Update Parallelism

April 30, 2018

HW 3 Posted

Parallelism Models

Option 4: “Shared Nothing” in which all communication is explicit.

CPU U< >$< >U< >
! ! !

We’ll be talking about “shared nothing” today.

Other models are easier to work with.
3

Data Parallelism

Replication Partitioning

AA A ‘A B C

(needed for safety)

Updates

What can go wrong?

e Non-Serializable Schedules

Node |

T1:
T2:
T2:
T1:

W(X)
W(X)
W(Y)
W(Y)

Updates

What can go wrong?

e Non-Serializable Schedules

Tl: W(X)
T2: X)
T2: Y)
T1l: W(Y)

Node |

Updates (in Parallel)

What can go wrong?

e Non-Serializable Schedules

Node | i Node 2

Updates (in Parallel)

What can go wrong?

e Non-Serializable Schedules

 One Compute Node Fails

Node |

Updates (in Parallel)

What can go wrong?

e Non-Serializable Schedules

 One Compute Node Fails

Node | : Node 2

Updates (in Parallel)

What can go wrong?

 Non-Serializable Schedules
 One Compute Node Fails

e A Communication Channel Fails

Node 2

Updates (in Parallel)

What can go wrong?

Non-Serializable Schedules
One Compute Node Falls

A Communication Channel Fails

Messages delivered out-of-order

Node | . Node 2

Updates (in Parallel)

What can go wrong?

Non-Serializable Schedules
One Compute Node Falls
A Communication Channel Fails

Messages delivered out-of-order

v B . e v .
>

Node | . Node 2

Updates (in Parallel)

What can go wrong?

Non-Serializable Schedules
One Compute Node Falls
A Communication Channel Fails

Messages delivered out-of-order

Updates (in Parallel)

What can go wrong?

Non-Serializable Schedules } Classical Xacts

One Compute Node Falls
A Communication Channel Fails

Messages delivered out-of-order

Updates (in Parallel)

What can go wrong?

Non-Serializable Schedules } Classical Xacts

One Compute Node Falls
"Partitions”

A Communication Channel Fails

Messages delivered out-of-order

Updates (in Parallel)

What can go wrong?
} Classical Xacts

Non-Serializable Schedules

One Compute Node Falls
"Partitions”

A Communication Channel Fails

Messages delivered out-of-order } Consensus

Data Parallelism

Replication Partitioning

AA A ‘A B C

(needed for safety)

10

Simple Consensus

Master Slave

Node I Node2
A\ B A\ B

“Safe” ... but Node 1 is a bottleneck.

11

Simpl-ish Consensus

Master for A Master for B
Node | Node 2
A B ‘Al (B!

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

Partitions

Channel Failure

Node |

Node |

From Node 1’s perspective, these are the same!
13

Fallure Recovery

Node Failure

* [he node restarts and resumes serving reqguests.

Channel Failure

* Node 1 and Node 2 regain connectivity.

14

- Partitions
B=5

LN

Node 2

o >

Partitions

Option 1: Node 1 takes over

Node |

16

i
O —

Partitions

Option 1: Node 1 takes over

Node |

Node 2 is down.

| control A & B now!

17

o >

2
0

Partitions

Option 1: Node 1 takes over

Node |

Node 2 is down.

| control A & B now!

o >

2
0

Partitions

Option 1: Node 1 takes over

Node |

T 7

19

Node 2

Partitions

Option 1: Node 1 takes over

20

Partitions

Option 1: Node 1 takes over

Node 2 is down.
| control A & B now!

21

o >

o) N

Partitions

Option 1: Node 1 takes over

o
O1 —

Node 2 is down.

| control A & B now!

Node 2

o >

2
0

Partitions

Option 1: Node 1 takes over

Node |

T 7

INCONSISTENCY!

23

-
|l

Node 2

Partitions

Option 2: Wait

Node |

24

Partitions

Option 2: Wait

Node |

Partitions

Option 2: Wait

Node |

| can’t talk to Node 2
Let me wait!

Partitions

Option 2: Wait

Node |
| can’t talk to Node 2
Let me wait!

Node 2

Partitions

Option 2: Wait

Node | Node 2

| can’t talk to Node 2
Let me wait!

Partitions

Option 2: Wait

— —4%

Node | Node 2

Partitions

Option 2: Wait

1

Partitions

Option 2: Wait

Node |

| can’t talk to Node 2
Let me wait!

Partitions

Option 2: Wait

Node |

| can’t talk to Node 2
Let me wait!

Partitions

Option 1: Assume Node Failure

All data is available... but at risk of inconsistency.

Option 2: Assume Connection Failure

All data is consistent... but unavailable

32

F O duwWeg<<2Z 0 W

Traditionally: Pick any 2

33

| preter this phrasing

34

Simpl-ish Consensus

Master for A Master for B
Node | Node 2
A B ‘Al (B!

