
041

FastPDB: Towards Bag-ProbabilisticQueries at Interactive

Speeds

AARON HUBER, University at Buffalo, USA
OLIVER KENNEDY, University at Buffalo, USA
ATRI RUDRA, University at Buffalo, USA
ZHUOYUE ZHAO, University at Buffalo, USA
SU FENG, Nanjing Tech University, China
BORIS GLAVIC, University of Illinois, Chicago, USA

Probabilistic databases (PDBs) provide users with a principled way to query data that is incomplete or imprecise.
In this work, we study computing expected multiplicities of query results over probabilistic databases under
bag semantics which has PTIME data complexity. However, does this imply that bag probabilistic databases
are practical? We strive to answer this question from both a theoretical as well as a systems perspective. We
employ concepts from fine-grained complexity to demonstrate that exact bag probabilistic query processing is
fundamentally less efficient than deterministic bag query evaluation, but that fast approximations are possible
by sampling monomials from a circuit representation of a result tuple’s lineage. A remaining issue, however,
is that constructing such circuits, while in PTIME, can nonetheless have significant overhead. To avoid this
cost, we utilize approximate query processing techniques to directly sample monomials without materializing
lineage upfront. Our implementation in FastPDB provides accurate anytime approximation of probabilistic
query answers and scales to datasets orders of magnitude larger than competing methods.

CCS Concepts: • Information systems→ Data management systems; Database query processing; In-
complete data; Uncertainty; • Theory of computation→ Approximation algorithms analysis.

Additional KeyWords and Phrases: probabilistic datamodel, parameterized complexity, fine-grained complexity,
lineage polynomials, approximate query processing

ACM Reference Format:

Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic. 2025. FastPDB: To-
wards Bag-Probabilistic Queries at Interactive Speeds. Proc. ACM Manag. Data 3, N1 (SIGMOD), Article 041
(January 2025), 24 pages. https://doi.org/10.1145/XXXXXXX

1 INTRODUCTION

Probabilistic databases (PDBs) [55] provide users with a principled method for querying data that
is incomplete or imprecise. For example, in heuristic data cleaning [8, 47, 50, 57], systems may emit
a PDB when insufficient data exists to select the “correct” data repair. In this work we investigate
strategies for efficiently evaluating bag-relational queries over probabilistic databases. For ease
of presentation, we make the simplifying assumption that input relations are sets1. Specifically,
we study computing expected multiplicities of query result tuples for positive relational algebra
queries (RA+) which corresponds to union-select-project-join (USPJ) queries in SQL. We focus on
bag-TIDBs, a generalization of tuple-independent databases (TIDBs) for bag semantics where each
1Our accompanying technical report [6] generalizes our results to a broader class of inputs, including a generalization of
block-independent databases (BIDBs) and any bag database where tuple multiplicities (in input relations) are bounded by a
constant.

Authors’ addresses: Aaron Huber, University at Buffalo, Buffalo, USA, ahuber@buffalo.edu; Oliver Kennedy, University at
Buffalo, Buffalo, USA, okennedy@buffalo.edu; Atri Rudra, University at Buffalo, Buffalo, USA, atri@buffalo.edu; Zhuoyue
Zhao, University at Buffalo, Buffalo, USA, zzhao35@buffalo.edu; Su Feng, Nanjing Tech University, Nanjing, China, sufeng@
njtech.edu.cn; Boris Glavic, University of Illinois, Chicago, Chicago, USA, bglavic@uic.edu.

2025. 2836-6573/2025/1-ART041 $15.00
https://doi.org/10.1145/XXXXXXX

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

https://doi.org/10.1145/XXXXXXX
https://doi.org/10.1145/XXXXXXX

041:2 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

Design Choices Theoretical Guarantees Empirical Behavior

System Semantics Intermediate Rep Exact? Variance? Asympt. Fast Runtime vs Det.

Trio [7] Bag SoM Lineage ✓ 0 × [5 − 100]× slower [16, 42]
MCDB [32] Bag Parallel Samples × Unbounded ✓ [10 − 100]× slower [18, 33]

Pip [33] Bag SoM Lineage Sometimes Low × [10 − 100]× slower ∗
GProM-e [4] Bag SoM Lineage ✓ 0 × [1 − 100]× slower [46], ∗

ProvSQL-e [51] Bag Circuit Lineage ✓ 0 × [1 − 100]× slower ∗
ProvSQL-a [51] Bag Circuit Lineage × Low ✓ [1 − 100]× slower ∗

FastPDB Bag Lineage Sample × (Anytime) Unbounded ✓ Anytime (often faster) ∗

Fig. 1. Comparison of approaches for implementing PDB; We extend provenance systems GProM and ProvSQL

to compute exact (-e) or approximate (-a) expected multiplicities, as well as our proposed system, FastPDB.

Systems and results highlighted in blue are new. Asymptotically fast means that the system is capable of

asymptotically matching deterministic query runtimes.

𝑶𝒏𝒍 𝒊𝒏𝒆
Name Φ

𝐴𝑟𝑦𝑎 𝐴

𝐵𝑒𝑎𝑡𝑎 𝐵

𝐶𝑜𝑙𝑖𝑛 𝐶

𝐷𝑎𝑛𝑖𝑒𝑙 𝐸

𝑴𝒂𝒕𝒄𝒉
Player1 Player2 Φ

𝐴𝑟𝑦𝑎 𝐵𝑒𝑎𝑡𝑎 𝑊

𝐵𝑒𝑎𝑡𝑎 𝐶𝑜𝑙𝑖𝑛 𝑌

𝐵𝑒𝑎𝑡𝑎 𝐴𝑟𝑦𝑎 𝑍

D

𝑄 Player1 Φ Circuit

𝐴𝑟𝑦𝑎 𝐴𝑊𝐵 ×

×

𝐴 𝑊

𝐵

𝐵𝑒𝑎𝑡𝑎 𝐵𝑌𝐶 + 𝐵𝑍𝐴

𝑌 𝐶 𝑍 𝐴

× ×

𝐵 +

×

𝑄1(D) (𝑡) ≡ Φ𝑡 (X)

Player1 E[Φ(X)]
𝐴𝑟𝑦𝑎 E[𝐴] E[𝑊] E[𝐵] = 0.2 · 0.8 · 0.8 = 0.128
𝐵𝑒𝑎𝑡𝑎 E[𝐵] (E[𝑌] E[𝐶] + E[𝑍] E[𝐴]) = 0.8(0.2 · 0.5 + 0.6 · 0.2) = 0.176

E [Φ𝑡 (X)]

Player: 𝑝 [𝐴 = 1] = 0.2 𝑝 [𝐵 = 1] = 0.8 𝑝 [𝐶 = 1] = 0.5 𝑝 [𝐸 = 1] = 1
Match: 𝑝 [𝑊 = 1] = 0.8 𝑝 [𝑌 = 1] = 0.2 𝑝 [𝑍 = 1] = 0.6

Fig. 2. Computing lineage polynomials and calculating expected multiplicities based on the input probabilities

and lineage.

input tuple is associated with {0, 1}-valued random variables that represent a tuple’s uncertain
multiplicity. These variables are assumed to be mutually independent. The motivation for this
setting is two-fold: (i) the most commonly studied query semantics for set probabilistic databases is
to compute the marginal probability of a query result tuple over TIDBs. As this is equivalent to
computing the expectation of a Boolean random variable encoding the tuple’s existence, computing
expected multiplicities, which is computing the expectation of integer random variable encoding a
tuple’s multiplicity, is a natural generalization (see Sec. 3 for an overview of work on set-PDBs); (ii)
computing expected multiplicities is equivalent to computing expected counts for group-by count

aggregation queries. Thus, our results also lay the foundation for a further investigation into more
complex queries.

In the following we will use bag-PQP (bag probabilistic query processing) to refer to computing
expected multiplicities over bag-TIDBs and call systems that implement this semantics bag-PDBs.
It has been shown [26] that bag-PQP has PTIME data complexity. The main question we seek to
answer in this work is: is it possible to build efficient bag-PDBs? We investigate this question from
both a theoretical as well as a practical perspective. Based on this exploration, we propose a new
probabilistic database, FastPDB, which leverages techniques from approximate query processing
to implement bag-PQP at interactive speeds.
Lineage. A common approach used in probabilistic databases is to first compute the lineage of each
query result and then compute expectations from the lineage. Under bag semantics, the lineage of
an output tuple is a polynomial over integer-valued random variables. Each such variable represents
the multiplicity of an input tuple in the lineage polynomial of an output tuple 𝑡 . Evaluating 𝑡 ’s
polynomial for an assignment that sets each variable to the corresponding input tuple’s multiplicity
yields the multiplicity of 𝑡 . Lineage is a necessary component of a bag-PQP, as simply annotating
output tuples with expected multiplicities is not a closed representation system for query results.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:3

That is, even if tuples in a database 𝐷 are uncorrelated, a query 𝑄1 may produce correlated outputs
— a fact not captured by the expected multiplicities annotating each tuple. A second query 𝑄2
applied to the materialized output of the first (i.e.,𝑄2 (𝑄1 (𝐷))) does, in general, not produce correct
expected multiplicities. Lineage captures correlations, and as such, permits the closed representation
necessary for materialized views. Thus, we focus on bag-PQP based on lineage formulas which for
bag semantics are polynomials with natural number coefficients.

