Day 15

Stacks, Queues, and Mazes (oh my)

Textbook Ch. 7
Recap

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack)
● Pop (take item off top of stack)
● Top (peek at top of stack)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue)
● Dequeue (take item off the front of the queue)
● Head (peek at the item in the front of the queue)
Recap

Stacks: Last In First Out (LIFO)
- Push (put item on top of the stack) \(\Theta(1) \) (or amortized \(O(1) \))
- Pop (take item off top of stack) \(\Theta(1) \)
- Top (peek at top of stack) \(\Theta(1) \)

Queues: First in First Out (FIFO)
- Enqueue (put item on the end of the queue) \(\Theta(1) \)
- Dequeue (take item off the front of the queue) \(\Theta(1) \)
- Head (peek at the item in the front of the queue) \(\Theta(1) \)
Thought Question: How could you use an array to build a queue?
Queues

ArrayBuffer Attempt 1

Enqueue: Append(...)
Dequeue: Remove(0)
Queues

ArrayBuffer Attempt 1

Enqueue: Append(...)
Dequeue: Remove(0)

What is the complexity?
Queues

ArrayBuffer Attempt 1

Enqueue: Append(...) \quad \text{Amortized } O(1)

Dequeue: Remove(0) \quad O(n)

What is the complexity?
ArrayBuffer Attempt 2

Enqueue: Insert(0)

Dequeue: Remove(last)
Arrays

ArrayBuffer Attempt 2

Enqueue: Insert(0)

Dequeue: Remove(last)

What is the complexity?
ArrayBuffer Attempt 2

Enqueue: Insert(0) \(O(n)\)

Dequeue: Remove(last) \(\Theta(1)\)

What is the complexity?
Can we avoid the cost of moving all of the elements forward or backward each time we add or remove?
Can we avoid the cost of moving all of the elements forward or backward each time we add or remove?

Why didn't we have to pay that cost with a list?
Can we avoid the cost of moving all of the elements forward or backward each time we add or remove?

Why didn't we have to pay that cost with a list?

Update our values of "first" and "last"!
Queues

[Diagram showing a queue with elements 17, 88, 13, 14, 26, with arrows pointing to the front and back]
Queues

front
enqueue(5)
back
Queues

```
17 88 13 14 26 5 4
```

enqueue(5)
enqueue(4)

front

back
Queues

enqueue(5)
enqueue(4)
dequeue()
Queues

enqueue(5)
enqueue(4)
dequeue()
dequeue()
Queues

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()
Queues

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()
enqueue(7)
Queues

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()
enqueue(7)
enqueue(12)
Queues

 enqueue(5)
 enqueue(4)
 dequeue()
 dequeue()
 dequeue()
 dequeue()
 enqueue(7)
 enqueue(12)
 dequeue()
Queue operations:

- **enqueue(5)**
- **enqueue(4)**
- **dequeue()**
- **dequeue()**
- **dequeue()**
- **enqueue(7)**
- **enqueue(12)**
- **enqueue(-3)**
ArrayDeque (Resizable Ring Buffer)

Active Array = [start, end)

Enqueue
1. Resize buffer if needed
2. Add new element at buffer[end]
3. Advance end pointer (wrap to front as needed)

Dequeue
1. Remove element at buffer[start]
2. Advance start pointer (wrap to front as needed)
ArrayDeque (Resizable Ring Buffer)

Active Array = \([\text{start}, \text{end})\)

Enqueue
1.Resize buffer if needed
2.Add new element at buffer[end]
3.Advance end pointer (wrap to front as needed)

Dequeue
1.Remove element at buffer[start]
2.Advance start pointer (wrap to front as needed)

What is the complexity?
ArrayDeque (Resizable Ring Buffer)

Active Array = [start, end)

Enqueue Amortized $O(1)$
1. Resize buffer if needed
2. Add new element at buffer[end]
3. Advance end pointer (wrap to front as needed)

Dequeue $\Theta(1)$
1. Remove element at buffer[start]
2. Advance start pointer (wrap to front as needed)

What is the complexity?
Why Ring Buffer?

The diagram shows a ring buffer with a sequence of numbers: 4, 7, 12, -3. The front of the buffer is at position 4, and the back is at position -3. The buffer wraps around, allowing it to store a fixed number of elements in a circular manner.
Why Ring Buffer?

Conceptually, we can think of this as a ring...
Why Ring Buffer?
Why Ring Buffer?

enqueue(42)
Why Ring Buffer?

enqueue(28)
Why Ring Buffer?

enqueue(1)
Why Ring Buffer?
Why Ring Buffer?
Applications of Stacks and Queue

Stack: Checking for balanced parentheses/braces

Queue: Scheduling packets for delivery

Both: Searching mazes
What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (i.e., \{()\} is not ok).

\{
()()({})
\}

\{
()
\}

\{
()
\}
Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (ie {()} is not ok).

{(())()} {()} ()

✓
Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol.
2. No nesting overlaps (i.e., \(\{(\}) \) is not ok).

\[
\{(())(\{}\}) \quad \{()\} \quad ()
\]

✓ ✗
Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (ie {()}) is not ok.

{(()){{}}} {()} ()
✓ ✓ X
Idea #1

Idea: Count the number of unmatched open parens/braces. Increment counter on (, decrement on)
Idea #1

Idea: Count the number of unmatched open parens/braces.
Increment counter on (, decrement on)

Problem: allows for {}()
Idea #2

Idea: Track nesting on a stack!

On (or {, push the symbol on the stack.

