CSE 250
Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

Day 16
Introduction to Graphs
Textbook Ch. 15.3
Announcements

- Testing phase of PA2 due Monday 10/10
 - Autograder has been recently updated to address some issues
Recap

Mazes!
Formalizing Maze-Solving

Inputs:

- The map: an $n \times m$ grid of squares which are either filled or empty
- The O is at position start
- The X is at position dest

Goal: Compute $\text{steps}(\text{start}, \text{dest})$, the minimum number of steps from start to end.

How do we define the steps function?
Mazes
Mazes: Now with...Stacks!

steps(pos, dest, visited):
 if pos == dest then return visited.copy()
 elif pos ∈ visited then return no_path
 elif is_filled(pos) then return no_path
 else
 visited.push(pos)
 bestPath = 1 + min of all 4 steps
 visited.pop()
 return bestPath
Mazes: Now with...Stacks!

steps(pos, dest, visited):
 if pos == dest then return visited.copy()
 elif pos ∈ visited then return no_path
 elif is_filled(pos) then return no_path
 else
 visited.push(pos)
 bestPath = 1 + min of all 4 steps
 visited.pop()
 return bestPath

We can use stacks to track where we have been!
Queues?

Thought Experiment: Can we do something similar with queues?
Thought Experiment: Can we do something similar with queues?

Hold that thought!
Let's Talk About Graphs

A graph is a pair \((V,E)\) where:

- \(V\) is a set of vertices
- \(E\) is a set of vertex pairs called edges
- Edges and vertices may also store data (labels)
Example: A social network
(nodes store users, pictures, tweets, etc)
(edges store interactions)
Example: A computer network

(edges store ping, nodes store addresses)
Edge Types

Directed Edge (asymmetric relationship)
- Ordered pair of vertices \((u, v)\)
- origin \((u)\) → destination \((v)\)

Undirected Edge (symmetric relationship)
- Unordered pair of vertices \((u, v)\)

- Transmit bandwidth: 100 mb/s
- Round-trip latency: 7 ms
Edge Types

Directed Edge (asymmetric relationship)
- Ordered pair of vertices \((u, v)\)
- origin \((u)\) → destination \((v)\)

Undirected Edge (symmetric relationship)
- Unordered pair of vertices \((u,v)\)

Directed Graph: All edges are directed

Undirected Graph: All edges are undirected
Applications

- Transportation (flight/road/rail routing)
- Protein/Protein Interactions
- Computer Networks (ie the internet)
- Social Networks
- Dependency Tracking (ie make)
- Taxonomies
Terminology

Endpoints of an edge
U, V are endpoints of a

Adjacent Vertices
U, V are adjacent

Degree of a vertex
X has degree 5
Terminology

Edges indecent on a vertex
a, b, d are incident on V

Parallel Edges
h, i are parallel

Self-Loop
j is a self-loop

Simple Graph
A graph without parallel edges or self-loops
Terminology

Path
A sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge preceded/followed by its endpoints

Simple Path
A path such that all of its vertices and edges are distinct
Terminology

Path
A sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge preceded/followed by its endpoints

Simple Path
A path such that all of its vertices and edges are distinct

\[U, c, W, e, X, g, Y, f, W, d, V \] is not simple

\[V, b, X, h, Z \] is simple
Terminology

Cycle
A path that begins and ends with the same vertex. Must contain at least one edge.

Simple Cycle
A cycle such that all of its vertices and edges are distinct.
Terminology

Cycle
A path that begins and ends with the same vertex. Must contain at least one edge.

Simple Cycle
A cycle such that all of its vertices and edges are distinct.

$V, b, X, g, Y, f, W, c, U, a, V$ is a simple cycle.

$U, c, W, e, X, g, Y, f, W, d, V, a, U$ is a cycle that is not simple.
Notation

\(n \) The number of vertices

\(m \) The number of edges

\(\text{deg}(v) \) The degree of vertex \(v \)
Graph Properties

$$\sum_v \text{deg}(v) = 2m$$
Graph Properties

Proof: Each edge is counted twice
In a directed graph with no self-loops and no parallel edges:

\[m \leq n (n - 1) \]
In a directed graph with no self-loops and no parallel edges:

\[m \leq n \cdot (n - 1) \]

No parallel edges: each pair is connected at most once

No self-loops: pick each vertex only once
Graph Properties

In a directed graph with no self-loops and no parallel edges:

\[m \leq n \ (n \ - \ 1) \]

No parallel edges: each pair is connected at most once

No self-loops: pick each vertex only once

\[n \text{ choices for the first vertex; } (n \ - \ 1) \text{ choices for the second vertex.} \]

Therefore even if there was one edge between every possible pair, we still have at most \[n(n \ - \ 1) \text{ edges.} \]
A (Directed Graph) ADT