Example 1.1. Consider the bag-TIDB shown in Fig. 2, which models the player base of a 1-vs-1
game service: table Online tracks which players are online while each record in Match indicates a
viable player pairing. Each player is annotated with a {0, 1}-valued random variable (A-E), where a 1
indicates that the player is online. Similarly, each potential match is annotated a variable (W,Y,Z),
where a 1 indicates that Player2 is a suitable opponent for Player1 (this relationship need not be
symmetric). We show the random variables for each input tuple in Fig. 2. This is a bag-TIDB, i.e., all
random events are independent. Consider the query shown below

𝑄 = 𝜋Player1 (𝑂𝑛𝑙𝑖𝑛𝑒ZName=Player1𝑀𝑎𝑡𝑐ℎZPlayer2=Name𝑂𝑛𝑙𝑖𝑛𝑒)

which computes the expected number of potential matches available for each player: both players
must be logged on, and the match must be viable. For example Arya has a potential match if she is
online (A = 1), if she has a viable match with Beata (W = 1), and if Beata is also online (B = 1).
Observe that the resulting number of potential matches is exactly the product of these random variables
(AWB). Similarly, the number of Beata’s potential opponents at any given time may be computed
as Φ𝐵𝑒𝑎𝑡𝑎 (X) = BYC + BZA (where X is the vector of {0, 1}-valued variables representing input tuples
i.e., A, B, . . .). We refer to these arithmetic expressions (e.g., Φ𝐵𝑒𝑎𝑡𝑎 (X)) as lineage polynomials. Given
that tuples are independent events and using linearity of expectation, the expected multiplicity can be
computed by pushing the expectation down to the individual variables. For example, for result tuple
(Beata), we get:

E [Φ𝐵𝑒𝑎𝑡𝑎 (X)] = E [𝐵 (𝑌𝐶 + 𝑍𝐴)] = E [𝐵] (E [𝑌] E [𝐶] + E [𝑍] E [𝐴])
Complexity of Exact Answers. bag-PQP is known to be PTIME in data complexity [26] for
positive relational algebra (RA+). However, this result says little about whether bag-PQP-based
systems can be competitive with deterministic databases. We study the problem through the lens of
fine-grained complexity. Specifically, we show that the problem of bag-PQP is hard by identifying
a class of queries and: (i) determining an asymptotic upper bound on their deterministic runtime
(based on existing algorithms), (ii) determining an asymptotic lower bound on the analogous bag-
PQP query (based on standard complexity assumptions), and (iii) demonstrating that the ratio of the
two is polynomially large. Thus, bag-PDB are necessarily (asymptotically) slower than deterministic
databases.
To relate these theoretical results with practice, Fig. 1 shows a comparison of exact and ap-

proximate approaches for computing expected multiplicities from related work and approaches
introduced in this work (highlighted in blue). Note that any approach for computing lineage (prove-
nance polynomials [25] for bag semantics) can be extended to compute expected multiplicities by
implementing the approach outlined in the example above. We present two approaches GProM-e
(GProM [4]) and ProvSQL-e (ProvSQL [51]). GProM uses a flat sum-of-monomials (SoM) encoding of
lineage (e.g., as shown in the Φ column in Fig. 2) while ProvSQL uses a circuit representation (e.g.,
column “Circuit” in Fig. 2), which can be exponentially more concise in extreme cases. As we will
discuss in Sec. 5.1, it is possible to construct a circuit representation of lineage with linear overhead
over deterministic query evaluation. Producing exact expected counts in either representation
comes at a high cost: as we will demonstrate for some settings the overhead over deterministic
query processing is larger than a factor of 10.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:4 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

Approximating Expected Multiplicities. Given this negative theoretical result and experimental
evidence, we investigate approximations. First off, we observe that existing systems that approx-
imate probabilistic queries can be repurposed to compute approximate expected multiplicities.
Systems like Trio [1, 42] that compute the expectation of count aggregate queries can be used to
compute expected multiplicities. Similarly, MCDB [32] can be applied to sample a set of possible
worlds and then estimate multiplicities based on multiplicities computed from each sampled world.
However, as shown in Fig. 1 these systems still carry a significant overhead: empirically for both
systems, and also asymptotically for Trio and Pip as a result of these system’s use of SoM lineage.

Our next contribution is an algorithm that computes an (1±𝜖)-approximation of a tuple’s expected
multiplicity from a circuit encoding of lineage whp. with an asymptotic runtime that is equal to
deterministic queries.2 This algorithm computes the estimation based on a set of monomials sampled
from the circuit representation of a tuple’s lineage. We implement this algorithm in ProvSQL [51]
(ProvSQL-a) as a UDF that samples from ProvSQL’s circuit representation of lineage. ProvSQL-a
has bounded variance whp. as it produces a (1 ± 𝜖)-approximation of expected multiplicities with
at least 𝛿 probability. However, in practice the major bottleneck of this algorithm is constructing
lineage (Fig. 1).
Sampling Monomials Directly using Approximate Query Processing. Based on the observa-
tion that our approximation algorithm samples monomials from a tuple’s lineage, we next explore
whether it is possible to generate such samples without having to first construct a lineage circuit.
Our main insight here is that approximate query processing (AQP) techniques for estimating the
result of an aggregation over the result of a join [29, 35] can be used for this purpose. Specifically,
constructing all monomials can be expressed as a join query. Propagating probabilities of tuples as
part of this join then provides sufficient information to compute the probability of each monomial
and then in turn use SUM aggregation to compute the expected multiplicities in a fashion similar to
Example 1.1. We develop a system called FastPDB that extends the Wanderjoin implementation in
XDB [35] for online aggregation over joins. FastPDB provides anytime approximation for expected
multiplicities. Our approach achieves performance that is even better than deterministic query
processing in some cases. In contrast to ProvSQL-a, the variance of this approach is unbounded.
As in XDB, the use of rejection sampling limits accuracy on queries with highly selective filtering
predicates. However, in practice we can compute precise estimates in a fraction of the time needed
by ProvSQL-a. Given that we do not construct full lineage, the approach is very robust for queries
that generate very large lineage expressions on which both ProvSQL and GProM perform poorly.
Contributions. In summary, we make the following contributions:
Fine-grained Complexity Analysis: In Sec. 4 we show that exact bag-PQP has higher asymptotic
runtime than deterministic queries.
A (1 ± 𝜖)-approximation: In Sec. 5 we extend ProvSQL [51] with an algorithm that computes a
(1 ± 𝜖)-approximation of multiplicities with the same asymptotic runtime as a deterministic query.
Push-Down Sampling: In Sec. 6 we show that the sampling step of our approximation algorithm
can be ‘pushed down’ into the lineage construction process. Based on this insight, we present
FastPDB, a bag-PDB that leverages WanderJoin [35]. To our knowledge, this is the first PDB using
AQP techniques.
Experimental Evaluation: In Sec. 7, we contrast the performance of FastPDB against (i) other
probabilistic database systems [32, 33], (ii) lineage-based solutions [4, 51], and (iii) deterministic
query processing. In general, FastPDB produces (approximate) results significantly faster than

2As query execution engines and optimizers differ widely across systems, we use a “reasonable” model for deterministic
query runtime. See [6] for more details.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:5

(𝜎𝜃𝑅) (𝑡) =
{
𝑅(𝑡) if 𝜃 (𝑡)
0 otherwise

(𝜋𝐴𝑅) (𝑡) =
∑︁

𝑡 ′ : 𝑡=𝜋𝐴𝑡 ′
𝑅(𝑡 ′)

(𝑅1 ⊲⊳ 𝑅2) (𝑡) = 𝑅1 (𝜋𝑠𝑐ℎ (𝑅1) (𝑡)) · 𝑅2 (𝜋𝑠𝑐ℎ (𝑅2) (𝑡))
(𝑅1 ∪ 𝑅2) (𝑡) = 𝑅1 (𝑡) + 𝑅2 (𝑡)

Fig. 3. Semantics for Bag-RA+ [25]
competing approaches and scales to datasets that are several orders of magnitude larger than the
baselines.

