Go ahead… just try taking one of my blocks
“Lossy Sets”

- **Set[A]**
 - **add(a: A):** Insert `a` into the set
 - **apply(a: A):** Return true if `a` is in the set

What if we didn’t need apply to be perfect?
Reading Data From Disk

- Checking disk to see if a data record is present is slow.
 - Even B+ Trees usually require an IO to tell you the record isn’t there
- **Idea:** Keep an in-memory summary of the data.
 - If summary says key in layer: access the layer
 - If summary says key not in layer: skip the layer
- Need some guarantees
 - If summary incorrectly says key in layer: Extra work
 - Not great, but we were going to do the work anyway
 - If summary incorrectly says key not in layer: Error!
 - Changes semantics. Not good!

OK!

NOT ok!
Lossy Sets

LossySet[A]

- **add(a: A)**: Insert a into the set.
- **apply(a: A)**:
 - If a is in the set, **always** return true
 - If a is not in the set, **usually** return false
 - Is allowed to return true, even if a is not in the set
Lossy Sets

scala> lossySet.add("Wesley")
scala> lossySet.add("Buttercup")
scala> lossySet.add("Inigo")

scala> lossySet("Wesley")
val res0: Boolean = true

scala> lossySet("Inigo")
val res1: Boolean = true

scala> lossySet("Vizini")
val res2: Boolean = false

scala> lossySet("Fezzik")
val res3: Boolean = true
Lossy Sets

Key Insight: If apply doesn’t need to always be right, The lossy set doesn’t need to store everything.
class TrivialLossySet[A] extends LossySet[A]
{
 def add(a: A): Unit = {
 /* do nothing */
 }

 def apply(a: A): Boolean = true
}
Lossy Sets

-Idea: Histogram
- Bucketize the keys
- First letter of string
- Ranges of values
- Keep one bit per bucket

.add(a: A): Set the bit for a’s bucket (to 1)
.apply(a: A): Return true if the bit for a’s bucket is set
class StringHistogramLossySet extends LossySet[String]
{
 val bits = new Array[Boolean](256)

 def add(a: String): Unit = {
 val bucket = a(0).toInt
 bits(bucket) = true
 }

 def apply(a: A): Boolean = {
 val bucket = a(0).toInt
 return bits(bucket)
 }
}
Lossy Sets

- **Idea:** Hash-Based Histogram
 - Bucketize the keys into \(N \) buckets
- Hash function
 - Keep one bit per bucket
- add\((a: A) \): Set the bit for \(a \)’s bucket (to 1)
- apply\((a: A) \): Return true if the bit for \(a \)’s bucket is set
Lossy Sets

class LossyHashSet[A](_size: Int) extends LossySet[A]
{
 val bits = new Array[Boolean](_size)

 def add(a: A): Unit = {
 val bucket = a.hashCode % _size
 bits(bucket) = true
 }

 def apply(a: A): Boolean = {
 val bucket = a.hashCode % _size
 return bits(bucket)
 }
}
Lossy Hash Sets

- **add(a) then apply(b)**
- What does apply(b) return, and when?
 - true: hash(a) = hash(b) mod _size
 - false: hash(a) != hash(b) mod _size
- What is the probability of each, with N buckets?
 - true: $1/N$
 - false: N^{-1}/N
Lossy Hash Sets

- Show of hands
 - Who was born in:
 - >= 2004
 - 2003?
 - 2002?
 - 2001?
 - 2000?
 - <= 1999?
Lossy Hash Sets

• Show of hands
 – What is the color of your shirt?
 • White?
 • Black?
 • Red?
 • Green?
 • Blue?
Lossy Hash Sets

- Fewer collisions with TWO features than with one
 - ... but need more space to store both features
- **Idea:** Use the same number line for both features
 - e.g.: Birth Year + Sibling’s Birth Year(s)
 - Assign each record to 2 buckets
class LossyDoubleHashSet[A](size: Int) extends LossySet[A]
{
 val bits = new Array[Boolean](size)

 def hash1(a: A): Int = ???
 def hash2(a: A): Int = ???

 def add(a: A): Unit = {
 bits(hash1(a) % size) = true
 bits(hash2(a) % size) = true
 }

 def apply(a: A): Boolean = ???
}
Lossy Hash Sets

apply(a): Unit = ???

