(\text{root.left}), h(\text{root.right})) & \text{otherwise}
\end{cases}
\]
A **Binary Search Tree** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.
Binary Search Tree

A **Binary Search Tree** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints
A **Binary Search Tree** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints
- No duplicate keys
A **Binary Search Tree** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints
- No duplicate keys
- For every node X_L in the left subtree of node X: $X_L.key < X.key$
A **Binary Search Tree** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints
- No duplicate keys
- For every node X_L in the left subtree of node X: $X_L.key < X.key$
- For every node X_R in the right subtree of node X: $X_R.key > X.key$
Binary Search Tree

A **Binary Search Tree** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints
- No duplicate keys
- For every node X_L in the left subtree of node X: $X_L.key < X.key$
- For every node X_R in the right subtree of node X: $X_R.key > X.key$

X partitions its children
Goal: Find an item with key k in a BST rooted at root
Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
Finding an Item

Goal: Find an item with key k in a BST rooted at $root$

1. Is $root$ empty? (if yes, then the item is not here)
2. Does $root.value$ have key k? (if yes, done!)
Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key k? (if yes, done!)
3. Is k less than root.value's key? (if yes, search left subtree)
Finding an Item

Goal: Find an item with key k in a BST rooted at $root$

1. Is $root$ empty? (if yes, then the item is not here)
2. Does $root.value$ have key k? (if yes, done!)
3. Is k less than $root.value$'s key? (if yes, search left subtree)
4. Is k greater than $root.value$'s key? (If yes, search the right subtree)
def find[V: Ordering](root: BST[V], target: V): Option[V] =
 root match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)) { return find(left, target) }
 else if(Ordering[V].lt(v, target)){ return find(right, target) }
 else { return Some(v) }
 case EmptyTree =>
 return None
def find[V: Ordering](root: BST[V], target: V): Option[V] =
root match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)) { return find(left, target) }
 else if(Ordering[V].lt(v, target)){ return find(right, target) }
 else { return Some(v) }
 case EmptyTree => return None
}
What's the complexity? (how many times do we call find)?
What's the complexity? (how many times do we call `find`)? \(O(d) \)
Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at $root$
Goal: Insert a new item with key k in a BST rooted at $root$.

1. Is $root$ empty? (insert here)
Inserting an Item

Goal: Insert a new item with key k in a BST rooted at \texttt{root}

1. Is \texttt{root} empty? (insert here)
2. Does $\texttt{root.value}$ have key k? (already present! don't insert)
Goal: Insert a new item with key k in a BST rooted at root

1. Is root empty? (insert here)
2. Does root.value have key k? (already present! don't insert)
3. Is k less than root.value's key? (call insert on left subtree)
Goal: Insert a new item with key k in a BST rooted at $root$

1. Is $root$ empty? (insert here)
2. Does $root.value$ have key k? (already present! don't insert)
3. Is k less than $root.value$'s key? (call insert on left subtree)
4. Is k greater than $root.value$'s key? (call insert on right subtree)
def insert[V: Ordering](root: BST[V], value: V): BST[V] =
 node match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)){
 return TreeNode(v, insert(left, target), right)
 } else if(Ordering[V].lt(v, target)){
 return TreeNode(v, left, insert(right, target))
 } else {
 return node // already present
 }

 case EmptyTree =>
 return TreeNode(value, EmptyTree, EmptyTree)
 }
def insert[V: Ordering](root: BST[V], value: V): BST[V] =
node match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)){
 return TreeNode(v, insert(left, target), right)
 } else if(Ordering[V].lt(v, target)){
 return TreeNode(v, left, insert(right, target))
 } else {
 return node // already present
 }
 case EmptyTree =>
 return TreeNode(value, EmptyTree, EmptyTree)
}
```python
def insert[V: Ordering](root: BST[V], value: V): BST[V] = 
  node match {
    case TreeNode(v, left, right) =>
      if(Ordering[V].lt( target, v ) ){
        return TreeNode(v, insert(left, target), right)
      } else if(Ordering[V].lt( v, target ) ){
        return TreeNode(v, left, insert(right, target))
      } else {
        return node // already present
      }
    case EmptyTree =>
      return TreeNode(value, EmptyTree, EmptyTree)
  }
```

What is the complexity? (how many calls to insert)? $O(d)$
Goal: Remove the item with key k from a BST rooted at root

1. find the item
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

We'll look at this in more detail later, but for now...

What's the complexity? $O(d)$
So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?
Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies ($X_L \leq X$ instead of $<$)
Sets and Bags

So we could use this specification of a BST to implement a Set.

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies ($X_L \leq X$ instead of $<$)

Idea 2: Only store one copy of each element, but also store a count.
BST Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>
BST Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>

What is the runtime in terms of n?
BST Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>

What is the runtime in terms of n? $O(n)$
BST Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>

What is the runtime in terms of n? $O(n)$

Does it need to be that bad?
BST Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>

What is the runtime in terms of n? $O(n)$

Does it need to be that bad? ...hold that thought
Tree Traversals

Goal: Visit every element of a tree (in linear time?)