2 BAG PROBABILISTIC DATABASES

Bag Semantics.We use {. . .} to denote sets, {|. . .|} to denote multisets (bags), ⟨. . .⟩ to denote tuples,
and D to denote a universal domain of values. We will use |·| to denote the number of elements in
sets, bags, or tuples. A bag relation 𝑅 with 𝑠𝑐ℎ (𝑅) ≔ ⟨𝐴1, . . . , 𝐴ℓ⟩ with arity 𝑎𝑟𝑖𝑡𝑦 (𝑅) = |𝑠𝑐ℎ(𝑅) |
is a bag of tuples 𝑡 ∈ Dℓ . A bag relation can be modeled as a function 𝑅 : D𝑎𝑟𝑖𝑡𝑦 (𝑅) → N
that associates with each tuple 𝑡 a multiplicity (the number of duplicates of 𝑡 in 𝑅). Then 𝑅(𝑡)
denotes the multiplicity of 𝑡 in 𝑅. A database 𝐷 ≔ {𝑅1, . . . , 𝑅𝑚} is a set of𝑚 bag relations (and
𝑠𝑐ℎ (𝐷) ≔ {𝑠𝑐ℎ (𝑅𝑖) |1 ≤ 𝑖 ≤ 𝑚}). We use 𝑡 ∈ 𝑅 to denote that tuple 𝑡 exists in 𝑅, i.e., 𝑅(𝑡) > 0.
We also apply the same notation for databases. Fig. 3 shows the semantics of positive relational
algebra RA+ over bags: the relation (function) returned by an operator is defined point-wise for
each tuple that may exist in the operator’s output. For instance, the multiplicity of a tuple 𝑡 in the
result of union is the sum of the multiplicities of 𝑡 in both inputs; for natural join we multiply the
multiplicities of two input tuples that join (agree on the common attributes); and projection sums
up the multiplicities of all inputs 𝑡 ′ that after projection are equal to the result tuple 𝑡 .
Bag Probabilistic Databases and Expected Multiplicities. A bag-PDBD is a pair (Ω,P) where
Ω = {𝐷1, . . . , 𝐷𝑛} is a set of bag databases called possible worlds and P is a probability distribution
over Ω. We use 𝐷 , called the bounding deterministic database of a bag-PDB D, to denote the set of
tuples that appear in at least one world: 𝐷 = { 𝑡 | ∃𝐷 ∈ Ω : 𝑡 ∈ 𝐷 }. Given a bag-PDB D we want
to compute for a RA+ query𝑄 the expected multiplicity of a result tuple 𝑡 : summing up over 𝐷 ∈ Ω
the product of the multiplicity of the tuple 𝑄 (𝐷) (𝑡) with the probability of the world (P(𝐷)).
Definition 2.1 (Expected Multiplicity). Given a bag PDB D = (Ω,P), query 𝑄 , and tuple 𝑡 ,

the expected multiplicity of 𝑡 is: E [𝑄 (𝐷) (𝑡)] = ∑
𝐷∈Ω𝑄 (𝐷) (𝑡) · 𝑃𝑟 [𝐷] .

bag-TIDBs. As noted above, we use an adaptation of TIDBs to bags, with input tuples having
multiplicity in {0, 1}. A further generalization to block-independent databases and another variant
of bag-TIDBs where each input tuple is associated with a probability distribution over possible
multiplicities from 0 to some constant 𝑐 can be found in [6].

Definition 2.2 (TIDB). A bag tuple independent database (bag-TIDB) D is a bag-PDB that is
specified as a pair (𝐷, p) where 𝐷 is a bounding database and p associates each tuple 𝑡 ∈ 𝐷 with
the marginal probability p(𝑡) = 𝑝𝑡 of existing with multiplicity 1. The worlds of a bag-TIDB are all
bag databases 𝐷 generated by selecting a subset 𝑆 ⊆ 𝐷 and setting 𝐷 (𝑡) = 1 if 𝑡 ∈ 𝑆 and 𝐷 (𝑡) = 0
otherwise. Such a world 𝐷 for 𝑆 ⊆ 𝐷 has probability:

P [𝐷] =
∏
𝑡 ∈𝑆

𝑝𝑡 ·
∏
𝑡∉𝑆

(1 − 𝑝𝑡)

We will sometimes specify the probabilities p of a bag-TIDB with 𝐷 = {𝑡1, . . . , 𝑡𝑛} as a vector
p ∈ [0, 1]𝑛 .

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:6 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

Example 2.3. Consider the bag-TIDB D with a single relation 𝑅 shown below with four possible
worlds Ω = {𝐷1, 𝐷2, 𝐷3, 𝐷4} with probabilities as shown (in the left table) below:

𝐷1 = ∅ 𝐷2 = {|⟨1, 2⟩|} 𝐷3 = {|⟨1, 3⟩|} 𝐷4 = {|⟨1, 2⟩ , ⟨1, 3⟩|}
P [𝐷1] = 0.7 · 0.4 = 0.28 P [𝐷2] = 0.3 · 0.4 = 0.12
P [𝐷3] = 0.7 · 0.6 = 0.42 P [𝐷4] = 0.3 · 0.6 = 0.18

Evaluating query 𝑄 ≔ 𝜋𝐴 (𝑅) over D returns a single result ⟨1⟩. The expected multiplicity of this
tuple is shown (in the right table) below and derived like this:

E [𝑄 (D) (⟨1⟩)] =
∑︁
𝐷∈Ω

𝑄 (𝐷) (⟨1⟩) · P [𝐷]

= 0 · 0.28 + 1 · 0.12 + 1 · 0.42 + 2 · 0.18 = 0.9

bag-TIDB D
A B 𝑝𝑡
1 2 0.3
1 3 0.6

Query Results with Expected Multiplicities
A E [𝑄 (D) (𝑡)]
1 0.9

2.1 Provenance Polynomials

For bag-PDBs, the lineage of a tuple is a so-called provenance polynomial [25]: a polynomial with
over integer-valued random variables representing tuples in the input PDBs. Importantly, the
expectation of a provenance polynomial for a tuple 𝑡 is equal to the expected multiplicity of the
tuple. Before discussing provenance polynomials, we first introduce the standard monomial basis
(SMB).
General polynomials.We use [0, 𝐾] to denote {0, 1, . . . , 𝐾} and [0, 𝐾]𝑛 to denote the set of vectors
of length 𝑛 with values from [0, 𝐾]. Consider a set X = {𝑋𝑖 }𝑛𝑖=1 of variables. A general polynomial
𝜙 with degree 𝐾 ∈ N is of the form:

𝜙 (X) =
∑︁

d∈[0,𝐾]𝑛
𝑐d ·

∏
𝑖∈[0,𝑛]

𝑋
d[𝑖]
𝑖

where 𝑐d ∈ N. (1)

That is, in this representation every possible monomial over X is assigned a coefficient inN. Given a
vector of exponents 𝑑 ∈ [0, 𝐾]𝑛 , a monomial𝑀 over X is of the form 𝑐 ·∏𝑡 ∈𝑆 𝑋

𝑑𝑡
𝑡 for some constant

𝑐 . We sometimes write 𝜙 (X) to emphasize that 𝜙 is over variables X and use 𝜙 (c) for a vector of
constants c with |c| = |X| to denote evaluating 𝜙 over the assignment X[𝑖] = c[𝑖] for 𝑖 ∈ [1, |X|].

Definition 2.4 (Standard Monomial Basis). Polynomial 𝜙 (X) is in standard monomial basis
(SMB) if it is the result of dropping all monomials with 𝑐d = 0 from a general form polynomial (Eq. (1)).3

Provenance polynomials. Consider a bag-PDB D with bounding database 𝐷 and a RA+ query
𝑄 . Let X = { 𝑋𝑡 | 𝑡 ∈ 𝐷 } be a set of variables, one per tuple in 𝐷 . A lineage expression (provenance
polynomial) for a query result tuple 𝑡 is a polynomial over X that captures the relationship between
the output tuple and the input tuples that were combined (via query 𝑄) to produce 𝑡 . A provenance
polynomial is denoted Φ(X) or Φ[𝑄,𝐷, 𝑡] (X) if we want to specify the query, database, and result
tuple.

