
CSE 4/562
Database Systems

Practicum Component

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

A relational query processor

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

Checkpoint 3
Optimization

Checkpoint 3
• How do make your system faster?

• Programming efficiency?

• Choosing a strategy?

• More efficient operators?

• How can you deal with aggregation?

Checkpoint 3

• 3 Main Components

• New functions (Distinct, Group-By, and functions)

• Optimization (Projection/Selection Pushdown)

• Join Algorithms

New Functions
• GROUP BY – HAVING

• COUNT()

• AVG()

• SUM()

• MIN() – MAX()

• DISTINCT

Aggregations

• Hash aggregation algorithm

• Requires more memory

• Stream aggregation algorithm

• Requires data to be sorted first

Hash Aggregation
for each input row

begin
calculate hash value on group by column(s)
check for a matching row in the hash table
if we find a match

update the matching row with the input row
else

insert a new row into the hash table
end

output all rows in the hash table

Stream Aggregation
For each input row
begin

if the input row does not match the current columns
begin

output the aggregate results
clear the current aggregate results
set the current group-by columns to the input row

end
update the aggregate results with the input row

end

Optimization

• You already implemented Selection pushdown

• You need to implement Projection pushdown

Selection Pushdown
• Helps you filter out unnecessary tuples early on

• Provides both memory and CPU time profits

• Saves you memory because join and cross
product algorithms use memory based on their
input size

• Saves you CPU time because other operators do
not need to deal with unnecessary tuples

Projection Pushdown
• Helps you filter out unnecessary attributes early on

• Provides both memory and CPU time profits

• Saves memory because you don’t carry
unnecessary data between operators

• Saves CPU time because you don’t copy
unnecessary data when you modify the tuple
schema and need to copy data to the new tuple

Join Algorithms

• Nested-Loop-Join and Block-Nested-Loop-Join are
slow…

• Try other join algorithms

Classic Hash Join

1. Build a in-memory hash table for the smaller
relation;

2. For each record in the larger relation, probe the
hash table.

Works when the smaller relation R fits in memory.

If the smaller relation does not fit in memory,
partition into smaller buckets!

Simple Hash Join
1. for each logical bucket j
2. for each record r in R
3. if r is in bucket j then
4. insert r into the hash table;
5. for each record s in S
6. if s is in bucket j then
7. probe the hash table;

• Classic hash join is a special case, with one bucket;
• Optimization: write the tuples not in bucket j to disk;
• Works good when memory is large (nearly as large as

|R|).

GRACE Hash Join
1. partition R into n buckets so that each bucket fits

in memory;
2. partition S into n buckets;
3. for each bucket j do
4. for each record r in Rj do
5. insert into a hash table;
6. for each record s in Sj do
7. probe the hash table.

• Works good when memory is small.

Hybrid Hash Join
• Hybrid of simple hash join and GRACE;
• When partitioning R, keep the records of the first

bucket in memory as a hash table;
• Typically this means that the first bucket uses more pages in

memory (all other partitions are 1 page each)
• When partitioning S, for records of the first bucket,

probe the hash table directly;
• Saving: no need to write R1 and S1 to disk or

read back to memory.

• Works good for large and small memory.

Handle Partition Overflow

• Case 1, overflow on disk: an R partition is larger
than memory size (note: don’t care about the size
of S partitions).
• Solution (a) small partitions first and combine

before join;
• Solution (b) recursive partition.

• Case 2, overflow in memory: the in-memory hash
table of R becomes too large.
• Solution: revise the partitioning scheme and

keep a smaller partition in memory.

Questions?