Pre-Order (top-down)
Visit the root, then the left subtree, then the right subtree

In-Order
Visit the left subtree, then the root, then the right subtree

Post-Order (bottom-up)
Visit the left subtree, then the right subtree, then the root
def inorderVisit[T](root: ImmutableTree[T], visit: ImmutableTree[T] => Unit) = {
 root match {
 case TreeNode(v, left, right) =>
 /* visit left */
 inorderVisit(left, visit)
 /* visit root */
 visit(v)
 /* visit right */
 inorderVisit(right, visit)

 case EmptyTree =>
 /* Do Nothing */
 }
}
In-Order Traversal on a BST
In-Order Traversal on a BST

inorderVisit(6)
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
In-Order Traversal on a BST

`inorderVisit(6)`
`inorderVisit(4)`
`inorderVisit(1)`
`inorderVisit(empty)`
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
visit(1)

Output: 1
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
inorderVisit(3)

Output: 1
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
inorderVisit(3)
inorderVisit(2)

Output: 1
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
inorderVisit(3)
visit(2)

Output: 1 2
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
inorderVisit(3)

Output: 1 2
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)
visit(3)

Output: 1 2 3
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)

Output: 1 2 3
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)

Output: 1 2 3
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
visit(4)

Output: 1 2 3 4
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)

Output: 1 2 3 4
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(5)

Output: 1 2 3 4
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)
visit(5)

Output: 1 2 3 4 5
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(4)

Output: 1 2 3 4 5
In-Order Traversal on a BST

inorderVisit(6)

Output: 1 2 3 4 5
In-Order Traversal on a BST

inorderVisit(6)
visit(6)

Output: 1 2 3 4 5 6
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)

Output: 1 2 3 4 5 6
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)

Output: 1 2 3 4 5 6
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
visit(7)

Output: 1 2 3 4 5 6 7
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)

Output: 1 2 3 4 5 6 7
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)
visit(8)

Output: 1 2 3 4 5 6 7 8
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)
inorderVisit(9)

Output: 1 2 3 4 5 6 7 8
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)
visit(9)

Output: 1 2 3 4 5 6 7 8 9
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)

Output: 1 2 3 4 5 6 7 8 9
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)

Output: 1 2 3 4 5 6 7 8 9
In-Order Traversal on a BST

\[\text{inorderVisit}(6) \]
\[\text{inorderVisit}(10) \]

Output: 1 2 3 4 5 6 7 8 9
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
visit(10)

Output: 1 2 3 4 5 6 7 8 9 10
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(11)

Output: 1 2 3 4 5 6 7 8 9 10
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(11)
visit(11)

Output: 1 2 3 4 5 6 7 8 9 10 11
In-Order Traversal on a BST

inorderVisit(6)
inorderVisit(10)

Output: 1 2 3 4 5 6 7 8 9 10 11
In-Order Traversal on a BST

inorderVisit(6)

Output: 1 2 3 4 5 6 7 8 9 10 11
In-Order Traversal on a BST

Output: 1 2 3 4 5 6 7 8 9 10 11
Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {
 /*** Initialize the Iterator ***/**
 val toVisit = mutable.Stack[ImmutableTree[T]]
 pushLeft(root)

 def pushLeft(node: ImmutableTree[T]): Unit =
 node match {
 case EmptyTree => ()
 case t: ImmutableTree =>
 toVisit.push(t)
 pushLeft(t.left)
 }
...
class ImmutableTreeIterator[T](root: ImmutableTree[T]) {
 /*** Initialize the Iterator ***/
 val toVisit = mutable.Stack[ImmutableTree[T]]
 pushLeft(root)

 def pushLeft(node: ImmutableTree[T]): Unit =
 node match {
 case EmptyTree => ()
 case t: ImmutableTree =>
 toVisit.push(t)
 pushLeft(t.left)
 }

 ...
class ImmutableTreeIterator[T](root: ImmutableTree[T]) {
 /*** Initialize the Iterator ***/
 val toVisit = mutable.Stack[ImmutableTree[T]]
 pushLeft(root)

 def pushLeft(node: ImmutableTree[T]): Unit =
 node match {
 case EmptyTree => ()
 case t: ImmutableTree =>
 toVisit.push(t)
 pushLeft(t.left)
 }

 ...
Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

 ...

 def isEmpty = toVisit.isEmpty

 def next: T = {
 val nextNode = toVisit.pop
 pushLeft(nextNode.right)
 return nextNode.value
 }
}

Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

 ...

 def isEmpty = toVisit.isEmpty

 def next: T = {
 val nextNode = toVisit.pop
 pushLeft(nextNode.right)
 return nextNode.value
 }
}
In-Order Traversal with an Iterator
In-Order Traversal with an Iterator