Fig. 4 defines Φ[𝑄, 𝐷, 𝑡] (X) inductively for RA+ queries. Note that, in contrast to Fig. 3, where
𝑅(𝑡) denotes the actual multiplicity of 𝑡 in 𝑅, here we use 𝑅(𝑡) to denote the variable representing
the multiplicity of 𝑡 . The correspondence between probability query answers and lineage for set
PDBs generalizes to expected multiplicities over bag-PDBs.
3Any polynomial can be rewritten in SMB.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:7

Φ[𝜋𝐴 (𝑄), 𝐷, 𝑡] =
∑︁

𝑡 ′ :𝜋𝐴 (𝑡 ′)=𝑡
Φ[𝑄,𝐷, 𝑡 ′] Φ[𝜎𝜃 (𝑄), 𝐷, 𝑡] =

{
Φ[𝑄,𝐷, 𝑡] if 𝜃 (𝑡)
0 otherwise

Φ[𝑄1 ∪𝑄2, 𝐷, 𝑡] = Φ[𝑄1, 𝐷, 𝑡] + Φ[𝑄2, 𝐷, 𝑡] Φ[𝑅,𝐷, 𝑡] = 𝑅 (𝑡)

Φ[𝑄1Z𝑄2, 𝐷, 𝑡] = Φ[𝑄1, 𝐷, 𝜋𝑠𝑐ℎ (𝑄1)𝑡] · Φ[𝑄2, 𝐷, 𝜋𝑠𝑐ℎ (𝑄2)𝑡]
Fig. 4. Computing lineage polynomials for a RA+ query 𝑄 over D with bounding database 𝐷 and variables

X = (𝑋𝑡)𝑡 ∈𝐷 .

Lemma 2.5 ([6]). Given D = (Ω,P) with bounding database 𝐷 , query 𝑄 , tuple 𝑡 ∈ 𝑄 (𝐷).
E
[
Φ[𝑄,𝐷, 𝑡]

]
= E [𝑄 (D) (𝑡)] .

Lem. 2.5 implies that expected multiplicities can be computed from lineage. As we will see
in Sec. 4.2, expectations of lineage polynomials can be computed for bag-TIDBs by evaluating a
reduced forms of lineage polynomials over the probabilities of input tuples.

Example 2.6. Consider the polynomial encoding of the bag-TIDB from Example 2.3 shown below
where each tuple is associated with a variable (see below). The lineage polynomial for result tuple ⟨1⟩
is:

Φ[𝑄, 𝐷, ⟨1⟩] = 𝑋 + 𝑌

To compute E
[
Φ[𝑄,𝐷, ⟨1⟩]

]
= E [𝑋 + 𝑌] we can use linearity of expectation to get E [𝑋 + 𝑌] =

E [𝑋] + E [𝑌]. Now substituting the definition of expectation we get:∑︁
𝑥∈{0,1}

𝑥 · 𝑃𝑟 [𝑋 = 𝑥] +
∑︁

𝑦∈{0,1}
𝑦 · 𝑃𝑟 [𝑌 = 𝑦] = 1 · 0.3 + 1 · 0.6 = 0.9

As guaranteed by Lem. 2.5, we get same answer as in Example 2.3.
A B Φ 𝑃𝑟 [Φ = 1]
1 2 𝑋 0.3
1 3 𝑌 0.6

A Φ E [Φ]
1 𝑋 + 𝑌 0.9

3 RELATEDWORK

Probabilistic databases have been studied extensively; [52, 55] provide comprehensive surveys. The
classical problem studied for set-PDBs is to compute the marginal probability of a tuple to exist in
the result of a query. As this can be viewed as computing the expectation of a Boolean variable (is
the tuple in the result or not), the natural generalization for bag semantics that we study in this
work is to compute the expected multiplicity of a result tuple. In contrast to the set case where
this problem is #P-hard in data complexity even for TIDBs [24], computing expected multiplicities
is in PTIME [26]. For the set case, multiple tractable classes of queries [11–13, 21, 48, 49] and
database instances [2] have been identified. However, evaluating RA+ queries in general requires
approximation techniques to be feasible [14, 19, 20, 23, 44]. As one example, Gatterbauer and
Suciu [23] propose the use of extensional query evaluation — an evaluation strategy that assumes
full independence betweenmonomials in a set-PDB— as a bound. Fink et. al. [19] propose an anytime
algorithm that gradually shrinks bounds on result probabilities. Although much work in this space
focuses on set-PDBs, several efforts explore bag semantics. As previously noted, MCDB [5, 32] and
Pip [33] are two major approaches. However, without approximate query processing, this approach
uses a SoM encoding that carries significant overhead. Grohe et. al., [26] explored the complexity
of queries that compute the probability that the multiplicity of a result tuple exceeds some constant
𝑐 , relating it the complexity of set-PDB. Our accompanying technical report [6] handles computing

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:8 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

expected multiplicities for arbitrary but a fixed constant 𝑐 while this paper states the problem for
𝑐 = 1.

Feng et. al. [16–18], and Guagliardo and Libkin [27] propose an approach to incomplete bag
databases, bounding the space of certain / possible answers. Orr et. al., [45] explore the dual of our
work, using a probabilistic data model to formalize AQP. [53] studied the problem of approximating
certain and possible answers over databases with missing data.
In terms of AQP, most closely related to our work are approximations for aggregates over join

results. Themost common approach is use a random sample from join results to compute an unbiased
estimation of the aggregation. Ripple join [29], the first algorithm for general joins, uniformly
samples from all tables in a round-robin fashion, but is inefficient for joins with low selectivity. Deng
et al. [15] and Kyoungmin et. al. [34] simultaneously found an optimal combinatorial uniform join
sampling algorithm, albeit with linear-time query-time preprocessing. Wander Join [35] samples
non-uniformly over 𝑘-ary joins based on random walks, is faster than ripple join, and does not
require query-time pre-processing (see Sec. 6.2 for further discussion). See [37, 40, 41] for AQP
surveys.

4 ON THE COMPLEXITY OF BPQP

In this section, we demonstrate that there is a fundamental complexity gap between bag-PQP and
deterministic query evaluation. We will show that there exists a class of RA+ queries 𝑄𝑘

ℎ𝑎𝑟𝑑
for

which exactly computing the expected multiplicity of result tuples over a bag-TIDB has a higher
(fine-grained) complexity than deterministic query processing using an existing query evaluation
algorithm. Specifically, in Sec. 4.3, we present reductions from well-studied sub-graph counting
problems to bag-PQP for 𝑄𝑘

ℎ𝑎𝑟𝑑
. These reductions establish a lower bound on the complexity of

bag-PQP for 𝑄𝑘
ℎ𝑎𝑟𝑑

and contrast it with a deterministic algorithm.

4.1 Subgraph Counting and 𝑄𝑘
ℎ𝑎𝑟𝑑

Our hardness results are based on (exactly) counting the number of (not necessarily induced)
subgraphs in a graph 𝐺 isomorphic to a graph 𝐻 , and known standard hardness results and
assumptions. Let #(𝐺,𝐻) denote the number of subgraphs isomorphic to 𝐻 in graph 𝐺 . 𝐻 is
considered as being of constant size and 𝐺 is the input. Let #(𝐺, · · · 𝑘) be the number of 𝑘-
matchings4 and 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) the optimal runtime of computing #(𝐺, · · · 𝑘) exactly. Our results
are based on the following known (conditional) hardness results:

Theorem 4.1 ([9]). Given a positive integer 𝑘 and undirected graph𝐺 = (𝑉 , 𝐸) with no self-loops
or parallel edges, 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥ 𝜔 (𝑓 (𝑘) · |𝐸 |𝑐) for any function 𝑓 and any constant 𝑐 independent
of |𝐸 | and 𝑘 (assuming #W[0] ≠ #W[1]).

Theorem 4.2 ([10]). Given a positive integer𝑘 > 1 and undirected graph𝐺 = (𝑉 , 𝐸),𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥
|𝑉 |Ω (𝑘/log𝑘) assuming the Exponential Time Hypothesis (ETH).

#W[0] and #W[1] are parameterized complexity classes for counting problems [22], where the
complexity is analyzed separately for classes of instances parameterized by 𝑘 , e.g., the matching
size. The exponential time hypothesis claims that any algorithm solving 3-SAT has a runtime of at
least 2𝑐 ·𝑛 for some fixed 𝑐 > 0 [31].
The hard query. Consider the following variation of the query from Fig. 2, using relation𝑉 (𝑈) in
place of Online and 𝐸 (𝑈1,𝑈2) in place of Match.

𝑄1 ≔ 𝜋∅
(
𝑉Z𝑈=𝑈1𝐸Z𝑈2=𝑈𝑉

)
.