Two type parameters (Graph[V, E])
 V: The vertex label type
 E: The edge label type

Vertices
 ...are elements (like Linked List Nodes)
 ...store a value of type V

Edges
 ...are also elements
 ...store a value of type E
trait Graph[V, E] {
 def vertices: Iterator[Vertex]
 def edges: Iterator[Edge]
 def addVertex(label: V): Vertex
 def addEdge(orig: Vertex, dest: Vertex, label: E): Edge
 def removeVertex(vertex: Vertex): Unit
 def removeEdge(edge: Edge): Unit
}
A (Directed) Graph ADT

trait Vertex[V, E] {
def outEdges: Seq[Edge]
def inEdges: Seq[Edge]
def incidentEdges: Iterator[Edge] = outEdges ++ inEdges
def edgeTo(v: Vertex): Boolean
def label: V
}

trait Edge[V, E] {
def origin: Vertex
def destination: Vertex
def label: E
}
Attempt 1: Edge List

Data Model:

A List of Edges
(ArrayBuffer)

A List of Vertices
(ArrayBuffer)
class DirectedGraphV1[V, E] extends Graph[V, E] {
 val vertices = mutable.Buffer[Vertex]()
 val edges = mutable.Buffer[Edge]()

 /* ... */
}
def addVertex(label: V): Vertex =
 vertices.append(new Vertex(label))

What's the complexity?
 Attempt 1: Edge List

```python
def addVertex(label: V): Vertex =
    vertices.append(new Vertex(label))
```

What's the complexity?

```python
def addEdge(orig: Vertex, dest: Vertex, label: E): Edge =
    edges.append(new Edge(orig, dest, label))
```

What's the complexity?
Attempt 1: Edge List

def addVertex(label: V): Vertex =
 vertices.append(new Vertex(label))

What's the complexity? Amortized $O(1)$

def addEdge(orig: Vertex, dest: Vertex, label: E): Edge =
 edges.append(new Edge(orig, dest, label))

What's the complexity? Amortized $O(1)$
def removeEdge(edge: Edge): Unit =
 edges.subtractOne(edge)

What's the complexity?
def removeEdge(edge: Edge): Unit =
 edges.subtractOne(edge)

What's the complexity? $O(n)$
Attempt 2: Linked Edge List

Data Model:

A List of Edges
(DoublyLinkedList)

A List of Vertices
(DoubleLinkedList)
class DoublyLinkedList[T] extends Seq[T] {
 def append(element: T): Node =
 /* O(1) with tail pointer */

 def remove(node: Node): Unit =
 /* O(1) */

 def iterator: Iterator[T]: Unit =
 /* O(1) + O(1) per call to next */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()
 class Vertex(label: V) = {
 var node: DoublyLinkedList[Vertex].Node = null
 /* ... */
 }
 def addVertex(label: V): Vertex = {
 val vertex = new Vertex(label)
 val node = vertices.append(vertex)
 vertex.node = node
 return vertex
 }
 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()
 class Vertex(label: V) = {
 var node: DoublyLinkedList[Vertex].Node = null
 /* ... */
 }
 def addVertex(label: V): Vertex = {
 val vertex = new Vertex(label)
 val node = vertices.append(vertex)
 vertex.node = node
 return vertex
 }
 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]().
 class Vertex(label: V) = {
 var node: DoublyLinkedLIst[Vertex].Node = null

 }
 def addVertex(label: V): Vertex = {
 val vertex = new Vertex(label)
 val node = vertices.append(vertex)
 vertex.node = node
 return vertex
 }
 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()
 class Vertex(label: V) = {
 var node: DoublyLinkedList[Vertex].Node = null
 /* ... */
 }
 def addVertex(label: V): Vertex = {
 val vertex = new Vertex(label)
 val node = vertices.append(vertex)
 vertex.node = node
 return vertex
 }
 /* ... */
}

Add our vertex to the linked list, and store a reference to the list node

What is the complexity? $\Theta(1)$
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()
 class Edge(orig: Vertex, dest: Vertex, label: E) = {
 var node: DoublyLinkedList[Edge].Node = null
 /* ... */
 }
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 return edge
 }
 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()
 class Edge(orig: Vertex, dest: Vertex, label: E) = {
 var node: DoublyLinkedList[Edge].Node = null
 /* ... */
 }
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 return edge
 }
 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()
 class Edge(orig: Vertex, dest: Vertex, label: E) = {
 var node: DoublyLinkedList[Edge].Node = null
 /* ... */
 }
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 return edge
 }
 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()
 class Edge(orig: Vertex, dest: Vertex, label: E) = {
 var node: DoublyLinkedList[Edge].Node = null
/* ... */
 }
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 return edge
 }
/* ... */
}

What is the complexity? \(\Theta(1) \)
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()

 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 }

 /* ... */
}

class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()

 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 /* ... */
 }
 /* ... */
}

Remove the edge (by reference) from the linked list
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()

 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 }

 /* ... */
}

What is the complexity?

