CSE 250
Lecture 25
AVL Trees
BST Operation Costs

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(d)$</td>
</tr>
</tbody>
</table>
Tree Depth vs Size

height(left) ≈ height(right)

\[d = O(\log(n)) \]

height(left) ≪ height(right)

\[d = O(n) \]
“Balanced” Trees

- Faster search: Want height(left) \(\approx \) height(right)
 - Make it more precise: \(|\text{height(left)} - \text{height(right)}| \leq 1\)
 - (left, right height differ by at most 1)

- **Question**: How do we keep the tree balanced?
 - Option 1: Keep left/right subtrees within \(+/- 1 \) of each other
 - Add a field to track the “imbalance factor”
 - Option 2: Ensure leaves are at a minimum depth of \(d / 2 \)
 - Add a designation marking each node as red or black
AVL Trees
AVL Trees

- An AVL tree (Adelson-Velsky and Landis) is a BST where every subtree is “depth-balanced”
 - (remember tree depth = root height)
 - \(|\text{height(left child)} - \text{height(right child)}| \leq 1\)
- define \(\text{balance}(v) = \text{height}(v.\text{right}) - \text{height}(v.\text{left})\)
 - Maintain balance(v) \(\in \{-1, 0, 1\}\)
 - balance(v) = 0 \(\rightarrow\) “v is balanced”
 - balance(v) = -1 \(\rightarrow\) “v is left-heavy”
 - balance(v) = 1 \(\rightarrow\) “v is right-heavy”
AVL Trees

- **Goal**: AVL tree property maintains a nearly balanced tree
 - Depth balance forces a maximum possible depth \(d \ll n \)
 - \(d \ll n \) means \(d \leq c \log(n) \) for some constant \(c > 0 \)
- **Proof idea**: An AVL tree with depth \(d \) has “enough” nodes
AVL Trees

- Let $\text{minNodes}(d)$ be the minimum number of nodes in an AVL tree of depth d

\[
\begin{align*}
\text{minNodes}(0) &= 1 \\
\text{minNodes}(1) &= 2 \\
\text{minNodes}(2) &= 4
\end{align*}
\]
AVL Trees

For any tree of depth n:

- subtrees must be balanced, so the other subtree needs to have a depth of at least $n-2$
- at least one subtree needs to have a depth of $n - 1$

$$\text{minNodes}(n) = \begin{cases}
\end{cases}$$
Enough Nodes?

- For $d > 1$
 - $\text{minNodes}(d) = 1 + \text{minNodes}(d-1) + \text{minNodes}(d-2)$
 - This is the Fibonacci Sequence!
 - $\text{minNodes}(d) = \text{Fib}(d+3)-1$
 - Fib(0), Fib(1), Fib(2), ... = 0, 1, 1, 2, 3, 5, 8, ...
 - $\text{minNodes}(d) = \Omega(1.5^d)$
Enough Nodes?

- $\text{minNodes}(d) = \Omega(1.5^d)$

\[
\begin{align*}
n &\geq c1.5^d \\
\frac{n}{c} &\geq 1.5^d \\
\log_2 \left(\frac{n}{c}\right) &\geq \log_2 (1.5^d) \\
\log_2 \left(\frac{n}{c}\right) &\geq \log_{1.5} (1.5^d) \log_2 1.5
\end{align*}
\]

\[
\log_2 \left(\frac{n}{c}\right) \geq d \log_2 (1.5)
\]

\[
\frac{\log_2 \left(\frac{n}{c}\right)}{\log_2 (1.5)} \geq d
\]

constant

\[
\frac{\log_2 (n)}{\log_2 (1.5)} - \frac{\log_2 (c)}{\log_2 (1.5)} \geq d
\]

$O \left(\log_2 (n)\right) \geq d$

A tree with n nodes and the AVL constraint has logarithmic depth in n.
Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
 - balance calls height() twice
 - Computing height requires visiting every node
 - (linear in the size of the subtree)
- **Idea**: Store height of each node at the node
 - **Better idea**: Store balance factor (only requires 2 bits)
Enforcing the AVL Constraint

maintaining _parent makes it possible to traverse up the tree (helpful for rotations), but is not possible in an immutable tree.

```scala
class AVLNode[K, V](
    var _key: K,
    var _value: V,
    var _parent: Option[AVLNode[K, V]],
    var _left: AVLNode[K, V],
    var _right: AVLNode[K, V],
    var _isLeftHeavy: Boolean,  // true if balance(this) == -1
    var _isRightHeavy: Boolean, // true if balance(this) == 1
)
```

\[
\text{balance}(n) = \begin{cases}
-1 & \text{if } n._\text{isLeftHeavy} = \text{T} \\
+1 & \text{if } n._\text{isRightHeavy} = \text{T} \\
0 & \text{otherwise}
\end{cases}
\]
Enforcing the AVL Constraint