4A 𝑘-matching is a set of 𝑘 edges where no pair of edges has the same endpoint.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:9

Noting that 𝑄1 always emits exactly one tuple, we define a family of queries 𝑄𝑘
ℎ𝑎𝑟𝑑

for arbitrary
join width 𝑘 as follows:

𝑄𝑘
ℎ𝑎𝑟𝑑

≔ 𝜋∅ (𝑄1Z · · ·Z𝑄1︸ ︷︷ ︸
k times

). (2)

Let graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) be a set of 𝑛 vertices, and let 𝐷𝐺 (resp., D𝐺) be the database (resp.
bag-TIDB) with relations 𝑉 and 𝐸 as defined next. 𝐷𝐺 consists of 𝑉 (𝑈) = 𝑉𝐺 and 𝐸 (𝑈1,𝑈2) = 𝐸𝐺 .
The query 𝑄1 (𝐷𝐺) simply computes the number of edges in 𝐸 where both endpoints exist in 𝑉 .
Query 𝑄𝑘

ℎ𝑎𝑟𝑑
(𝐷𝐺) computes this value, raised to the 𝑘’th power. Given a probability 𝑝 , bag-TIDB

D𝐺 is defined as follows: every tuple 𝑢 ∈ 𝑉 has probability 𝑝𝑢 = 𝑝 and every tuple 𝑒 ∈ 𝐸 has
probability 𝑝𝑒 = 1. In Sec. 4.3, we demonstrate that the expected multiplicity of tuples in the result
of queries in the 𝑄𝑘

ℎ𝑎𝑟𝑑
family evaluated over variants of D𝐺 for different values of 𝑝 is related to

#(𝐺, · · · 𝑘). Using hash join, an index on 𝑉 , and projection pushdown, a deterministic database
engine can evaluate 𝑄𝑘

ℎ𝑎𝑟𝑑
in no worse than 𝑂 (𝑘 |𝐸 |) time:

Lemma 4.3. There exists a algorithm that computes 𝑄𝑘
ℎ𝑎𝑟𝑑

in time 𝑂 (𝑘 |𝐸 |) over 𝐷𝐺 for any graph
𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑂 (|𝐸 |).

Comparison with set semantics hardness. We note that Dalvi and Suciu [13], show that under
set semantics computing 𝑄𝑘

ℎ𝑎𝑟𝑑
= 𝑄1 is #P-hard (there is a technical subtlety, which we address

in the next paragraph). Under bag semantics (which is our focus), one can compute the expected
multiplicity of𝑄𝑘

ℎ𝑎𝑟𝑑
for𝑘 ∈ {1, 2} in𝑂 (|𝐸 |) time.5 Aswe show in accompanying technical report [6],

the problem takes super linear time for 𝑘 ≥ 3.
We finally address a technical subtlety mentioned about the #P-hardness result of computing 𝑄1

under set semantics. The reduction in [13] starts off with a bipartite graph 𝐺 = (𝑉1,𝑉2, 𝐸) where
𝐸 ⊆ 𝑉1 ×𝑉2 where the hard query for set semantics is 𝑄1 ≔ 𝜋∅

(
𝑉1Z𝑈=𝑈1𝐸Z𝑈2=𝑈𝑉2

)
(and 𝑝 = 1

2).
6

The reason this does not match 𝑄1 is because 𝑉1 ∩ 𝑉2 = ∅. To show that 𝑄1 is also hard in set
semantics, consider 𝐺 = (𝑉 ≔ 𝑉1 ∪𝑉2, 𝐸) where for each (𝑖, 𝑗) ∈ 𝐸 both (𝑖, 𝑗) and (𝑗, 𝑖) are in 𝐸.
We note that the marginal probability of computing 𝑄1 is the same as that of 𝑄1.7

4.2 Reduced Polynomials

Recall that in Sec. 2.1 (specifically in Lem. 2.5), we showed that the final answer that we are after is
the expectation of the corresponding lineage polynomial, i.e. E[Φ]. We now introduce a mechanical
transformation that transforms a polynomial Φ into a “reduced” form Φ̃ that, for specific inputs,
is exactly equivalent to the expectation E[Φ]. The insight behind this reduction is central to the
arguments in Sec. 4.3 and algorithms in Sec. 5.
Consider a monomial 𝑀 ∈ Φ. We define the reduced monomial �̃� by setting each non-zero

exponent of a variable in𝑀 to 1. Let us consider the case where Φ is applied to a vector of random
variables X, such that each𝑋𝑡 independently has value 1with probability 𝑝𝑡 , i.e., Φmodels a lineage
5The claimed result from 𝑘 = 1 follows from the observation that the expected multipliciy for𝑄1 is 𝑝2 |𝐸 | . The claim for
𝑘 = 2, follows from the observation that in𝑂 (|𝐸 |) time we can compute the number of copies of all two edge subgraphs in
𝐺 .
6In this case the corresponding lineage polynomial is ∨(𝑖,𝑗) ∈𝐸𝑋𝑖 ∧𝑋 𝑗 and we are interested in computing the probability
that this polynomial evaluates to a 1. We note that there should be variables 𝑋 (𝑖,𝑗) corresponding to the edges (𝑖, 𝑗) ∈ 𝐸 in
the lineage polynomial. However, the reduction in [13] assigns edges in 𝐸 a probability of 1, so we can drop the variables
𝑋 (𝑖,𝑗) for the marginal probability computation.
7Note that the lineage polynomial for𝑄1 is ∨(𝑖,𝑗) ∈𝐸𝑋𝑖 ∧𝑋 𝑗 = ∨(𝑖,𝑗) ∈𝐸

(
𝑋𝑖 ∧𝑋 𝑗

)
∨
(
𝑋 𝑗 ∧𝑋𝑖

)
= ∨(𝑖,𝑗) ∈𝐸

(
𝑋𝑖 ∧𝑋 𝑗

)
, where

the last equality follows from the fact for any Boolean variable 𝑏, we have 𝑏 ∨ 𝑏 = 𝑏.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:10 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

polynomial over a bag-TIDB. The key insight behind reduced polynomials is that, for an input
monomial𝑀, the reduced monomial �̃�, evaluated on the probability vector p is exactly the expected
value of the original monomial evaluated on the vector of variables. (i.e., �̃� (p) = E[𝑀 (X)]) [6].

Example 4.4. Consider the lineage monomial𝑀 (𝐴, 𝐵) ≔ 𝐴2𝐵2. Because distinct variables are inde-
pendent, we can push expectation through them yielding E

[
𝐴2𝐵2

]
= E

[
𝐴2] E [𝐵2] . Since𝐴, 𝐵 ∈ {0, 1}

we can simplify to E [𝐴] E [𝐵] by the fact that for any𝑋 ∈ {0, 1},𝑋 2 = 𝑋 . We then have E [𝐴] E [𝐵] =
𝑝𝐴 ·𝑝𝐵 (where 𝑝𝐴 and 𝑝𝐵 denote 𝑃𝑟 [𝐴 = 1] and 𝑃𝑟 [𝐵 = 1]). Thus, E [𝑀] = E [𝐴] E [𝐵] =�̃� (𝑝𝐴, 𝑝𝐵) .

Through linearity of expectation, the same argument applies to the entire polynomial: when
Φ is evaluated over binary variables X, then Φ̃(p) = E[Φ(X)]. Moving forward, we will use the
expectation and reduced polynomial interchangeably.

4.3 Hardness Reduction

We are now ready to present our main hardness results:

Lemma 4.5. Let 𝑝0, . . . , 𝑝2𝑘 be 2𝑘 + 1 distinct values in (0, 1]. and Φ𝑘
𝐺
(X) ≔ 𝑄𝑘

ℎ𝑎𝑟𝑑
(D𝐺) where

D𝐺 is constructed as in Sec. 4.1. Then computing Φ̃𝑘
𝐺
(𝑝𝑖 , . . . , 𝑝𝑖) (for all 𝑖 ∈ [2𝑘 + 1]) for arbitrary

𝐺 = (𝑉 , 𝐸) needs time Ω (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)), if 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥ 𝜔 (|𝐸 |).