<table>
<thead>
<tr>
<th>bits(hash1(a) % _size)</th>
<th>bits(hash2(a) % _size)</th>
<th>apply(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

bits(hash1(a)) && bits(hash2(a))
class LossyDoubleHashSet[A](__size: Int) extends LossySet[A] {
 val bits = new Array[Boolean](__size)

 def hash1(a: A): Int = ???
 def hash2(a: A): Int = ???

 def add(a: A): Unit = {
 bits(hash1(a) % __size) = true
 bits(hash2(a) % __size) = true
 }

 def apply(a: A): Boolean = {
 return bits(hash1(a) % __size) && bits(hash2(a) % __size)
 }
}
Lossy Hash Sets

- `add(a) then apply(b)`
- What does `apply(b)` return, and when?
 - `true`: $\text{hash1}(a) = \text{hash1}(b) \land \text{hash2}(a) = \text{hash2}(b) \pmod{\text{size}}$
 - `false`: otherwise
- What is the probability of each, with N buckets?
 - `true`: $\sim\left(\frac{1}{N}\right)^2$
 - `false`: $\sim\left(\frac{N-1}{N}\right)^2$
Lossy Hash Sets

Which chance of collision is preferable?

\[\frac{1}{N} \quad \frac{1}{N^2} \]
How do we get 2 hash functions?

```scala
def hash1[A](a: A) =
    hash( 1 + a.hashCode )

def hash2[A](a: A) =
    hash( 2 + a.hashCode )
```
How do we get 2 hash functions?

```
val SEED1 = 123104912035
val SEED2 = 406923456234

def hash1[A](a: A) =
  hash( SEED1 + a.hashCode )

def hash2[A](a: A) =
  hash( SEED2 + a.hashCode )
```

Don’t use sequentially adjacent values
How do we get 2 hash functions?

val SEED1 = 123104912035
val SEED2 = 406923456234

def hash1[A](a: A) =
 hash(SEED1 ^ a.hashCode)

def hash2[A](a: A) =
 hash(SEED2 ^ a.hashCode)

Use bitwise-XOR instead of +
How do we get K hash functions?

val SEED1 = 123104912035
def hash1[A](a: A) =
 hash(SEED1 ^ a.hashCode)

val SEED2 = 406923456234
def hash2[A](a: A) =
 hash(SEED2 ^ a.hashCode)

val SEED3 = 908057230543
def hash3[A](a: A) =
 hash(SEED3 ^ a.hashCode)

Generate as many hash functions as needed
How do we get K hash functions?

```scala
val SEEDS = Seq(123104912035, 406923456234, ...)
def ithHash[A](a: A, i: Int) =
  hash( SEEDS(i) ^ a.hashCode )
```
Bloom Filters

- Overall Structure
 - \textbf{size} bits
 - \textbf{k} hash functions
Bloom Filters

class BloomFilter[A](size: Int, k: Int) extends LossySet[A] {
 val bits = new Array[Boolean](size)

 def add(a: A): Unit = {
 for(i <- 0 until k) { bits(ithHash(a, i) % size) = true }
 }

 def apply(a: A): Boolean = ???
}
Bloom Filters

class BloomFilter[A](size: Int, k: Int) extends LossySet[A] {
 val bits = new Array[Boolean](size)

 def add(a: A): Unit = {
 for (i <- 0 until k) { bits(ithHash(a, i) % size) = true }
 }

 def apply(a: A): Boolean = {
 for (i <- 0 until k) {
 if (!bits(ithHash(a, i) % size)) { return false; }
 }
 return true
 }
}