When we create the iterator, the toVisit stack is initialized.
In-Order Traversal with an Iterator

next pops the stack (1), and calls pushLeft on the right subtree of 1

Output: 1
In-Order Traversal with an Iterator

next pops the stack (2) and pushes the right subtree (nothing)
In-Order Traversal with an Iterator

next pops the stack (3) and pushes the right subtree (nothing)

toVisit
6
4

Output: 1 2 3
In-Order Traversal with an Iterator

next pops the stack (4) and pushes the right subtree

toVisit
6
5

Output: 1 2 3 4
In-Order Traversal with an Iterator

next pops the stack (5) and pushes the right subtree (nothing)
In-Order Traversal with an Iterator

next pops the stack (6) and pushes the right subtree (10 7)

Output: 1 2 3 4 5 6
In-Order Traversal with an Iterator

next pops the stack (7) and pushes the right subtree (8)

Output: 1 2 3 4 5 6 7
In-Order Traversal with an Iterator

next pops the stack (8) and pushes the right subtree (9)

Output: 1 2 3 4 5 6 7 8
In-Order Traversal with an Iterator

next pops the stack (9) and pushes the right subtree (nothing)

Output: 1 2 3 4 5 6 7 8 9
In-Order Traversal with an Iterator

next pops the stack (10) and pushes the right subtree (11)

Output: 1 2 3 4 5 6 7 8 9 10
In-Order Traversal with an Iterator

next pops the stack (11) and pushes the right subtree (nothing)
In-Order Traversal with an Iterator

Our `toVisit` stack is empty, so `isEmpty` will now be true

```
Output: 1 2 3 4 5 6 7 8 9 10 11
```
What is our worst-case runtime to initialize the iterator?

```scala
val toVisit = mutable.Stack[ImmutableTree[T]]
pushLeft(root)
```
What is our worst-case runtime to initialize the iterator? $O(d)$
val toVisit = mutable.Stack[ImmutableTree[T]]
pushLeft(root)

What is our worst-case runtime to initialize the iterator? \(O(d) \)

(we may have to push as many as \(d \) nodes onto the stack)
def next: T = {
 val nextNode = toVisit.pop
 pushLeft(nextNode.right)
 return nextNode.value
}

What is our worst-case runtime to call next?
What is our worst-case runtime to call `next`? $O(d)$

(we may have to push as many as d nodes onto the stack)
What is the worst-case complexity to visit ALL n nodes?
What is the worst-case complexity to visit ALL n nodes?

Each node is at the top of the stack exactly once:
What is the worst-case complexity to visit ALL n nodes?

Each node is at the top of the stack exactly once:

- One push $O(1)$
What is the worst-case complexity to visit ALL \(n \) nodes?

Each node is at the top of the stack exactly once:

- One push \(O(1) \)
- One pop \(O(1) \)
What is the worst-case complexity to visit ALL n nodes?

Each node is at the top of the stack exactly once:

- One push $O(1)$
- One pop $O(1)$

Total: $O(n)$
Balancing Trees
BST Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>

What is the runtime in terms of n? $O(n)$

$\log(n) \leq d \leq n$
Tree Depth vs Size

If $\text{height(left)} \approx \text{height(right)}$

$$d = O(\log(n))$$

If $\text{height(left)} \ll \text{height(right)}$

$$d = O(n)$$
Balanced Trees

Balanced Trees are good: Faster find, insert, remove
Balanced Trees are good: Faster find, insert, remove

What do we mean by balanced?
Balanced Trees are good: Faster find, insert, remove

What do we mean by balanced? \(|\text{height(left)} - \text{height(right)}| \leq 1\)
Balanced Trees are good: Faster find, insert, remove

What do we mean by balanced? $|\text{height(left)} - \text{height(right)}| \leq 1$

How do we keep a tree balanced?
Balanced Trees - Two Approaches

Option 1
Keep left/right subtrees within +/-1 of each other in height
(add a field to track amount of "imbalance")

Option 2
Keep leaves at some minimum depth ($d/2$)
(Add a color to each node marking it as "red" or "black")
Ok...but how do we enforce this...?
Rebalancing Trees (rotations)
Rebalancing Trees (rotations)

Rotate(A, B)
Rebalancing Trees (rotations)

Rotate(A, B)
Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Rotate(A, B)
Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child

Is ordering maintained?

Rotate(A, B)
Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child

Is ordering maintained? Yes!

Rotate(A, B)
Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child

Is ordering maintained? Yes!

Complexity?

Rotate(A, B)
Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? $O(1)$
Rebalancing Trees
Rebalancing Trees

Rotate(1, 2)
Rebalancing Trees

Rotate(2,3)
Rebalancing Trees

Rotate(3,4)
Rebalancing Trees

Rotate(3,2)
Rebalancing Trees

\text{Rotate}(5,6)
Next Time...

Enforcing Balance with AVL Trees...