First, observe that Φ̃𝑘
𝐺
(𝑝, . . . , 𝑝) must have the form

∑2𝑘
𝑖=0 𝑐𝑖𝑝

𝑖 , where only 𝑐𝑖 depends on the
specific graph for the following reason. Each monomial in Φ1

𝐺
is a product of exactly 2 variables

(i.e., its degree is 2). It follows that each monomial of Φ𝑘
𝐺
is a product of 2𝑘 (non-distinct) variables

(i.e., degree 2𝑘). By definition Φ̃𝑘
𝐺
(X) sets every exponent 𝑑𝑡 > 1 to 𝑑𝑡 = 1, which means that

deg(Φ̃𝑘
𝐺
) ≤ deg(Φ𝑘

𝐺
) = 2𝑘 . Thus, if we think of 𝑝 as a variable, then Φ̃𝑘

𝐺
(𝑝, . . . , 𝑝) is a polynomial

of degree at most 2𝑘 .
We observe that, by construction of Φ̃𝑘

𝐺
, each 𝑐𝑖 is exactly the number of monomials in the sum-

of-products expansion of Φ̃𝑘
𝐺
(X) (its representation according to Definition 2.4) that are composed

of 𝑖 distinct variables. Given that we have 2𝑘 + 1 distinct values of Φ̃𝑘
𝐺
(𝑝𝑖 , . . . , 𝑝𝑖) for 0 ≤ 𝑖 ≤ 2𝑘 , it

follows that we have a linear system of the form𝑀 · 𝑐 = 𝑏, where the 𝑖th row of𝑀 is
(
𝑝0𝑖 , . . . , 𝑝

2𝑘
𝑖

)
, 𝑐

is the coefficient vector (𝑐0, . . . , 𝑐2𝑘), and 𝑏 is the vector such that 𝑏 [𝑖] = Φ̃𝑘
𝐺
(𝑝𝑖 , . . . , 𝑝𝑖). This linear

system can always be solved in 𝑂 (𝑘3) time [6] to compute values for each 𝑐𝑖 .
We claim that 𝑐2𝑘 is 𝑘! · #(𝐺, · · · 𝑘). This can be seen by looking at the expansion of the original

factorized representation:

Φ𝑘𝐺 (X) =
∑︁

(𝑖1, 𝑗1),...,(𝑖𝑘 , 𝑗𝑘) ∈𝐸
𝑋𝑖1𝑋 𝑗1 · · ·𝑋𝑖𝑘𝑋 𝑗𝑘

Only a unique 𝑘-matching, with 𝑘 distinct (𝑖𝑡 , 𝑗𝑡) index pairs can contribute to the coefficient of
𝑝2𝑘 . Moreover, every such distinct 𝑘-matching will be produced 𝑘! times. Thus, given 𝑐2𝑘 , we can
obtain #(𝐺, · · · 𝑘) in constant time.

4.4 Summary

Lemma 4.6. Computing the expected multiplicity for 𝑄𝑘
ℎ𝑎𝑟𝑑

needs at least time 𝜔 (𝑓 (𝑘) · (|𝐸 |)𝑐)
and |𝐸 |Ω (𝑘/log𝑘) under the complexity assumptions in Thm. 4.1 and Thm. 4.2 respectively.

Assume that we can compute 𝑄𝑘
ℎ𝑎𝑟𝑑
(D𝐺) in time 𝑇 . Thus, we can compute it 2𝑘 + 1 times for

different values of 𝑝 in𝑂 (𝑘𝑇) time. We can then obtain 𝑐2𝑘 by solving a system of linear equations
of size𝑂 (𝑘2) in𝑂 (𝑘3). We achieve a contradiction by showing that if𝑇 does not satisfy the claimed
lower bounds, then 𝑂

(
𝑘𝑇 + 𝑘3

)
is smaller than the lower bounds in Thm. 4.1 and Thm. 4.2.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:11

Theorem 4.7. Let 𝑇𝑑𝑒𝑡 (𝑘,𝐺) be the runtime of 𝑄𝑘
ℎ𝑎𝑟𝑑
(𝐷𝐺), and 𝑇𝑝𝑟𝑜𝑏 (𝑘,𝐺) be the runtime of

𝑄𝑘
ℎ𝑎𝑟𝑑
(D𝐺) where 𝐷𝐺 and D𝐺 are as defined in Sec. 4.1. We have 𝑇𝑝𝑟𝑜𝑏 (𝑘,𝐺) = 𝜔 (𝑇𝑑𝑒𝑡 (𝑘,𝐺)).

This result follows from Lem. 4.3 and Lem. 4.6. The proofs of our technical results can be found in
our accompanying technical report [6]. In [6], we further relate the complexity of bag-PQP to a
conservative model of query runtimes.

5 SAMPLING ALGORITHM

To summarize Sec. 4, there exists at least one family of queries and probabilistic database instances
for which computing expected multiplicities for the result of a bag-TIDB query is necessarily (under
standard complexity assumptions) a polynomial factor slower (in the size of the database) than
computing multiplicities for the result of a corresponding deterministic query. In other words, it is
not possible for bag-TIDB databases to be competitive with deterministic databases if exact expectations
are required. Since exact multiplicities are out of the question, we turn to approximation.

Roadmap. We first analyze the bottlenecks of existing algorithms for bag-PQP in Sec. 5.1, isolating
the theoretical bound to the problem of computing the expected count from a lineage circuit. In
Sec. 5.2 and specifically Alg. 2, we establish a framework for approximating the expected count
using the standard Horvitz and Thompson estimator. The balance of the section focuses on Alg. 3,
our algorithm for computing approximate multiplicities in 𝑄 (D). This algorithm first performs a
pre-computation pass over the circuit (Sec. 5.3.2, Alg. 4), and then subsequently samples a series
of monomials from the prepared circuit (Sec. 5.3.3, Alg. 5). We show that the runtime of Alg. 3
is bounded by |C|, the size of the lineage circuit for a query result. As the asymptotic runtime to
construct the lineage circuit for a deterministic query is proportional to that of constructing the
query output (see Thm. 5.1), we adopt the |C| as our target complexity. For ease of presentation, in
this section we will assume that there is exactly one result tuple 𝑡 .

Algorithm 1 expectSumOfProducts (𝑄,R, p)
Input: Query 𝑄 , relations R, prob. p = (𝑝1, . . . , 𝑝𝑛) ∈ [0, 1]𝑛
1: S ← buildPolynomial (𝑄,R) ⊲ e.g., ProvSQL [51]
2: acc← ∑

𝑀∈S
∏
𝑋 ∈Distinct(𝑀) 𝑝𝑋

3: return acc

5.1 Exact Expectations

As discussed in Sec. 4.2, the expectation E[Φ] (i.e., E[𝑄 (D) (𝑡)]) is exactly Φ̃(p). The naive
algorithm for computing the exact expectations (Alg. 1), follows the derivation of Φ̃: it uses
buildPolynomial to compute Φ represented in its Sum-of-Monomials (SoM) encoding (defined be-
low), e.g., using ProvSQL [51]. Then for each monomial𝑀 ∈ Φ, it obtains the set of distinct variables
in 𝑋 ∈ 𝑀 and computes the product of their respective probabilities (i.e., 𝑝𝑋). The correctness of
Alg. 1 follows from linearity of expectation, and it runs in time linear in the number of monomials
in the SoM encoding of Φ. However, using arithmetic circuits, polynomials can be encoded more
concisely. As the following example shows, the use of circuits is necessary for achieving runtime
competitive with deterministic query processing as just outputting a SoM encoding of lineage can
have superlinear overhead over deterministic queries.

Example 5.1. To understand why this is, consider the query 𝑄 ≔ 𝜋∅ (𝑅 × 𝑆) which evaluated
deterministically returns the empty tuple ⟨⟩ with multiplicity |𝑅 | · |𝑆 |. The deterministic version of
this query can be evaluated in 𝑂 (|𝑅 | + |𝑆 |) by counting the number of tuples in 𝑅 and 𝑆 and then

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:12 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

multiplying these counts. However, Φ =
∑
𝑟 ∈𝑅, 𝑠∈𝑆 𝑋𝑟 · 𝑋𝑠 , the SoM lineage for the single result tuple,

has 𝑂 (|𝑅 | · |𝑆 |) monomials. Thus, just generating the lineage requires at least 𝑂 (|𝑅 | · |𝑆 |) time. Using
a circuit, Φ can be encoded using linear space through factorization: (∑𝑟 ∈𝑅 𝑋𝑟) · (

∑
𝑠∈𝑆 𝑋𝑠).

As shown in the example above, using SoM (Alg. 1) we will incur superlinear overhead over
deterministic queries just for constructing lineage. As a result, any approximation algorithm with
linear overhead over deterministic querying requires the use of a more succinct representation of
lineage, e.g., through arithmetic circuits.
Lineage Circuits.We now formally define arithmetic circuits and demonstrate that circuits for
lineage polynomials can be constructed with linear overhead over deterministic query processing.

Definition 5.2 (Circuit). A circuit C is a Directed Acyclic Graph (DAG) with source gates (in
degree of 0) drawn from X = (𝑋𝑡)𝑡 ∈𝐷 and one sink gate for each result tuple. Internal gates have
binary input and are either sum (+) or product (×) gates. CL and CR denote the left and right inputs of
C, respectively.