Bloom Filters

class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A] {
 val bits = new Array[Boolean](_size)

 def add(a: A): Unit = {
 for(i <- 0 until _k) { bits(ithHash(a, i) % _size) = true }
 }

 def apply(a: A): Boolean = {
 return (0 until _k).foreach { i => bits(ithHash(a, i) % _size) }
 }
}
Bloom Filter Parameters

- _size
 - Intuitively: More space, fewer collisions

- _k
 - Intuitively: more hash functions means...
 -more chances for one of b’s bits to be unset.
 -more bits set = higher chance of collisions.
Bloom Filters: Analysis

\[\frac{1}{N} \]

The probability that 1 bit is set by 1 hash function
Bloom Filters: Analysis

The probability that 1 bit is not set by 1 hash function

$$1 - \frac{1}{N}$$

The probability that 1 bit is not set by 1 hash function
Bloom Filters: Analysis

\[\left(1 - \frac{1}{N}\right)^k \]

The probability that 1 bit is **not** set by k hash functions
Bloom Filters: Analysis

\[(1 - \frac{1}{N})^{kn}\]

The probability that 1 bit is \textbf{not} set by k hash functions
... over n distinct calls to \textbf{add}
Bloom Filters: Analysis

$$1 - \left(1 - \frac{1}{N}\right)^{kn}$$

The probability that 1 bit is set by \textbf{at least one} of k hash functions

... over n distinct calls to \textbf{add}
Bloom Filters: Analysis

\[\approx \left(1 - \left(1 - \frac{1}{N} \right)^{kn} \right)^k \]

The probability that all k randomly selected bits of element \(b \) ... are set by \textbf{at least one} of k hash functions ... over n distinct calls to \textbf{add}
Bloom Filters: Analysis

The chance of collision in a Bloom filter with parameters k, N after n distinct elements have been added

$$\approx \left(1 - e^{-\frac{kn}{N}} \right)^k$$

The probability that all k randomly selected bits of element b

... are set by \textbf{at least one} of k hash functions

... over n distinct calls to \texttt{add}
Bloom Filters: Analysis

\[
\approx \left(1 - e^{-\frac{kn}{N}}\right)^k
\]

As \(e^{kn/N}\) grows, the chance of collision shrinks
Bloom Filters: Analysis

Ideal: Pick N, k that minimize collision chance:

- **N**
 - Smaller N, more opportunities for collisions
 - Bigger N, more space used
- **k**
 - Smaller k, fewer tests, more chance of collisions
 - Bigger k, more bits set, more chance of collisions
 - Sweet spot in the middle

\[
\left(1 - e^{-\frac{kn}{N}}\right)^k
\]
Bloom Filters: Analysis

Optimum at: \[k = c \cdot \frac{N}{n} \]
Bloom Filters: Analysis

\[k = c \cdot \frac{N}{n} \]

\[n = c \frac{N}{k} \]

N and n are linearly related
O(n) buckets required
Bloom Filters: Analysis

- $N/n = 5 \rightarrow \sim 10\%$ collision chance
- $N/n = 10 \rightarrow \sim 1\%$ collision chance

- 10 bits vs
 - 32 bits for one Int (3 to 1 savings)
 - 64 bits for a Double/Long (6 to 1 savings)
 - ~8000 bits for a full record (800 to 1 savings)
Bloom Filters: Analysis

- vs B+Tree or Binary Search Tree implementing Set
 - $O(k \cdot \text{cost}_{\text{hash}}) \approx O(1)$ vs $O(\log(n) \cdot \text{cost}_{\text{compare}})$ runtime
 - No directory pages (constant factor extra memory required)
- vs Hash Table implementing Set
 - Guaranteed $O(k \cdot \text{cost}_{\text{hash}}) \approx O(1)$ vs Expected $O(\text{cost}_{\text{hash}})$
 - No ‘fill factor’ (constant factor extra memory required)
- vs Array implementing Set
 - $O(k \cdot \text{cost}_{\text{hash}}) \approx O(1)$ vs $O(n \cdot \text{cost}_{\text{compare}})$