
‘-

1

INDEXING

‘-

2

Tree-Structured Indices
• Tree-structured indexing techniques support both range searches and equality searches.
• ISAM: static structure; B+ tree: dynamic, adjusts gracefully under inserts and deletes.

‘-

3

ISAM
• Repeat sequential indexing until sequential index fits on one page.

☛ Leaf files contain data entries.

Non-leaf
File

Files
Overflow

page
Primary files

Leaf

‘-

4

Example ISAM Tree
• Each node can hold 2 entries; no need for `next-leaf-page’ pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

‘-

5

Comments on ISAM

• File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index pages
allocated, then space for overflow pages.
• Index entries: <search key value, page id>; they

`direct’ search for data entries, which are in leaf pages.
• Search: Start at root; use key comparisons to go to leaf.
• Insert: Find leaf data entry belongs to, and put it there.
•Delete: Find and remove from leaf; if empty overflow

page, de-allocate.

☛ Static tree structure: inserts/deletes affect only leaf pages.

Data Pages

Index Pages

Overflow pages

‘-

6

B+ Tree: The Most Widely-Used Index
• Insert/delete at log F N cost; keep tree height-balanced. (F (fanout) = # of entries/index

pages, N = # leaf pages)
• Minimum 50% occupancy (except for root). Each node contains d <= m <= 2d entries. The

parameter d is called the order of the tree.
• Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

‘-

7

Example B+ Tree
• Search begins at root, and key comparisons direct it to a leaf (as in ISAM).
• Search for 5*, 15*, all data entries >= 24* ...

☛ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

‘-

8

Summary
• Tree-structured indexes are ideal for range-searches, also good for equality searches.
• ISAM is a static structure.

• Performance can degrade over time – but OK for the project (No I/O)
• B+ tree is a dynamic structure.

• Inserts/deletes leave tree height-balanced; log F N cost.
• High fanout (F) means depth rarely more than 3 or 4.
• Almost always better than maintaining a sorted file.
• Typically, 67% occupancy on average.

• Most widely used index in database management systems because of its versatility. One of the
most optimized components of a DBMS.

• For projects, you can implement your own indexing mechanisms
• Hash-based indexes
• ISAM
• Partitioning
• Sorting
• Binary Search, etc.

