CSE 250
Lecture 36
ISAM Indexes

Don’t need to read from disk
can read from book instead
Binary Search: Complexity

- **IO Complexity:**
 - **Stage 1:**
 - Each step does one load: \(O(\log(n) - \log(C)) = O(\log(n)) \)
 - **Stage 2:**
 - Exactly one load for the entire step: \(O(1) \)
 - Total IO is the sum of the IOs of the component steps

IO Complexity scales as \(\log_2(n) \)
How do we improve Binary Search?

- **Trivial Solution:**
 - Preload the entire array into memory upfront
 - Load once, re-use for all subsequent searches
 - **Problem:** Works at 64MB, maybe not at 2TB
 - **Question:** Do we need to preload the entire array?
How do we improve Binary Search?

- **Observation 1:**
 - $64 \text{ MB} \times 2^{20} \text{ x sizeof(key + data)}$
 - vs
 - $2^{20} \times 8B = 8 \text{ MB of keys}$

- **Observation 2:**
 - We don’t need to know which array index the record is at
 - ... only the page it’s on
 - ... and each page stores a contiguous range of keys
Fence Pointers

• **Idea**: In-memory data structure with enough information to identify which page a record is on.
 – Precompute the (ideally smaller) data structure
 – Re-use the in-memory data structure for all searches
Fence Pointers

- Precompute the greatest key in each page in memory
 - n records; 64 records/page; \(\frac{n}{64} \) keys
 - e.g., n=2\(^{20}\) records; Needs 2\(^{14}\) keys
 - 2\(^{20}\) 64 byte records = 64 MB
 - 2\(^{14}\) 8 byte records = 2\(^{19}\) bytes = 512 KB
 - Call this a “Fence Pointer Table”

RAM: \(2^{14} = 16,384 \) keys (Fence Pointer Table)

Disk: 16,384 pages (Actual Data)
Example

Binary Search: >273, ≤ 412

Array Index: 0 1 2 3 ...

keys 0 - 178 keys 192 - 273 keys 274 - 412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

Load Page 2
Example (Why “fence pointer”?)

- **Fences**
 - Page 0: keys 0 - 178
 - Page 1: keys 192 - 273
 - Page 2: keys 274 - 412
 - Page 3: keys 458 - 611

- **Pointers**
 - 178
 - 273
 - 412
 - 611
 - ...

(continued on next page)
Fence Pointers

- **Step 1**: Binary Search on the Fence Pointer Table
 - All in-memory (IO complexity = 0)
- **Step 2**: Load page
 - One load (IO complexity = 1)
- **Step 3**: Binary search within page
 - All in-memory (IO complexity = 0)
- Total IO Complexity: $O(1)$
Fence Pointers

- Memory Complexity:
 - Need the entire fence pointer table in memory \textit{at all times}
 - \(O(n / C) \) pages = \(O(n) \)
 - Steps 2, 3 load one more page
 - **Total**: \(O(n+1) = O(n) \)

\(O(n) \) is... not ideal
Improving on Fence Pointers

- Store the Fence Pointers on Disk
 - 512 x 8 byte keys per 4KB page
- **Idea**: Binary Search the Fence Pointers on Disk First
Example

Binary Search: \(>51200, \leq 51322 \)

Array Index:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>...</th>
<th>511</th>
<th>512</th>
<th>513</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys 0 - 178</td>
<td>keys 192 - 273</td>
<td>...</td>
<td>keys 50,811 - 50,956</td>
<td>keys 50,992 - 51,200</td>
<td>keys 51,221 - 51,322</td>
<td>...</td>
</tr>
</tbody>
</table>

Page 0 Page 1 Page 511 Page 512 Page 513

Load Page 513
Example

Page 0

keys 0 - 178

Page 1

keys 192 - 273

Page 511

keys 50,811 - 50,956

Page 512

keys 50,992 - 51,200

Page 513

keys 51,221 - 51,322

Load Page 513
Improving on Fence Pointers

• Store the Fence Pointers on Disk
 – 512 x 8 byte keys per 4KB page

• **Idea**: Binary Search the Fence Pointers on Disk First
 – 2^{20} records / 64 records per page = 2^{14} pages of records
 – 2^{14} fence pointer keys = 2^5 pages of fence pointers
 – 512 = 2^9 keys per page

• Total pages searched: 5
 = $\log(n) - \log(\text{records per page}) - \log(\text{keys per page})$
Improving on Fence Pointers

• Example IO Requirements
 – 5 reads for binary search on the Fence Pointer File
 – 1 read on the data Array

• IO Complexity
 – $C_{\text{data}} = \text{Records per page (e.g., 64)}$
 – $C_{\text{key}} = \text{Keys per page (e.g., 512)}$
 – Total complexity: $\log(n) - \log(C_{\text{data}}) - \log(C_{\text{key}})$
Improving on Fence Pointers

- **Idea**: Multiple levels of fence pointers
 - Store the greatest key of each fence pointer page.
 - If it fits in memory, done!
 - If not, add another level
Improving on Fence Pointers
Improving on Fence Pointers

Binary Search @ Level 0
 to find a Level 1 page

Binary Search @ Level 1
 to find a Data page

Binary Search @ Data
 to find the record
Improving on Fence Pointers

Binary Search @ Level 0
to find a Level 1 page

Binary Search @ Level 1
to find a Level 2 page

Binary Search @ Level 2
to find a Data page

Binary Search @ Data
to find the record

What does this look like?
ISAM Index

- IO Complexity
 - 1 read at L0 (or assume already in memory)
 - 1 read at L1
 - 1 read at L2
 - ...
 - 1 read at L_{max}
 - 1 read at Data level
ISAM Index

- How many levels will there be?
 - Level 0 : 1 page w/ C_{key} keys
 - Level 1 : Up to C_{key} pages w/ C_{key}^2 keys
 - Level 2 : Up to C_{key}^2 pages w/ C_{key}^3 keys
 - Level 3 : Up to C_{key}^3 pages w/ C_{key}^4 keys
 - Level max : Up to C_{key}^{max} pages w/ C_{key}^{max+1} keys
 - Data level : Up to C_{key}^{max+1} pages w/ $C_{data} C_{key}^{max+1}$ records
ISAM Index

\[n = C_{\text{data}} C_{\text{key}}^{\text{max}+1} \]

\[\frac{n}{C_{\text{data}}} = C_{\text{key}}^{\text{max}+1} \]

\[\log_{C_{\text{key}}} \left(\frac{n}{C_{\text{data}}} \right) = \text{max} + 1 \]

\[\log_{C_{\text{key}}}(n) - \log_{C_{\text{key}}}(C_{\text{data}}) = \text{max} + 1 \]

Number of Levels: \[O \left(\log_{C_{\text{key}}}(n) \right) \] = IO Complexity
ISAM Index vs Binary Search...

Like Binary Search, but “Cache-Friendly”
ISAM Index

- As discussed: Disk → Memory
 - Also works for Memory → Cache
 - $C_{\text{key}} = \frac{64}{8} = 8$
 - $\log_8(n) \ll \log_2(n)$
What if the data changes?