Day 09
Sequences, Arrays, and Array Buffers
Textbook Ch. 6.4
Announcements

- PA1 due tonight!
- WA1 posted, due Wednesday, Sept 28
 - There was a small transcription error, make sure to get the newest writeup
Recap

- **ADT:** Abstract Data Type, defines what a particular data structure can be used without specifying how it is implemented
 - ie: `Seq`, `mutable.Seq`

- **Array:** A type of sequence with a fixed element size and fixed number of elements, allocated as a contiguous block of memory
 - Immutable
 - Constant time random access (base + index * element size)

- **ArrayBuffer:** The mutable form of an array, allows insert and remove
Arrays of Strings?

- We've already used `Array[String]` multiple times now...
 - But how does this work? Arrays have to have fixed size elements?
Arrays of Strings?

- We've already used `Array[String]` multiple times now...
 - But how does this work? Arrays have to have fixed size elements?
- `String` in Scala is a reference type! What we store is the address of the string, which is of a constant size.

Each element of the array is storing an address of a string (represented by an arrow). Addresses in Scala:

- "Josh"
- "Gabriel"
- "Devin"
<table>
<thead>
<tr>
<th>Abstract Data Type vs Data Structure</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ADT</th>
<th>Data Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The interface to a data structure</td>
<td>The implementation of one (or more) ADTs</td>
</tr>
<tr>
<td>Defines what the data structure can do</td>
<td>Defines how the different tasks are carried out</td>
</tr>
<tr>
<td>Many data structures can implement the same ADT</td>
<td>Different data structures will excel at different tasks</td>
</tr>
</tbody>
</table>
Types of Collections in Scala

Iterable - Any collection of items

Seq - A collection of items in a specific order

IndexedSeq - A Seq where there is guaranteed $O(1)$ access to items

Set - A collection of unique items

Map - A collection of items identified by a key (associative collection)
Types of Sequences in Scala

mutable.Seq - Like Seq.....but mutable

mutable.Buffer - Like mutable.Seq, but "efficient" appends.

Queue - Like mutable.Seq but "efficient" append and remove first.

 Think like a queue of people

Stack - Like mutable.Seq but "efficient" prepend and remove first.

 Think like a stack of papers
The mutable.Seq ADT

apply(idx: Int): [A]
Get the element (of type A) at position **idx**

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position **idx** with value **elem**

remove(idx: Int): A
Remove the element at position **idx**, and return the removed value
What does an **Array** of *n* items of type **T** actually look like?

- 4 bytes for *n* (optional)
- 4 bytes for `sizeof(T)` (optional)
- *n* * sizeof(T) bytes for the data
Challenge: Operations that modify the array size require copying the array!
Challenge: Operations that modify the array size require copying the array!

Solution: Reserve extra space!
What does an `ArrayBuffer` of `n` items of type `T` actually look like?

- 4 bytes for `n` (optional)
- 4 bytes for `sizeof(T)` (optional)
- 4 bytes for the number of `used` fields
- `n * sizeof(T)` bytes for the data

<table>
<thead>
<tr>
<th>n</th>
<th><code>sizeof(T)</code></th>
<th>u</th>
<th>a(1)</th>
<th>a(2)</th>
<th>a(3)</th>
<th>a(4)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>or None</td>
<td>or None</td>
<td>or None</td>
<td>or None</td>
<td></td>
</tr>
</tbody>
</table>
class ArrayBuffer[T] extends Buffer[T] {
 var used = 0
 var data = Array[Option[T]].fill(INITIAL_SIZE) { None }

 def length = used

 def apply(i: Int): T = {
 if(i < 0 || i >= used) { throw new IndexOutOfBoundsException(i) }
 return data(i).get
 }

 /* ... */
}

What is Option[T]...a brief digression

- Let's say we have a function that we know can possibly return `null`
- What can go wrong in the following code snippet?

```scala
val x = functionThatCanReturnNull()
x.frobulate()
```
What is Option[T]...a brief digression

- Let's say we have a function that we know can possibly return \texttt{null}
- What can go wrong in the following code snippet?

```java
val x = functionThatCanReturnNull()
x.froblulate()
```

\texttt{java.lang.NullPointerException} (runtime error)
Let's say we have a function that we know can possibly return `null`.

