CSE 250
Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

Day 17
Graph Exploration
Textbook Ch. 15.3
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m)$
- vertex.edgeTo: $O(m)$
- Space Used: $O(n) + O(m)$
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(\text{deg}(\text{vertex}))$
- vertex.incidentEdges: $O(\text{deg}(\text{vertex}))$
- vertex.edgeTo: $O(\text{deg}(\text{vertex}))$
- Space Used: $O(n) + O(m)$
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: $O(1)$
- Space Used: $O(n^2)$
So...what do we do with our graphs?
Connectivity Problems

Given graph G:
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
- Which vertices are connected to vertex v?
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
- Which vertices are connected to vertex v?
- What is the shortest path from vertex u to vertex v?
A few more definitions

A **subgraph**, S, of a graph G is a graph where:
- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges
A **subgraph**, S, of a graph G is a graph where:

- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges

A **spanning subgraph** of G...

- Is a subgraph of G
- Contains all of G's vertices
A few more definitions

A **subgraph**, S, of a graph G is a graph where:
- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges

A **spanning subgraph** of G...
- Is a subgraph of G
- Contains all of G's vertices
A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G...
Is a subgraph of G
Contains all of G's vertices
A few more definitions

A graph is **connected**...
If there is a path between every pair of vertices
A few more definitions

A graph is \textit{connected}...

If there is a path between every pair of vertices
A graph is **connected**...

If there is a path between every pair of vertices

Connected graph

Disconnected graph
A few more definitions

A graph is **connected**...
If there is a path between every pair of vertices

A **connected component** of G...
Is a maximal connected subgraph of G
- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine
A graph is **connected**...
If there is a path between every pair of vertices

A **connected component** of G...
Is a maximal connected subgraph of G
- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine
A free tree is an undirected graph T such that...
There is exactly one simple path between any two nodes
- T is connected
- T has no cycles
A **free tree** is an undirected graph T such that...
- There is exactly one simple path between any two nodes
 - T is connected
 - T has no cycles

A **rooted tree** is a directed graph T such that...
- One vertex of T is the **root**
- There is exactly one simple path from the root to every other vertex in the graph
A **free tree** is an undirected graph T such that...
- There is exactly one simple path between any two nodes
 - T is connected
 - T has no cycles

A **rooted tree** is a directed graph T such that...
- One vertex of T is the **root**
- There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) **forest** is a graph F such that...
- Every connected component is a tree
A **spanning tree** of a connected graph...

...Is a spanning subgraph that is a tree

...It is not unique unless the graph is a tree
A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A Spanning Tree of G
A **spanning tree** of a connected graph...

...Is a spanning subgraph that is a tree

...It is not unique unless the graph is a tree
Now back to the question... Connectivity
How could we represent our maze as a graph?
How could we represent our maze as a graph?
Recall

Searching the maze with a stack

We try every path, one at a time, following it as far as we can
...then backtrack and try another
Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can
...then backtrack and try another
Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
...then backtrack and try another

Searching with a queue?
TBD...
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - **Side Effect:** Compute connected components
 - **Side Effect:** Compute a path between all connected vertices
 - **Side Effect:** Determine if the graph is connected
 - **Side Effect:** Identify cycles
Depth-First Search

Primary Goals

- Visit every vertex in graph \(G = (V,E) \)
- Construct a spanning tree for every connected component
 - **Side Effect:** Compute connected components
 - **Side Effect:** Compute a path between all connected vertices
 - **Side Effect:** Determine if the graph is connected
 - **Side Effect:** Identify cycles
- Complete in time \(O(|V| + |E|) \)
Depth-First Search

DFS

Input: Graph $G = (V,E)$

Output: Label every edge as:
- **Spanning Edge:** Part of the spanning tree
- **Back Edge:** Part of a cycle
Depth-First Search

DFS

Input: Graph $G = (V, E)$

Output: Label every edge as:

- **Spanning Edge:** Part of the spanning tree
- **Back Edge:** Part of a cycle

DFSOne

Input: Graph $G = (V, E)$, start vertex $v \in V$

Output: Label every edge in v's connected component
Depth-First Search
DFS

object VertexLabel extends Enumeration
 { val UNEXPLORED, VISITED = Value }

object EdgeLabel extends Enumeration
 { val UNEXPLORED, SPANNING, BACK = Value }

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value]) {
 for(v <- graph.vertices) { vsetLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED) {
 DFSOne(graph, v)
 }
 }
}
DFSOne

def DFSOne(graph: Graph[...], v: Graph[...]:Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 } else {
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...]|Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for (e <- v.incident) {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 } else {
 }
 }
}
DFSOne

def DFSOne(graph: Graph[...], v: Graph[...].#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
}
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK

Call Stack

(edges to list)
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING

Call Stack

DFS(G) → edges to list
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A)

(edges to list)
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK

Call Stack
- DFS(G)
- DFSOne(G, A)

Edges to List
- (→ edges to list)

Visited Vertices
- A
- B
- C
- D
- E

Back Edges
- (→ B, C, D)
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK

Call Stack
- DFS(G)
- DFSOne(G, A)

(→ edges to list)
(→ B, C, D)
Detailed Example

Call Stack:
- **DFS(G)**
- **DFSOne(G, A)** (→ B, C, D)
- **DFSOne(G, B)** (→ A, C)

Graph:
- Nodes: A, B, C, D, E
- Edges: AB, BC, CD, DE

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
Detailed Example

Call Stack

DFS(G)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
Detailed Example

Call Stack
- DFS(G)
- DFSOne(G, A) (→ B, C, D)
- DFSOne(G, B) (→ A, C)
- DFSOne(G, C) (→ B, A, D, E)
Detailed Example

Call Stack:
- `DFS(G)`
- `DFSOne(G, A)` (→ B, C, D)
- `DFSOne(G, B)` (→ A, C)
- `DFSOne(G, C)` (→ B, A, D, E)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack
DFS(G) (→ edges to list)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
DFSOne(G, D) (→ A, C)
Detailed Example

Call Stack

DFS(G)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
DFSOne(G, D) (→ A, C)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack

DFS (G)
DFSOne (G, A) (→ B, C, D)
DFSOne (G, B) (→ A, C)
DFSOne (G, C) (→ B, A, D, E)
Detailed Example

Call Stack

- DFS(G)
- DFSOne(G, A) \(\rightarrow\) B, C, D
- DFSOne(G, B) \(\rightarrow\) A, C
- DFSOne(G, C) \(\rightarrow\) B, A, D, E

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK
Detailed Example

Call Stack: (→ edges to list)
- DFS(G)
- DFSOne(G, A) (→ B, C, D)
- DFSOne(G, B) (→ A, C)
- DFSOne(G, C) (→ B, A, D, E)
- DFSOne(G, E) (→ A, C)
Detailed Example

Call Stack

DFS(G) (→ edges to list)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
DFSOne(G, E) (→ A, C)
Detailed Example

- **UNEXPLORED**
- **VISITED**
- **UNEXPLORED**

Call Stack

- **DFS(G)**
- **DFSOne(G, A)** (→ B, C, D)
- **DFSOne(G, B)** (→ A, C)
- **DFSOne(G, C)** (→ B, A, D, E)
Detailed Example

Call Stack

- `DFS(G)`
- `DFSOne(G, A)` \(\rightarrow \text{B, C, D} \)
- `DFSOne(G, B)` \(\rightarrow \text{A, C} \)

Graph

- **UNEXPLORED**
- **VISITED**
- **UNEXPLORED**
- **SPANNING**
- **BACK**

Edges to list

- `A \rightarrow D`
- `B \rightarrow C`
- `E \rightarrow B`
- `D \rightarrow E`
- `C \rightarrow A`
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A) (→ edges to list)

(→ B, C, D)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack

DFS(G)

DFSOne(G, B)

(edges to list)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, C)
Detailed Example

Call Stack
DFS(G)
DFSOne(G,D)

Graph

A -- B -- C -- D -- E

UNEXPLORED
VISITED
UNEXPLORED
SPANNING
BACK

(edges to list)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack

DFS(G)

DFSONe(G, E)

(→ edges to list)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

Call Stack
DFS(G)

(→ edges to list)
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK

Call Stack

(→ edges to list)
The DFS algorithm is like our stack-based maze solver

- Mark each grid square with **VISITED** as we explore it
- Mark each path with **SPANNING** or **BACK**
- Only visit each vertex once
DFS vs Mazes

