
‘-

1

PRECOMPUTATION

‘-

2

• There are alternative ways of evaluating a query
• Equivalent expressions
• Different algorithms for each operation

• Some equivalence rules are always good (Which?)

Optimization Recap

‘-

3

• There are alternative ways of evaluating a query
• Equivalent expressions
• Different algorithms for each operation

• Some equivalence rules are always good (Which?)
• Selection pushdown, Join conversion, Projection

pushdown, Eliminating redundant distinct
operators, Eliminating redundant sort operators

Optimization Recap

‘-

4

• What is the cost?
• Number of I/Os: |R|

• What is the output size?
• Size of the relation: |R|

File Scan

‘-

5

• What is the cost?
• Number of I/Os : |!(R)|

• What is the output size?
• |!(R)|

Index Scan (with Selection Condition)

‘-

6

• If you index the value locations of a column that ranges
between 1-10
• 1 -> 2,3,6,15,22,23,27
• 2 -> 1,4,7,8,9,…
• 3 -> 5,10,11,14,…
• …

• You can join that column with a PK very efficiently
• You can filter values more efficiently
• Guess/Compute the size of the output right away

Index Scan (with Selection Condition)

‘-

7

• If you index the locations of a PK column that ranges
between 1-10
• 1 -> 2,3,6,15,22,23,27
• 2 -> 1,4,7,8,9,…
• 3 -> 5,10,11,14,…
• …

• You can join with a PK very efficiently

Index Scan (with Selection Condition)

‘-

8

• Namely
• Compute Min(R.a)
• Compute Max(R.a)
• Index the locations of each value in (R.a)
• You can create buckets/partition data
• You can create hashtables of selected data

Index Scan (with Selection Condition)

‘-

9

• What is the cost?
• Number of I/Os: 0

• What is the output size?
• |R|

Projection

‘-

10

• What is the cost?
• Number of I/Os: 0

• What is the output size?
• |!(R)|

Selection

‘-

11

• Most of the operators are straightforward
• !(R), "(R) : |R|
• R ⋃ S: |R| + |S|
• R X S: |R| * |S|
• R ⋈ S: Identical to %(R X S)

• Some are hard, why?
• %(R)
• &(R), '(R)

Cardinality (Size) Estimation

‘-

12

• Generic (Default) Heuristic
• Selectivity = Half of the tuples
• Is it correct?
• Does it work?
• Some databases actually use this heuristic

Computing Selectivity (|!(R)| = ?)

‘-

13

• R.a = [Constant]
• If R.a is a key, then precisely 1 tuple satisfies the

condition
• Idea: Collect stats on # of distinct values
• Selectivity = 1 / # of distinct values of R.a
• Works well on discrete data

• Can you do even better?
• Yes you can! Histograms!

Computing Selectivity (|!(R)| = ?)

‘-

14

• R.a = S.b
• Idea: Assume no correlation
• Becomes identical to either R.a = [const] or S.b =

[const]
• For each row, you are testing whether S.b = some

specific, somewhat arbitrary value
• Both are an upper bound on the selectivity, so

take whichever reduction gives you the lower
value

Computing Selectivity of a Join

‘-

15

• We should be clear by now: Size estimation is not exact!
• We are trying to estimate the best way, not expecting

exact results out of it
• Smaller cardinality is good!

Cardinality (Size) Estimation

‘-

16

In practice a query compiler usually only considers left-deep join orderings.
• There are still n! possible orderings of this form, but that is already a lot less.
• Left-deep orderings use, in general, less memory. Furthermore, in general, they require

fewer subresults to be stored.

Join Ordering

‘-

17

To compute the best physical plan
for a given logical query plan, we
should, in principle:
1) Calculate all possible (left-

deep) join orderings of the
logical plan

2) For each such plan calculate
all possible assignments of
physical operators to the
nodes

3) From this enormous pile of
candidate physical query
plans, choose the one with the
least estimated cost

Query compilation MUST NOT
take longer than the actual
execution of the query

In a complex query, it can be
impossible to inspect all candidate
physical plans.

Heuristics! Branch-and-Bound
Plan Enumeration, Hill climbing,
Dynamic programming, Slinger-
Style, Greedy

Plan Selection

‘-

18

• Greedy heuristics produce suitable join trees very fast
• Suitable for large queries
• It produces a sequence of relations, so it uniquely

identifies the left-deep join tree
• Idea: minimize output volumes

Greedy Ordering

‘-

19

• Start with a logical query plan without join ordering
• We work bottom-up: first we assign physical operators

to the leaves, then to the parents of the leaves, then to
their parents, and so on. At each point we choose the
physical operator with the least cost.

• When we reach a join operator, we need to determine
an ordering of its various members:
Next slide

Greedy Ordering

‘-

20

• We start by joining the two relations for which the best physical
join algorithm yields smallest cost

• Add, from the remaining relations, add another join on top of
them that yields the smallest cost

• Repeat the previous step until we add all the join orderings

Greedy Ordering

‘-

21

• R ⋈ T = 100
• R ⋈ S = 200
• R ⋈U = 300
• T ⋈ S = 150
• T ⋈U = 400
• U ⋈ S = 500

• What is the ideal R ⋈ T ⋈ S ⋈U order?

Example

‘-

22

• R ⋈ T = 100
• R ⋈ S = 200
• R ⋈U = 300
• T ⋈ S = 150
• T ⋈U = 400
• U ⋈ S = 500

• (((R ⋈ T) ⋈ S) ⋈U)

Example

‘-

23

• It doesn’t need to return the optimal plan, but
it will be close to ideal.

Greedy Ordering

‘-

24

• Uniform distributions are a strong assumption!

SELECT name
FROM People
WHERE rank = 3
AND age = 20
vs
AND age = 19

Histograms

Name Age Rank
Alice 21 1
Bob 20 2

Carol 21 1
Dave 19 3
Eve 20 2
Fred 20 3
Gwen 22 1
Harry 20 3

‘-

25

Reduction Factor
(Assuming uniform
distribution)
RFAGE = 1/4
RFRANK = 1/3

Age is better…

Histograms

Name Age Rank
Alice 21 1
Bob 20 2

Carol 21 1
Dave 19 3
Eve 20 2
Fred 20 3
Gwen 22 1
Harry 20 3

‘-

26

Reduction Factor
(Actual distribution)
RFAGE-20 = 1/2
RFAGE-19 = 1/8
RFRANK-1 = 3/8

Histograms

Name Age Rank
Alice 21 1
Bob 20 2

Carol 21 1
Dave 19 3
Eve 20 2
Fred 20 3
Gwen 22 1
Harry 20 3

‘-

27

• You can’t always collect comprehensive statistics on
the data

• Take a bunch of tuples from each relation
• Run 2-3 different query plans on these tuples
• Estimate the sampling factors for each operator in the

plan based on how many rows are outputted.

Sampling