What can go wrong in the following code snippet?

```scala
val x = functionThatCanReturnNull()
if(x == null) { /* do something special */ }
else { x.frobulate() }
```

It's very easy in practice to miss doing this test!
What is Option[T]...a brief digression

- What if instead that function returns something called an Option?

```scala
val x = functionThatReturnsOption()
x.frobulate()
```

error: value frobulate is not a member of Option[MyClass]
What is Option[T]...a brief digression

- What if instead that function returns something called an Option?

```scala
val x = functionThatReturnsOption()
x.frobulate()
```

error: value frobulate is not a member of Option[MyClass]

Now it's a compile time error...Easier to catch
What is Option[T]...a brief digression

- But what is an Option (in Scala)?

Some(x)

Subclass of Option[T]

`value.isDefined == true`

A valid value exists and we can access it with `value.get`

None

Subclass of Option[T]

`value.isEmpty == true`

Analogous to `null`. No value.
Now back to ArrayBuffers...
ArrayBuffer.remove(i)

def remove(target: Int): T = {
 /* Sanity-check inputs */
 if(target < 0 || target >= used) {
 throw new IndexOutOfBoundsException(target)
 }
 /* Shift elements left */
 for(i <- target until (used-1)) {
 data(i) = data(i+1)
 }
 /* Update metadata */
 data(used-1) = None
 used -= 1
}
def remove(target: Int): T = {
 /* Sanity-check inputs */
 if(target < 0 || target >= used) {
 throw new IndexOutOfBoundsException(target)
 }
 /* Shift elements left */
 for(i <- target until (used-1)) {
 data(i) = data(i+1)
 }
 /* Update metadata */
 data(used-1) = None
 used -= 1
 }

What is the complexity?
def remove(target: Int): T = {
 /* Sanity-check inputs */
 if (target < 0 || target >= used) {
 throw new IndexOutOfBoundsException(target)
 }
 /* Shift elements left */
 for (i <- target until (used - 1)) {
 data(i) = data(i + 1)
 }
 /* Update metadata */
 data(used - 1) = None
 used -= 1
}

What is the complexity?
\[O(\text{data.size}) \quad \text{or} \quad \Theta(\text{used - target}) \]
Analysis of \texttt{remove(i)}

\[
T_{\text{remove}}(n) = \begin{cases}
1 & \text{if } target = used - 1 \\
2 & \text{if } target = used - 2 \\
3 & \text{if } target = used - 3 \\
\vdots & \vdots \\
n - 1 & \text{if } target = 0
\end{cases}
\]
Analysis of \texttt{remove(i)}

\[T_{\text{remove}}(n) = \begin{cases}
1 & \text{if } target = used - 1 \\
2 & \text{if } target = used - 2 \\
3 & \text{if } target = used - 3 \\
\vdots & \vdots \\
n - 1 & \text{if } target = 0
\end{cases} \]

\[T_{\text{remove}}(n) \text{ is } O(n) \text{ and } \Omega(1) \]
def append(elem: T): Unit = {
 if(used == data.size){ /* Sad case 😞 */
 /* assume newLength > data.size, but pick it later */
 val newData = Array.copyOf(original = data, newLength = ???)
 /* Array.copyOf doesn't init elements, so we have to */
 for(i <- data.size until newData.size){ newData(i) = None }
 }
 /* Happy case 😊 */
 /* Append element, update data and metadata */
 newData(used) = Some(elem)
 data = newData
 used += 1
}
def append(elem: T): Unit = {
 if(used == data.size){ /* Sad case 😞 */
 /* assume newLength > data.size, but pick it later */
 val newData = Array.copyOf(original = data, newLength = ???)
 /* Array.copyOf doesn't init elements, so we have to */
 for(i <- data.size until newData.size){ newData(i) = None }
 }
 /* Happy case 😊 */
 /* Append element, update data and metadata */
 newData(used) = Some(elem)
 data = newData
 used += 1
}

What is the complexity?

...and what is newLength?
def append(elem: T): Unit = {
 if(used == data.size){ /* Sad case 😞 */
 /* assume newLength > data.size, but pick it later */
 val newData = Array.copyOf(original = data, newLength = ???)
 /* Array.copyOf doesn't init elements, so we have to */
 for(i <- data.size until newData.size){ newData(i) = None }
 }
 /* Happy case 😀 */
 /* Append element, update data and metadata */
 newData(used) = Some(elem)
 data = newData
 used += 1
}

What is the complexity?
O(data.size) (ie O(n)) …but…
Analysis of `append(elem)`

\[T_{append}(n) = \begin{cases}
 n & \text{if } \text{used} = n \\
 1 & \text{otherwise}
\end{cases} \]
Analysis of `append(elem)`

\[
T_{\text{append}}(n) = \begin{cases}
 n & \text{if used} = n \\
 1 & \text{otherwise}
\end{cases}
\]

\[T_{\text{append}}(n) \text{ is } O(n) \text{ and } \Omega(1)\]
Analysis of `append(elem)`

\[
T_{\text{append}}(n) = \begin{cases}
 n & \text{if } \text{used} = n \\
 1 & \text{otherwise}
\end{cases}
\]