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.
35

Simpl-ish Consensus

Master for A Master for B

Withdraw $1000
from A

Deposit $1000

What if we need to coordinate between A & B?ﬂ

36

Naive Commit

Coordinator Node | Node 2
W (A,B)

37

Naive Commit

Coordinator Node | Node 2
W (A,B) —

Safe to Commit!

37

Naive Commit

Coordinator Node | Node 2
W(A,B)\
ACK
— C

Safe to Commit?

37

Naive Commit

Coordinator Node | Node 2
W(A,B)\
ACK
— C

Safe to Commit

37

That packet sure does look tasty...

38

Naive Commit

Coordinator Node | Node 2

Is it safe to abort?

39

Naive Commit

Coordinator Node | Node 2
W (A,B) —

_—ACK ACK

What now?

40

Naive Commit

Coordinator Node | Node 2
W(A)

How do we know Node 2 even still exists?

41

2-Phase Commit

e (One site selected as a coordinator.
* [|nitiates the 2-phase commit process.

 Remaining sites are subordinates.

* Only one coordinator per xact.

* Different xacts may have different coordinators.

42

Assumptions

 Undo/Redo Logging at Participants
* Participants can Abort an Xact at any time
e Participants can recover from a crash
 Redo Logging at Coordinator
* Coordinator can recover from a crash

* All logs replicated (to recover from hard failures)

43

Phase 1 - Prepare

Coordinator Node 1 Node 2

Phase 1 - Prepare

Coordinator Node 1 Node 2
"Prepare”

— —

Phase 1 - Prepare

Node 1

Coordinator

"Prepare”

E———

Node 2

—>

“Commit”

—

‘,
4—

46

“Commit”

Phase 1 - Prepare

Coordinator Node 1 Node 2
"Prepare” ——
“Commit”
: Commit

We are go
for Commit

47

Phase 2 - Commit

Coordinator Node 1 Node 2
"Prepare”
“Commit”
- Commit
We are go [<
for Commit
...... Commlt

48

Phase 2 - Commit

Coordinator Node 1 Node 2
"Prepare” ——
_ “Commit”
Commit
We are go [<
for Commit
“Commit” ——
B ACK’” ”
- “ACK
ACKSs received
Commit successful

49

Aborting

Coordinator Node 1 Node 2

"Prepare” ——
. ‘Commit” o
Abort
Commit «
Canceled
"Abort” ——
- “ACK”
) HACK!!
ACKSs received
Abort successful

If any participant aborts in Phase 1, everyone aborts.
o0

(Guarantees

Coordinator Node 1 Node 2
"Prepare” ——
. “Commit’ “ -
Commit
We are go [<
for Commit
“Commit” ——
- “ACK”
) HACKJ!
ACKSs received
Commit successful

A Node “Commit” means the node is able to commit.
A Coordinator “Commit” means the transaction must commit.

5

>

(Guarantees

Coordinator Node 1 Node 2
"Prepare” ——

We are go
for Commit

‘Commit” ——

"ACK”"

"ACK”

&4
4
ACKs received
Commit successful

Once a node commits, the xact is still not committed yet.

However the node must a5\210id breaking the commit.

Fallure Modes

Coordinator Node 1 Node 2
"Prepare” ——

—>

"‘Commit”

‘,

53

Fallure Modes

Coordinator Node 1 Node 2
"Prepare” ——

—>

"‘Commit”

‘,

Prepare unreceived and unacknowledged: Coordinator (1) Retries, or (2) Aborts
o3

Fallure Modes

Coordinator Node 1 Node 2

"Prepare”

54

Fallure Modes

Coordinator Node 1 Node 2

"Prepare”

Node 2 crashes before responding: Restart and continue as a dropped packet
54

Fallure Modes

Coordinator Node 1 Node 2
"Prepare” ——

— —

"‘Commit”

‘,

“‘Commit”

95

Fallure Modes

Coordinator Node 1 Node 2
"Prepare” ——

"‘Commit”

“‘Commit”

Node “Commit” unreceived: (1) Re-sent “Prepare” can be ignored.
(2) Node still5g\ble to abort.

Coordinator

Fallure Modes

Node 1

"Prepare”

E———

Node 2

—>

“Commit”

—

‘,
4__

56

mommit”

Fallure Modes

Node 1

Coordinator

"Prepare” ——

Node 2

—>

"‘Commit”

—>

‘,
‘__

ﬁommit”

Node 2 crashes after responding: Restart from log
o6

Fallure Cases

Coordinator Node 1 Node 2

"Prepare” ——
3 “Commit’
Commit
We are go [<
for Commit
“Commit” ——

S/

Fallure Cases

Coordinator Node 1 Node 2
"Prepare” ——

"‘Commit”

We are go
for Commit

‘Commit” ——

"ACK”"

Coordinator “Commit” unreceived: Commit must happen, coordinator resends
of

Fallure Cases

Coordinator Node 1 Node 2
"Prepare” ——

— —

"‘Commit”

We are go
for Commit

“Commit”

58

Fallure Cases

Node 2

Coordinator Node 1
"Prepare” ——
_ “Commit’
We are go [<
for Commit
“Commit”

"ACK”"

Node 2 crash: Restart. Already logged “Commit” message, so all is well.