The DFS algorithm is like our stack-based maze solver

- Mark each grid square with **VISITED** as we explore it
- Mark each path with **SPANNING** or **BACK**
- Only visit each vertex once
 - DFS will not necessarily find the shortest paths
Depth-First Search Complexity

What's the complexity?
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED)
 DFSOne(graph, v)
 }
}
Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORERD) {
 DFSOne(graph, v)
 }
 }
}
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */
 if(v.label == VertexLabel.UNEXPLORED)
 {
 DFSOne(graph, v)
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */ {
 if(v.label == VertexLabel.UNEXPLORED){
 /* ??? */
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...].Vertex) {
 v.setLabel(VertexLabel.VISITED)
 for (e <- v.incident) {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...].Vertex) {
 /* O(1) */
 for (e <- v.incident) {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...].Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...].Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */
 DFSOne(graph, w)
 } else {
 /* O(1) */
 }
 }
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...])#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */ {
 /* ??? */
 } else {
 /* O(1) */
 }
 } else {
 /* O(1) */
 }
 } else {
 /* O(1) */
 }
 } else {
 /* O(1) */
 }
 } else {
 /* O(1) */
 }
}
How many times do we call **DFSOne** on each vertex?
How many times do we call \texttt{DFSOne} on each vertex?

Observation: \texttt{DFSOne} is called on each vertex \textit{at most} once.

If \texttt{v.label} \texttt{== VISITED}, both \texttt{DFS}, and \texttt{DFSOne} skip it.
Depth-First Search Complexity

How many times do we call **DFSOne** on each vertex?

Observation: **DFSOne** is called on each vertex at most once

If \(\text{v.label} == \text{VISITED} \), both **DFS**, and **DFSOne** skip it

\(O(|V|) \) calls to **DFSOne**
Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

$O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?
def DFSOne(graph: Graph[...], v: Graph[...].#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 }
 }
 /* O(1) */
}
How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once if v.label == VISITED, both DFS, and DFSOne skip it.

$O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?
Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

$O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? $O(\deg(v))$
Depth-First Search Complexity

What is the sum over all calls to DFSOne?
Depth-First Search Complexity

What is the sum over all calls to DFSOne?

\[\sum_{v \in V} O(deg(v)) \]
Depth-First Search Complexity

What is the sum over all calls to DFSOne?

\[\sum_{v \in V} O(deg(v)) = O(\sum_{v \in V} deg(v)) \]
Depth-First Search Complexity

What is the sum over all calls to \texttt{DFS\textsc{one}}?

\[
\sum_{v \in V} O(deg(v))
\]

\[
= O(\sum_{v \in V} deg(v))
\]

\[
= O(2|E|)
\]
Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$\sum_{v \in V} O(\text{deg}(v))$$

$$= O(\sum_{v \in V} \text{deg}(v))$$

$$= O(2|E|)$$

$$= O(|E|)$$
Depth-First Search Complexity

In summary...
In summary...

1. Mark the vertices **UNVISITED**
Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED \(O(|V|) \)
In summary...

1. Mark the vertices \textsc{UNVISITED} \quad O(|V|)
2. Mark the edges \textsc{UNVISITED}
Depth-First Search Complexity

In summary...

1. Mark the vertices **UNVISITED** \(O(|V|) \)
2. Mark the edges **UNVISITED** \(O(|E|) \)
Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED $O(|V|)$
2. Mark the edges UNVISITED $O(|E|)$
3. DFS vertex loop
In summary...

1. Mark the vertices UNVISITED $O(|V|)$
2. Mark the edges UNVISITED $O(|E|)$
3. DFS vertex loop $O(|V|)$
In summary...

1. Mark the vertices **UNVISITED** $O(|V|)$
2. Mark the edges **UNVISITED** $O(|E|)$
3. **DFS** vertex loop $O(|V|)$
4. All calls to **DFSOne**
Depth-First Search Complexity

In summary...

1. Mark the vertices **UNVISITED** $O(|V|)$
2. Mark the edges **UNVISITED** $O(|E|)$
3. **DFS** vertex loop $O(|V|)$
4. All calls to **DFSOne** $O(|E|)$
Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED \(O(|V|) \)
2. Mark the edges UNVISITED \(O(|E|) \)
3. DFS vertex loop \(O(|V|) \)
4. All calls to DFSOne \(O(|E|) \)

\(O(|V| + |E|) \)