the real complexities are hiding
Lies!

• **Lie 1**: Accessing any element of an array of any length is $O(1)$
 - The “RAM” model of computation
 • Simplified model... but not perfect
 - Real-world Hardware isn’t this simple:
 • The Memory Hierarchy
 • Non-Uniform Memory Access (NUMA)

• **Lie 2**: The constants don’t matter
Algorithm Bounds

- Runtime Bounds
 - The algorithm takes $O(\ ... \)$ time.
- Memory Bounds
 - The algorithm needs $O(\ ... \)$ storage
- IO Bounds
 - The algorithm performs $O(\ ... \)$ accesses to slower memory
The Memory Hierarchy (simplified)

- Cache
- Memory (RAM)
- Solid State Drives (m2 SSDs)
- Hard Disk Drives (HDDs, “Spinning Rust”)

Bigger

Faster
The Memory Hierarchy (simplified)

- Cache
 - Cache Line (~64B)
 - Random Access Memory (RAM)
 - Disk Page (~4KB)
 - SSDs / HDDs
Reading an Array Entry

- Is the array entry in cache?
 - Yes
 - Return it (1-4 clock cycles)
 - No
 - Is the array entry in real memory
 - Yes
 - Load it into cache (10s of clock cycles)
 - No
 - Load it out of virtual memory (100s of clock cycles)

Tiny constant

So-so constant

HUGE constant

Tiny constant

So-so constant

HUGE constant
Reading an Array Entry

It matters whether we’re reading from cache, memory, or disk!

Today: Memory vs Disk
Ground Rules: Disk vs RAM

• All data starts off in a file on disk
 - Need to load data into RAM before accessing it.
 - Load data in 4KB chunks (“pages”).
 - The amount of available RAM is finite.
 - Deallocating a page is one instruction.
 • ... unless it was modified and needs to be written back.
• 3 features describe an algorithm:
 - Number of instructions (runtime complexity)
 - Number of data loads (IO complexity)
 - Number of pages of RAM required (memory complexity)

Similar rules apply to any pair of levels of the memory hierarchy.
Binary Search

- $2^{20} \approx 1$M Records, 64 bytes each (8 byte key, 56 byte value)
 - 64 MB of data, 16,384 4k pages, 64 records/page
- Binary Search: $\log(2^{20}) = 20$ steps
Binary Search

- 2^{20} (~1M) Records, 64 bytes each (8 byte key, 56 byte value)
 - 64 MB of data, 16,384 4k pages, 64 records/page
- Example: Binary Search (Answer: At position 0)

16,384 pages

...

step 0
load 8192

step 1
load 4096

step 2
load 2048
Binary Search

- 2^{20} (~1M) Records, 64 bytes each (8 byte key, 56 byte value)
 - 64 MB of data, 16,384 4k pages, 64 records/page
- Example: Binary Search (Answer: At position 0)

```
64 Records (1 page)

...  

step 15  
(already loaded)  step 14  
load 0
```
Binary Search

• 2^{20} (~1M) Records, 64 bytes each (8 byte key, 56 byte value)
 – 64 MB of data, 16,384 4k pages, 64 records/page
• Example: Binary Search (Answer: At position 0)
 – Steps 0-14 each load 1 page (15 pages loaded)
 • sloooooow...
 – Steps 15-19 access the same page as step 14
 • fast!

What’s the memory complexity?

How does it scale with the # of records?
Complexity

- \(n \) records total
- \(R \) record size (in Bytes)
- \(P \) page size (in Bytes)
- \(C = \lfloor R/P \rfloor \) records per page
Binary Search Complexity

- Overall binary search runtime:
 - $\log(n)$ steps
- Behavior goes through two stages
 - **Stage 1**: Each request goes to a new page (e.g., 0-13)
 - $\log(n) - \log(C) \ (= \log(n) - \log(R/P))$ steps
 - **Stage 2**: One load for all requests (e.g., 14-19)
 - $\log(C)$ steps
Binary Search: Complexity

- Memory Complexity
 - **Stage 1**
 - Each page is never used again, can discard immediately
 - **Stage 2**
 - All use the same page
 - We’re interested in the maximum memory use at one time.

The “Working Set” size is 1 page
Binary Search: Complexity

• 1 page always has 64 records
 – The last 6 binary search steps are all on the same page
• With Scaling n...
 – 2^{21} records (32GB): 21 binary search steps, 16 loads
 – 2^{22} records (64GB): 22 binary search steps, 17 loads
 – 2^{23} records (128GB): 23 binary search steps, 18 loads
Binary Search: Complexity

- IO Complexity:
 - **Stage 1:**
 - Each step does one load: $O(\log(n) - \log(C)) = O(\log(n))$
 - **Stage 2:**
 - Exactly one load for the entire step: $O(1)$
 - Total IO is the sum of the IOs of the component steps

IO Complexity scales as $\log_2(n)$
How do we improve Binary Search?

- **Observation 1:**
 - 64 MB of $2^{20} \times \text{sizeof(key + data)}$
 - vs
 - $2^{20} \times 8B = 8$ MB of keys

- **Observation 2:**
 - We don’t need to know which array index the record is at
 - ... only the page it’s on
 - ... and each page stores a contiguous range of keys
Fence Pointers

- **Idea:** Precompute the greatest key in each page in memory
 - n records; 64 records/page; \(\frac{n}{64} \) keys
 - e.g., \(n=2^{20} \) records; Needs \(2^{14} \) keys
 - \(2^{20} \) 64 byte records = 64 MB
 - \(2^{14} \) 8 byte records = \(2^{19} \) bytes = 512 KB
 - Call this a “Fence Pointer Table”

RAM: \(2^{14} = 16,384 \) keys (Fence Pointer Table)

Disk: 16,384 pages (Actual Data)
Example

Binary Search: >273, ≤ 412

Array Index: 0 1 2 3 ...

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

Load Page 2
Example (Why “fence pointer”?)

- Keys 0 - 178
- Keys 192 - 273
- Keys 274 - 412
- Keys 458 - 611

Pages:
- Page 0
- Page 1
- Page 2
- Page 3

Pointers
Fence Pointers

- **Step 1**: Binary Search on the Fence Pointer Table
 - All in-memory (IO complexity = 0)
- **Step 2**: Load page
 - One load (IO complexity = 1)
- **Step 3**: Binary search within page
 - All in-memory (IO complexity = 0)
- Total IO Complexity: $O(1)$
Fence Pointers

- Memory Complexity:
 - Need the entire fence pointer table in memory at all times
 - \(O(n / C) \) pages = \(O(n) \)
 - Steps 2, 3 load one more page
 - **Total**: \(O(n+1) = O(n) \)

\(O(n) \) is... not ideal