58

Fallure

Cases

Coordinator Node 1 Node 2

"Prepare” ——

“Commit”
- Commit
We are go [<
for Commit
...... Commlt
ACK”
GIACK!!

59

Fallure

Cases

Coordinator Node 1 Node 2
"Prepare” ——

“Commit”

- Commit

We are go [<
for Commit
...... Commlt

ACK”

o “ACK”

59

e “Ack” unreceived: Ok. Resent “Commit” ignored by node

Fallure

Cases

Coordinator Node 1 Node 2

"Prepare” ——

- “Commit”
Commit
We are go [<
for Commit
...... Commlt

- ACK”

60

Fallure Cases

Coordinator Node 1 Node 2

"Prepare” ——
- “Commit” |
“Commit”
We are go [<
for Commit
...... “COmmIt”

- “ACK”
) IIACK”

Node crash after “Ack”: Ok. Log already recorded commit
60

Replication

* Mode 1: Periodic Backups
* Copy the replicated data nightly/hourly.
* Mode 2: Log Shipping

* Only send changes (replica serves as the 10g).

61

Replication

* Mode 1: Periodic Backups

 Copy the replicated data mghtly/hourly

e

e — = —— T ——————

- Moe2 Log Shlppmg) 3
» l;
{ * Only send changes (repllca serves as the Iog) \‘

1

e e e e —— o e —————— -~ —— — — - — D _ S S _

61

Replication

* Ensuring durability
* Ensuring write-consistency under 2PC

* Ensuring read-consistency without 2PC

62

Ensuring Durability

When Is a replica write durable?

Ensuring Durability

Never.

Ensuring Durability

Never.

What you should be asking is how
much durability do you need?

64

Ensuring Durability

For N Failures
N+1 Replicas

(Assuming Failure = Crash)

Ensuring Write Consistency

Coordinator Node 1
‘Prepare” -

&ommit”
,

Node 1 asserts that the commit is durable!
What if Node 1 fails?

66

Ensuring Write Consistency
Node 1

Coordinator

"Prepare”

—>

Replica

"Prepare”

—

“Commit”

67

“Commit”

Ensuring Write Consistency
Node 1

Coordinator

"Prepare”

—>

Replica

"Prepare”

“Commit”

4_—

"‘Commit”

Waiting for Node 1 to replicate is slooooow!

67

Let the coordinator take over!

Ensuring Write Consistency
Node 1

Coordinator

"Prepare”

E———

Replica

—>

“Commit”

—

‘,
4—

68

“Commit”

Ensuring Write Consistency

Coordinator Node 1 Replica
"Prepare” ——

— —

“Commit”

“Commit”

‘,
4__

Like 2PC...
... but better. We may not need to wait for the replica

68

Ensuring Write-Consistency

™ Coordinator
&l Bob

Coordinator
Alice

Replica | Replica 2 Replica 3

69

Ensuring Write-Consistency

Coordinator
Alice

™ Coordinator
&l Bob

Replica | Replica 2 Replica 3

70

Ensuring Write-Consistency

™ Coordinator

* Bob

Coordinator
Alice

B: Prepare B: Prepare A: Prepare

Commit! Commlt'

S 8§ &

Replica | Replica 2 Replica 3

71

Ensuring Write-Consistency

Majority Vote

N Replicas
(NV/2)+1 Votes Needed

/2

Ensuring Read Consistency

Forget transactions, let’s go back to reads & writes

Can we do better than 2PC if we don’t need xacts?

/3

(1) Alice writes ‘A’

Replica |

Replica 2

ﬂ W(A = 3)

Replica 3

74

(1) Alice writes ‘A’

Replica |

Replica 2

ﬂ W(A = 3)

(2) Alice tells Bob Replica 3

79

(1) Alice writes ‘A’ (3) Bob reads ‘A’

Replica |

ﬂ W(A = 3)

Repllca 2

(2) Alice tells Bob Replica 3

/6

(1) Alice writes ‘A’ (3) Bob reads ‘A’

Replica |
ﬂ W(A = 42) . R(A) fa
—
Replica 2
. What can we
do to guarantee

(2) Alice tells Bob Replica 3 that Bob will
see the 427?

77

Ensuring Read Consistency

Approach: Alice and Bob each wait for multiple responses.

Alice walts for ‘ack’s
Bob waits for read responses.

How many responses are required for each?

/8

ACK
Replica |
ﬂ W(A = 42) . R(A) fa
> <
Replica 2

Repllca 3

79

ACK
Replica |
ﬂ W(A = 42) . R(A) fa
> <
Replica 2 /

66666!!

Replica 3

80

Replica |

il

‘t

Replica 2

66666!!

Replica 3

81

Replica | \
Replica 2 /
65666”

Replica 3

il

‘t

82

Ensuring Read-Consistency

Like Majority Vote

N Replicas
R Replica Reads Needed
W Writer Acks Needed
R+W>N

83