On) or }, pop the stack and check for a match.
Demo in Section B Slides:

[https://odin.cse.buffalo.edu/teaching/cse-250/2022fa/slide/14b-QueueStackApps.html#/13]
Network Packets

Router: 1gb/s internal network, 100mb/s external
- 1 gb/s sent to the router, but only 100mb/s can leave.
- How do we handle this?

Queues
- Enqueue data packets in the order they are received.
- When there is available outgoing bandwidth, dequeue and send.

Avoiding Queueing Delays
- Limit size of queue; Packets that don't fit are dropped

TCP: blocked packets are retried
UDP: application deals with dropped packets
Mazes

O is the start, X is the objective
- There may be multiple paths
- Generally, we want the shortest

Approach 1: Take the first available route in one direction
- Right, Down, Left, or Up
- Down, Right, Up, or Left
How do you know which one is best?
Is there anything wrong with this algorithm?
Mazes
Mazes

Priority order doesn't guarantee exploring the entire maze
Formalizing Maze-Solving

Inputs:

- The map: an $n \times m$ grid of squares which are either filled or empty
- The O is at position $start$
- The X is at position $dest$

Goal: Compute $\text{steps}(start, dest)$, the minimum number of steps from start to end.

How do we define the steps function?
Mazes
How many steps are required for the squares right next to X?
Mazes

How many steps are required for the squares right next to X?
How many steps are required for the squares right next to X?

And the squares next to those?
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
So what is the number of steps from O to X?
Mazes

So what is the number of steps from O to X?

4 (min of neighbors + 1)
Mazes

Does this solution remind you of anything?
Mazes

Does this solution remind you of anything?

Recursion!
Mazes

\[
steps(pos, dest) = \begin{cases}
0 & \text{if } pos = dest \\
\infty & \text{if } is_filled(pos) \\
1 + min_adjacent(pos, dest) & \text{otherwise}
\end{cases}
\]

where...

\[
min_adjacent(pos, dest) = \min \left\{
steps(moveRight(pos), dest),
steps(moveDown(pos), dest),
steps(moveLeft(pos), dest),
steps(moveUp(pos), dest)
\right\}
\]
Mazes

steps(pos, dest):
 if pos == dest then return 0
 elif is_filled(pos) then return \infty
 else return 1 + min of
 steps(moveRight(pos, dest))
 steps(moveDown(pos, dest))
 steps(moveLeft(pos, dest))
 steps(moveUp(pos, dest))
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes

- **Maze Diagram**:

```
  O   1   2   3   4
  15  5
  14  6   X
  13
  12  11  10  9  8
```
Mazes

![Maze Diagram]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

- **X** indicates the starting point.
Mazes
Problem: Infinite loop!
Mazes

Problem: Infinite loop!

Insight: A path with a loop in it can't be shorter than one without the loop.
Mazes

steps(pos, dest):
 if pos == dest then return 0
 elif is_visited(pos) then return ∞
 elif is_filled(pos) then return ∞
 else
 Mark pos as visited
 return 1 + min of all 4 steps
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Mazes
Problem: The first time you visit a node may be from a longer path!
Problem: The first time you visit a node may be from a longer path!

Insight: Unmark nodes as you leave them
Mazes

steps(pos, dest):
 if pos == dest then return 0
 elif is_visited(pos) then return ∞
 elif is_filled(pos) then return ∞
 else
 Mark pos as visited
 min = 1 + min of all 4 steps
 Mark pos as unvisited
 return min
Mazes
Mazes
Mazes
Mazes

![Maze Diagram]
Mazes
Mazes
Mazes
Mazes

[Image of a maze with numbers and a starting point marked with ‘O’ and an end point marked with ‘X’]
Mazes
Mazes

O
1
2
3
4

X
Mazes
Formalizing Maze-Solving

Inputs:

- The map: an $n \times m$ grid of squares which are either filled or empty
- The O is at position start
- The X is at position dest

Goal: Compute $\text{steps(start, dest)}$, the minimum number of steps from start to end.
Formalizing Maze-Solving

Inputs:

- The map: an $n \times m$ grid of squares which are either filled or empty
- The O is at position $start$
- The X is at position $dest$

Goal: Compute $steps(start, dest)$, the minimum number of steps from start to end.
Formalizing Maze-Solving

Inputs:

- The map: an $n \times m$ grid of squares which are either filled or empty
- The O is at position $start$
- The X is at position $dest$

Goal: Compute $\text{steps}(start, dest)$, the minimum number of steps from $start$ to end.

What path did we take?
Mazes

Idea: Keep track of the nodes marked visited...that's our path!
Mazes: Now with...some data structure?

steps(pos, dest, visited):
 if pos == dest then return visited.copy()
 elif pos ∈ visited then return no_path
 elif is_filled(pos) then return no_path
 else
 visited.append(pos)
 bestPath = 1 + min of all 4 steps
 visited.removeLast()
 return bestPath
steps(pos, dest, visited):
 if pos == dest then return visited.copy()
 elif pos ∈ visited then return no_path
 elif is_filled(pos) then return no_path
 else
 visited.append(pos)
 bestPath = 1 + min of all 4 steps
 visited.removeLast()
 return bestPath

What could this data structure be??
Mazes: Now with...Stacks!

steps(pos, dest, visited):
 if pos == dest then return visited.copy()
 elif pos ∈ visited then return no_path
 elif is_filled(pos) then return no_path
 else
 visited.push(pos)
 bestPath = 1 + min of all 4 steps
 visited.pop()
 return bestPath
Queues?

Thought Experiment: Can we do something similar with queues?