Where it is clear from context, we allow C to denote a gate rather than an entire circuit. Operators
that replicate tuple lineages (e.g., joins) may reuse the same gate for each replica, sharing (rather than
copying) the sub-circuit for multiple output tuples. Using a model for the runtime of deterministic
queries where the runtime of a query 𝑄 over a bag-PDB D with bounding deterministic database
𝐷 in this model is denoted as 𝑇𝑑𝑒𝑡 (𝑄, 𝐷), we demonstrate in [6] that circuits can be generated
efficiently. Intuitively, this is possible by reusing partial circuits during circuit construction. Each
intermediate result tuple will be associated with a pointer to the root node of a circuit. Relational
operators construct circuits for result tuples by adding new nodes and connecting them to the
roots of existing circuits. For instance, the circuit for a join result tuple is constructed by creating a
multiplication node and connecting it to the root nodes of the circuits for the two input tuples that
were joined. In this manner, a constant runtime and space overhead is paid for each tuple that is
processed by an operator.

Theorem 5.1 (See [6]). There exists an algorithm buildCircuit that for any query 𝑄 , bounding
database 𝐷 , and tuple 𝑡 outputs a lineage circuit C𝑡,𝑄,𝐷 with logarithmic depth such that its size and
the runtime of buildCircuit are both bounded by 𝑂 (𝑇𝑑𝑒𝑡 (𝑄, 𝐷)).

Although its authors do not prove its runtime, ProvSQL [51] realizes buildCircuit with this
bound. A formal proof can be found in our accompanying technical report [6], but intuitively, there
is a one-to-one mapping between each intermediate tuple in a join plan, and the gate representing
the tuple (recalling that gates may be re-used).

5.2 ApproximateΦ̃

Alg. 1 is computing a sum of a large number of monomials. A natural strategy for approximating
the sum of 𝑁 items is to compute the sum of s uniform samples and rescale by 𝑁

s . The algorithm,
ApproximateΦ̃ (Alg. 2) implements a variant proposed by Horvitz and Thompson [30] that allows
for biased sampling. We consider biased sampling, as we will use an approach based on biased
sampling for FastPDB in Sec. 6.2. ApproximateΦ̃ is parameterized by a function genSamples. We
discuss implementations of this function below, but we require that it generates a collection of
sampled monomials M, each annotated with the probability of drawing that specific monomial
𝑃𝑟 [M𝑖]. If monomials are sampled uniformly, then 𝑃𝑟 [M𝑖] = 1

|𝑄 (R) | =
1
𝑁
. The following result follows

from the standard analysis of the Horvitz and Thompson estimator:

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:13

Algorithm 2 ApproximateΦ̃(𝑄,R, p, s)
Input: Query 𝑄 , Relations R, #samples s, p = (𝑝1, . . . , 𝑝𝑛) ∈ [0, 1]𝑛
1: S ← genSamples (𝑄,R, p, s) ⊲ S = {⟨M𝑖 , 𝑃𝑟 [M𝑖]⟩}
2: acc← ∑

(M,𝑃𝑟 [M]) ∈S
∏
𝑋 ∈Distinct(M) 𝑝𝑋 · 1

𝑃𝑟 [M]
3: return (acc · 1s)

Algorithm 3 genSamplesc (𝑄,R, s)
Input: Query 𝑄 , relations R, #samples s
1: S ← []
2: C← buildCircuit (𝑄,R, s) ⊲ Thm. 5.1 / ProvSQL
3:

(
size, C𝑝

)
← Prepare (C) ⊲ Alg. 4

4: for i in s do

5: S ← S ◦
[
SampleMonomial

(
C𝑝
)
, 1
size

]
⊲ Alg. 5

6: return S

Proposition 5.2. Assume the genSamples (𝑄,R, p, s) has the following property: For each mono-
mial𝑀 in the SoM encoding of Φ[𝑄,R, 𝑡], the probability of𝑀 being sampled is strictly greater than
0, i.e. 𝑃𝑟 [𝑀] > 0. Then for every 𝑠 ≥ 1:

E
[
ApproximateΦ̃ (𝑄,R, p, s)

]
= expectSumOfProducts (𝑄,R, p) .

The only remaining task is to design an appropriate genSamples. For ApproximateΦ̃ to be an
efficient approximation algorithm: (i) genSamples needs to run in time𝑂 (|buildCircuit (𝑄,R, s) |)
(Alg. 3) and (ii) 𝑃𝑟 [𝑀] needs to be as close to 1

|𝑄 (R) | as possible.

5.3 Circuit based genSamples

We realized a circuit based implementation of genSamples, named name genSamplesc, that
achieves this bound. The algorithm is summarized in Alg. 3. genSamplesc first produces a cir-
cuit of the output lineage polynomial via a call to buildCircuit (from Thm. 5.1, and imple-
mented in ProvSQL [51]). Because the circuit size and the cost of its creation are bounded by
𝑂 (|C|) ≤ 𝑂

(
𝑇𝑑𝑒𝑡 (𝑄,𝐷)

)
, the circuit creation and subsequent approximation algorithm combine

to form an end-to-end approximation of the expected multiplicity of tuples in 𝑄 (𝐷) that meets
our complexity target. Before discussing genSamplesc, we introduce the notion of the monomial
expansion of a circuit, which we denote by E(C). E(C) encodes the SoM representation of C as a list
of monomials with repetitions for monomials that have a coefficient larger than 1. Each monomial
is represented as a bag of variables, e.g., 𝑋 2𝑌 3 = {|𝑋,𝑋,𝑌,𝑌 ,𝑌 |}.

Example 5.3. The SoM encoding of the polynomial of the circuit of Fig. 5 is 𝑋 2𝑊 2 + 𝑋𝑊𝑌𝑍 +
𝑋𝑊𝑌𝑍 +𝑊𝑌 2𝑍 . In other words,

E(C) = [{|𝑋,𝑋,𝑊 ,𝑊 |} , {|𝑋,𝑊 ,𝑌, 𝑍 |} , {|𝑋,𝑊 ,𝑌, 𝑍 |} , {|𝑊,𝑌,𝑌, 𝑍 |}] .

𝑿 𝑾 𝒀 𝒁

× × ×

+ +

×

1 2 1 1

2 2 1

3 3

9

Fig. 5. Circuit for

(𝑋𝑊 +𝑊𝑌) (𝑋𝑊 +𝑌𝑍).

Essentially, algorithm genSamplesc samples monomials uniformly from
E(C) as follows. First, buildCircuit is used to build the circuit to sample
from. Second, a call to Prepare augments C (i.e. C𝑝) with sampling weights
to enable uniform sampling. Then, using C𝑝 , sampling takes place via calls
to SampleMonomial, which has the following guarantee (see [6] for the
proof):

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:14 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

Lemma 5.4. SampleMonomial returns in time 𝑂 (|C|) an independent
uniform monomial from E(C).
5.3.1 Guarantee on ApproximateΦ̃. We now have all the pieces in place to
present our final guarantee on ApproximateΦ̃. We get the following bounds (see [6] for the proof):

Theorem 5.3. For every query 𝑄 , relations R and probability vector p, ApproximateΦ̃ (𝑄,R, p,⌈
2 log 2

𝛿

𝜖2

⌉)
using genSamplesc (in time 𝑂𝜖,𝛿 (|C|) ≤ 𝑂𝜖,𝛿

(
𝑇𝑑𝑒𝑡 (𝑄,𝐷)

)
) outputs an estimate acc of

Φ̃ (𝑝1, . . . , 𝑝𝑛) such that (where C is as in Line 2 of genSamples):

𝑃𝑟

[���acc − Φ̃ (𝑝1, . . . , 𝑝𝑛)��� ≥ 𝜖 · C (1, . . . , 1)] ≤ 𝛿.
Proof Sketch. From Proposition 5.2, E [acc] = Φ̃ (𝑝1, . . . , 𝑝𝑛). Lem. 5.4 then allows us to use

Chernoff’s bound, which gives the claimed bound (note that by definition C (1, . . . , 1) is the number
of monomials in the SoM encoding of the polynomial represented by C). The claim on the run time
follows from Lem. 5.4 and Thm. 5.1.
Finally, we note that if there exists a constant 𝑝0 > 0 such that 𝑝𝑖 ≥ 𝑝0 for all 𝑖 ∈ 𝑛, i.e., all

probabilities are larger than 𝑝0, then we can replace the guarantee of Thm. 5.3 with a multiplicative
1 ± 𝜖 approximation guarantee:

𝑃𝑟

[���acc − Φ̃ (𝑝1, . . . , 𝑝𝑛)��� ≥ 𝜖 · Φ̃ (𝑝1, . . . , 𝑝𝑛)] ≤ 𝛿.
The above follows by noting that under the condition 𝑝𝑖 ≥ 𝑝0 we have Φ̃ (𝑝1, . . . , 𝑝𝑛) ≥ Ω𝑝0,𝑛 (C (1,
. . . , 1)) and so adjusting 𝜖 by an appropriate constant in Thm. 5.3 gives the bound. Next, we explain
algorithms Prepare and SampleMonomial.