Remove the edge (by reference) from the linked list.
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val edges = DoublyLinkedList[Edge]()

 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 }

 /* ... */
}

What is the complexity? \(\Theta(1) \)

Remove the edge (by reference) from the linked list.
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 }

 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 }

 /* ... */
}

What if there's an edge to/from the vertex?
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList<Vertex]()

 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for (edge <- vertex.incidentEdges){
 removeEdge(edge)
 }
 }

 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for (edge <- vertex.incidentEdges) {
 removeEdge(edge)
 }
 }

 /* ... */
}
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for (edge <- vertex.incidentEdges) {
 removeEdge(edge)
 }
 }

 /* ... */
}

Remove the vertex (by reference) from the linked list, and then all remove all incident edges (by reference)

What is the complexity?
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for (edge <- vertex.incidentEdges)
 removeEdge(edge)
 }
}

/* ... */

What is the complexity? $O(1) + O(T_{incidentEdges}(n,m))$
Attempt 2: Linked Edge List

```
class DirectedGraphV2[V, E] extends Graph[V, E] {
  val vertices = DoublyLinkedList[Vertex]()

  def removeVertex(vertex: Vertex): Unit = {
    vertices.remove(vertex.node)
    for (edge <- vertex.incidentEdges) {
      removeEdge(edge)
    }
  }

  /* ... */
}
```

What is the complexity? $O(1) + O(T_{incidentEdges}(n,m))$

How do we figure out what edges are incident?
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()
 val edges = DoublyLinkedList[Edge]()
 class Vertex(label: V) = {
 /* ... */
 def outEdges =
 edges.filter { _.orig = this }

 def inEdges =
 edges.filter { _.dest = this }
 }
 /* ... */
}"
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()
 val edges = DoublyLinkedList[Edge]()
 class Vertex(label: V) = {
 /* ... */
 def outEdges =
 edges.filter { _.orig = this }

 def inEdges =
 edges.filter { _.dest = this }
 }
 /* ... */
 What is the complexity?
class DirectedGraphV2[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()
 val edges = DoublyLinkedList[Edge]()
 class Vertex(label: V) = {
 /* ... */
 def outEdges =
 edges.filter { _.orig = this }

 def inEdges =
 edges.filter { _.dest = this }
 }
 /* ... */
}

What is the complexity? $O(m) = O(n^2)$
Edge List Summary

- addEdge, addVertex:
- removeEdge:
- removeVertex:
- vertex.incidentEdges:
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge:
- removeVertex:
- vertex.incidentEdges:
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex:
- vertex.incidentEdges:
Edge List Summary

- addEdge, addVertex: \(O(1)\)
- removeEdge: \(O(1)\)
- removeVertex: \(O(m)\)
- vertex.incidentEdges:
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m)$
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m)$
- vertex.edgeTo: $O(m)$
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m)$
- vertex.edgeTo: $O(m)$
- Space Used: $O(n) + O(m)$
Edge List Summary

Vertex

```
U  v_1
V  v_2
W  v_3
```

Edge

```
v_1 v_2 a
v_2 v_3 b
v_3 v_1 c
```

LinkedList[Vertex]

Vertex

```
U  v_1
V  v_2
W  v_3
```

Edge

```
v_1 v_2 a
v_2 v_3 b
v_3 v_1 c
```

LinkedList[Edge]
How can we improve?
How can we improve?

Idea: Store the in/out edges for each vertex!
class DirectedGraphV3[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 class Vertex(label: V) = {
 var node: DoublyLinkedList[Vertex].Node = null
 val inEdges = DoublyLinkedList[Edge]()
 val outEdges = DoublyLinkedList[Edge]()
 /* ... */
 }
 /* ... */
}
class DirectedGraphV3[V, E] extends Graph[V, E] {
 val vertices = DoublyLinkedList[Vertex]()

 class Vertex(label: V) = {
 var node: DoublyLinkedList[Vertex].Node = null
 val inEdges = DoublyLinkedList[Edge]()
 val outEdges = DoublyLinkedList[Edge]()
 /* ... */
 }
 /* ... */
}
Store linked lists of incident edges to this vertex
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 orig.outEdges.append(edge)
 dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 orig.outEdges.append(edge)
 dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 orig.outEdges.append(edge)
 dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}
class DirectedGraphV3[\(V, E\)] extends Graph[\(V, E\)] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 /* Highlighted line */
 orig.outEdges.append(edge)
 dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}