How often do we hit the 😞 case?

\[
T_{\text{append}}(n) \text{ is } O(n) \text{ and } \Omega(1)
\]
Analysis of `append(elem)`

\[
T_{\text{append}}(n) = \begin{cases}
 n & \text{if } \text{used} = n \\
 1 & \text{otherwise}
\end{cases} \quad \text{得意 case} \quad \text{楽しい case}
\]

\[T_{\text{append}}(n) \text{ is } O(n) \text{ and } \Omega(1)\]

How often do we hit the 😞 case?

Depends on `newLength`
newLength = data.size + 1
\[\text{newLength} = \text{data.size} + 1 \]

For \(n \) appends into an empty buffer...

\[
\text{While } \text{used} \leq \text{Initial Size}: \sum_{i=0}^{\text{IS}} \Theta(1)
\]

And after:

\[
\sum_{i=\text{IS}+1}^{n} \Theta(i)
\]
newLength = data.size + 1

For n appends into an empty buffer...

While $\text{used} \leq \text{Initial}_\text{Size}$:

$$\sum_{i=0}^{\text{IS}} \Theta(1)$$

And after:

$$\sum_{i=\text{IS}+1}^{n} \Theta(i)$$

Total: $\Theta(n^2)$
newLength = \texttt{data.size} * 2
newLength = data.size * 2
newLength = data.size * 2

IS * \Theta(1)
for IS appends
newLength = data.size * 2

Θ(IS) +(IS-1)* Θ(1) for IS appends

IS * Θ(1) for IS appends
newLength = data.size * 2

\[\Theta(\text{IS}) + (\text{IS-1}) \cdot \Theta(1) \]
for IS appends

\[\Theta(\text{IS*2}) + (\text{IS*2-1}) \cdot \Theta(1) \]
for IS*2 appends
newLength = data.size * 2

So...how many red boxes for n inserts?
newLength = data.size * 2

So...how many red boxes for n inserts? $\Theta(\log(n))$
newLength = data.size * 2

So...how many red boxes for n inserts? $\Theta(\log(n))$

How much work for box j?
newLength = data.size * 2

So...how many red boxes for \(n \) inserts? \(\Theta(\log(n)) \)

How much work for box \(j \)? \(\Theta(IS \cdot 2^j) + \sum_{1}^{IS\cdot2^j} \Theta(1) \)
newLength = data.size * 2

So...how many red boxes for n inserts? \(\Theta(\log(n)) \)

How much work for box \(j \)?

\[
\Theta(IS \cdot 2^j) + \sum_{i=1}^{IS \cdot 2^j} \Theta(1) = \Theta(2^j)
\]
newLength = data.size * 2

So...how many red boxes for n inserts? $\Theta(\log(n))$

How much work for box j?

$$\Theta(IS \cdot 2^j) + \sum_{1}^{IS \cdot 2^j} \Theta(1) = \Theta(2^j)$$

How much work for n inserts?
newLength = data.size * 2

So...how many red boxes for n inserts? $\Theta(\log(n))$

How much work for box j? $\Theta(IS \cdot 2^j) + \sum_{1}^{IS \cdot 2^j} \Theta(1) = \Theta(2^j)$

How much work for n inserts? $\sum_{j=0}^{\Theta(\log(n))} \Theta(2^j)$
newLength = data.size * 2

So...how many red boxes for n inserts? $\Theta(\log(n))$

How much work for box j?

$\Theta(IS \cdot 2^j) + \sum_{1}^{IS \cdot 2^j} \Theta(1) = \Theta(2^j)$

How much work for n inserts?

$\sum_{j=0}^{\Theta(\log(n))} \Theta(2^j)$

Total for n insertions: $\Theta(n)$
Amortized Runtime

\[
\text{append}(\text{elem}) \text{ is } O(n)
\]

\[
n \text{ calls to } \text{append}(\text{elem}) \text{ are } O(n)
\]
Amortized Runtime

$\text{append}(\text{elem})$ is $O(n)$

n calls to $\text{append}(\text{elem})$ are $O(n)$

The cost of n calls is guaranteed to be $O(n)$.
Amortized Runtime

If n calls to a function take $O(T(n))$...

We say the **Amortized Runtime** is $O(T(n) / n)$

e.g. the amortized runtime of **append** on an **ArrayBuffer** is:

$O(n/n) = O(1)$