- **Left Rotation**
 - **Before**
 - \((A)\) root; balance\((A)\) = +2 (too right heavy)
 - \((B)\) root.right; balance\((B)\) = +1 (right heavy)
 1) Left subtree of \((B)\) becomes right subtree of \((A)\).
 2) \((A)\) becomes left subtree of \((B)\)
 3) \((B)\) becomes root
 - **After**
 - balance\((A)\) = 0, balance\((B)\) = 0
Enforcing the AVL Constraint

- balance = +2
- height = h
- balance = +1
- height = h-1
- height = h-1
- height = h

Diagram:

- Node A
 - balance = +2
 - height = h
- Node B
 - balance = +1
 - height = h-1
- Nodes X, Y, Z
 - height = h-1
Enforcing the AVL Constraint

balance = 0

balance = 0

X

Y

Z

height = h-1 height = h-1 height = h
Enforcing the AVL Constraint

- Right-Left Rotation
 - Before
 - **(A)** root; \(\text{balance}(A) = +2 \) (too right heavy)
 - **(B)** root.right; \(\text{balance}(B) = -1 \) (left heavy)
 - **(C)** right.left.right
 1) Left subtree of **(C)** becomes right subtree of **(A)**.
 2) Right subtree of **(C)** becomes left subtree of **(B)**.
 3) **(A)** becomes left subtree of **(C)**
 4) **(B)** becomes right subtree of **(C)**
 5) **(C)** becomes root
Enforcing the AVL Constraint

- After
 - if (C)’s BF was originally 0
 - (A) BF = 0; (B) BF = 0; (C) BF = 0
 - if (C)’s BF was originally -1
 - (A) BF = 0; (B) BF = +1; (C) BF = 0
 - if (C)’s BF was originally +1
 - (A) BF = -1; (B) BF = 0; (C) BF = 0
Enforcing the AVL Constraint

balance = +2
balance = -1
balance = 0, +1 or -1

h_x = h_y = h
or
h_x = h - 1; h_y = h
or
h_x = h; h_y = h - 1

height = h
height = h_x
height = h_y
height = h
Enforcing the AVL Constraint

balance = 0

balance = 0 or -1

balance = 0 or +1

height = h

h_x = h_y = h
or
h_x = h - 1; h_y = h
or
h_x = h; h_y = h - 1
Enforcing the AVL Constraint

• Rotate Right
 – Symmetric to rotate left
• Rotate Left-Right
 – Symmetric to rotate right-left
Inserting Records

- Inserting Records
 - Find insertion as in BST
 - Set balance factor of new leaf to 0
 - _isLeftHeavy = _isRightHeavy = false
 - Trace path up to root, updating balance factor
 - Rotate if balance factor off
Inserting Records

```scala
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
  var node = findInsertionPoint(key, root)
  node._key = key;   node._value = value
  node._isLeftHeavy = node._isRightHeavy = false
  while(node._parent.isDefined){
    if(node._parent._left == node){
      if(node._parent._isRightHeavy){
        node._parent._isRightHeavy = false; return
      } else if(node._parent._isLeftHeavy) {
        if(node._isLeftHeavy) {
          node._parent.rotateRight()
        } else {
          node._parent.rotateLeftRight()
        }
        return
      } else {
        node._parent.isLeftHeavy = true
      }
    } else {
      /* symmetric to above */
    }
    node = node._parent
  }
}
```

O(d) = O(log(n))

O(d) = O(log(n)) loops

O(1) per loop

Total Runtime = O(log(n))
Removing Records

- Removing Records
 - Remove the node
 - Find the node containing the value as in BST
 - If it doesn’t exist, return false
 - If the node is a leaf, remove it
 - If the node has one child, the child replaces the node
 - If the node has two children
 - copy smaller child value into node
 - remove smaller child node
 - Fix balance factors
 - Inverse of insertion
Maintaining Balance

- **Claim**: Only the balance factors of ancestors are impacted
 - The height of a node is only affected by its descendents
- **Claim**: Only one rotation will fix any remove/insert imbalance
 - Insert/remove change the height by at most one
- Only log(n) rotations are required for any insert/remove
 - Insert/remove are still log(n)