What is the complexity? \(\Theta(1)\)
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.subtractOne(edge)
 edge.dest.inEdges.subtractOne(edge)
 }
 /* ... */
}
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.subtractOne(edge)
 edge.dest.inEdges.subtractOne(edge)
 }
 /* ... */
}
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.subtractOne(edge)
 edge.dest.inEdges.subtractOne(edge)
 }
 /* ... */
}
class DirectedGraphV3[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.subtractOne(edge)
 edge.dest.inEdges.subtractOne(edge)
 }
 /* ... */
}

What is the complexity? $O(\text{deg}(\text{orig})) + O(\text{deg}(\text{dest}))$

Remove the edges from our adjacency lists...?
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 class Edge(orig: Vertex, dest: Vertex, label: E) = {
 var node: DoublyLinkedList[Edge].Node = null
 var origNode: DoublyLinkedList[Edge].Node = null
 var destNode: DoublyLinkedList[Edge].Node = null
 /* ... */
 }
 /* ... */
}
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */

 class Edge(orig: Vertex, dest: Vertex, label: E) = {
 var node: DoublyLinkedList[Edge].Node = null
 var origNode: DoublyLinkedList[Edge].Node = null
 var destNode: DoublyLinkedList[Edge].Node = null
 /* ... */
 }
 /* ... */
}
Attempt 4: Adjacency List

class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 edge.origNode = orig.outEdges.append(edge)
 edge.destNode = dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}

class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 edge.origNode = orig.outEdges.append(edge)
 edge.destNode = dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 edge.origNode = orig.outEdges.append(edge)
 edge.destNode = dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}

What is the complexity?
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def addEdge(orig: Vertex, dest: Vertex, label: E): Vertex = {
 val edge = new Edge(orig, dest, label)
 val node = edges.append(vertex)
 edge.node = node
 edge.origNode = orig.outEdges.append(edge)
 edge.destNode = dest.inEdges.append(edge)
 return edge
 }
 /* ... */
}

What is the complexity? Θ(1)

Save our references when adding an edge
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.remove(edge.origNode)
 edge.dest.inEdges.remove(edge.destNode)
 }
 /* ... */
}
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.remove(edge.origNode)
 edge.dest.inEdges.remove(edge.destNode)
 }
 /* ... */
}
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.remove(edge.origNode)
 edge.dest.inEdges.remove(edge.destNode)
 }
 /* ... */
}

What is the complexity?
Remove by reference!
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeEdge(edge: Edge): Unit = {
 edges.remove(edge.node)
 edge.orig.outEdges.remove(edge.origNode)
 edge.dest.inEdges.remove(edge.destNode)
 }
 /* ... */
}

What is the complexity? Θ(1)
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for (edge <- vertex.incidentEdges) {
 removeEdge(edge)
 }
 }
 /* ... */
}
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for(edge <- vertex.incidentEdges) {
 removeEdge(edge)
 }
 }
 /* ... */
}

What is the complexity?
class DirectedGraphV4[V, E] extends Graph[V, E] {
 /* ... */
 def removeVertex(vertex: Vertex): Unit = {
 vertices.remove(vertex.node)
 for (edge <- vertex.incidentEdges) {
 removeEdge(edge)
 }
 }
 /* ... */
}

What is the complexity? $O(\text{deg}(\text{vertex}))$
Adjacency List Summary

- `addEdge`, `addVertex`
- `removeEdge`
- `removeVertex`
- `vertex.incidentEdges`
- `vertex.edgeTo`
- `Space Used`
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge:
- removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(\text{deg}(\text{vertex}))$
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(\text{deg}(\text{vertex}))$
- vertex.incidentEdges: $O(\text{deg}(\text{vertex}))$
- vertex.edgeTo:
- Space Used:
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(\text{deg(vertex)})$
- vertex.incidentEdges: $O(\text{deg(vertex)})$
- vertex.edgeTo: $O(\text{deg(vertex)})$
- Space Used:
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(\text{deg}(\text{vertex}))$
- vertex.incidentEdges: $O(\text{deg}(\text{vertex}))$
- vertex.edgeTo: $O(\text{deg}(\text{vertex}))$
- Space Used: $O(n) + O(m)$
Adjacency Matrix

<table>
<thead>
<tr>
<th>Origin</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-</td>
<td>a</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
<td>b</td>
</tr>
<tr>
<td>W</td>
<td>c</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The adjacency matrix represents the connections in the graph: U is connected to V with edge a, V is connected to W with edge b, and U is connected to W with edge c.
Adjacency Matrix Summary

- addEdge, removeEdge:
- addVertex, removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex:
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges:
- vertex.edgeTo:
- Space Used:
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo:
- Space Used:
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: $O(1)$
- Space Used:
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: $O(1)$
- Space Used: $O(n^2)$