Algorithm 4 Prepare (C)
Input: C: Circuit
Output: C: Circuit annotated with Lweight, Rweight, partial.
Output: sum ∈ N
1: for g ∈ TopOrd (C) do ⊲ TopOrd (·) is C in topological order
2: if g is a var gate then

3: g.partial← 1
4: else if g is a × gate then

5: g.partial← gL .partial × gR .partial
6: else if g is a + gate then
7: g.partial← gL .partial + gR .partial
8: g.Lweight← gL .partial

g.partial

9: g.Rweight← gR .partial
g.partial

10: sum← g.partial

11: return (sum, C)

5.3.2 Prepare. Alg. 4 (which implements Prepare) computes, for each gate C of a circuit, the the
number ofmonomials in the corresponding sub-circuit (i.e., C(1, . . . , 1)). Samples in SampleMonomial
are taken specifically at + gates, so we also pre-compute shorthand values for these cells (Lweight,
Rweight) that correspond to the proportion of the number of monomials under each of the gate’s
children. The algorithm’s runtime is 𝑂 (|C|), modulo a log factor for the topological sort, as it visits
each gate (g) exactly once and performs constant work for each.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:15

Algorithm 5 SampleMonomial (C)
Input: C: Circuit annotated by Alg. 4
Output: List of Variables
1: if C’s root is a + gate then
2: Csamp ← Sample CL (w.p. C.Lweight) or CR (w.p. C.Rweight)
3: return SampleMonomial(Csamp)
4: else if C’s root is a × gate then

5: v← SampleMonomial(C.left)
6: return v ◦ SampleMonomial(C.right)
7: else if C’s root is a var gate then

8: return [C.val]

5.3.3 SampleMonomial. Alg. 5 implements SampleMonomial and utilizes a recursive definition
of E(C) (see [6]). Concretely, a + gate combines two sets of monomials; thus, the sampling process
picks, at random, a set to explore with a probability proportional to the sum of the number of
monomials computed in the Prepare step. For a × gate, the process samples a monomial uniformly
from each of the gate’s children and computes their product. The source gates each define a variable
𝑋 ∈ X. SampleMonomial may visit the same gate multiple times (e.g., if multiple gates share a
parent). Our proof [6] of its 𝑂 (|C|) runtime is based on the observation that the degree of a lineage
circuit is bounded by the join width (𝑘 − 1) of the query that created it. Thus, the number of × gates
that SampleMonomial encounters in any single invocation is likewise bounded by 𝑘 . Because
only one branch of each + gate is taken, we can bound the total runtime of SampleMonomial by
𝑂 (𝑘 |C|).

6 IMPLEMENTATION

In this section, we present two implementations of ApproximateΦ̃. First, we present a direct
implementation using genSamplesc (Alg. 3). While this implementation can guarantee low variance,
per our experiments (Sec. 7), constructing the circuit that the first implementation relies on can
have high runtime overhead. This high overhead motivates our second implementation, which uses
approximate query processing (WanderJoin [35], specifically) to “push down” lineage sampling
into query evaluation.

6.1 ApproximateΦ̃ with genSamplesc

To implement the exact algorithm, we use ProvSQL [51], an extension for PostgreSQL that in-
struments query execution to produce lineage circuits for result tuples. ProvSQL persists a DAG
structure with immutable nodes for every tuple that the Postgres instance materializes. This ar-
chitecture allows multiple tuples, and even multiple relations in the system to share circuit nodes.
We implement ApproximateΦ̃ with genSamplesc as a UDF that takes a ProvSQL circuit node as
input, and returns the expected multiplicity.
Prepare. Prepare traverses the input circuit, precomputing the cumulative weights for each
inner node of the circuit. We extended the ProvSQL circuit structure to store these weights. One
challenge is that ProvSQL implements inner nodes as 𝑛-ary, as opposed to the binary nodes we
assume in our theoretical development. Although this allows ProvSQL to store a circuit without
introducing a logarithmic overhead to its size, the 𝑂 (|𝐶 |) runtime of SampleMonomial now
depends on sampling in constant time from a + node’s 𝑛 children. To achieve this bound, the
Prepare algorithm additionally generates a Walker Alias Table [56], a data structure that allows

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:16 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

J𝑅K𝐺 = 𝑅𝑎𝑢𝑔 J𝜎𝜃 (𝑄)K𝐺 = 𝜎𝜃 J𝑄K𝐺
J𝜋𝐴 (𝑄)K𝐺 = 𝜋𝐴,vsch(𝑄) J𝑄K𝐺 J𝑄1 ⊲⊳ 𝑄2K𝐺 = J𝑄1K𝐺 ⊲⊳ J𝑄2K𝐺

J𝑄1 ⊎𝑄2K𝐺 = 𝜋𝑠𝑐ℎ (𝑄1),vsch(𝑄1),vsch(𝑄2)←1 J𝑄1K𝐺
⊎ 𝜋𝑠𝑐ℎ (𝑄2),vsch(𝑄1)←1,vsch(𝑄2) J𝑄2K𝐺

vsch(𝑅) = {X𝑅,P𝑅} vsch(𝜎𝜃 (𝑄)) = vsch(𝜋𝐴 (𝑄)) = vsch(𝑄)

vsch(𝑄1 ⊲⊳ 𝑄2) = vsch(𝑄1 ⊎𝑄2) = vsch(𝑄1) ∪ vsch(𝑄2)
Fig. 6. GProM [4] semantics for propagating tuple annotations. vsch(·), as defined above denotes the set of

variable attributes in a relation (𝑅) or query (𝑄).

weighted sampling from a fixed set of elements in constant time. An alias table for 𝑛 elements can
be created in 𝑂 (𝑛) time (i.e., constant time per-child), preserving the 𝑂 (|𝐶 |) runtime of Prepare.
SampleMonomial. SampleMonomial is implemented exactly as Alg. 5, modulo the alias table
as described above. Samples are computed using the Mersenne Twister [39] with a uniform real
distribution in (0, 1) for each internal + gate.
ApproximateΦ̃. ApproximateΦ̃ is a UDF that generates an expected multiplicity from a lineage
circuit by: (i) invoking Prepare on the input circuit, and (ii) repeatedly invoking SampleMonomial
as needed per Thm. 5.3 to achieve a user-provided error bound.

6.2 FastPDB: Sampling Pushdown with AQP

We observe that the 𝑂 (|C|) runtime bound for SampleMonomial is due to the degenerate case
when the depth of C, denoted by depth (C), is of the same order as |C|. For typical lineage circuits
C where depth (C) ≪ |C| (e.g., for queries not exclusively over small tables), SampleMonomial
visits only a small fraction of the overall circuit. This suggests a more efficient approach: sampling
directly from the source data without fully materializing C. In the following, we first explain how
to generate SoM lineage in SQL using standard provenance techniques and then how to compute
exact expected multiplicities from the lineage. We observe that the query computing the exact
multiplicities for an input SPJ (select-project-join) query generated in this way is an SPJ query
followed by a single aggregation.8 Such queries can be approximated using existing AQP techniques.
The net result is an approximation algorithm for bag-PQP that avoids generation of lineage circuits.
Generating SoM Lineage in SQL. In FastPDB we store a bag-TIDBs D = (Ω,P) by augmenting
every table 𝑅 in the database to get 𝑅𝑎𝑢𝑔 with two additional annotation columns: X𝑅 stores an
identifier for the variable 𝑋 associated with an input tuple and 𝑝 stores 𝑃𝑟 [𝑋 = 1]. The instance
of this database contains exactly the tuples from 𝐷 . Using existing provenance systems, we can
generate a SoM representation of Φ[𝑄, 𝐷, 𝑡] (X) for each result tuple 𝑡 of a query𝑄 over a bag-PDB
D by rewriting𝑄 . In the result of the rewritten query, the lineage of a single result tuple is encoded
as multiple result tuples — one for each monomial. The tuple representing a monomial includes
both the variables appearing in the monomial as well as their probabilities. For instance, for a
query 𝜋𝐴 (𝑅Z𝑆) over relations 𝑠𝑐ℎ(𝑅) = ⟨𝐴⟩ and 𝑠𝑐ℎ(𝑆) = ⟨𝐵⟩, the schema of the rewritten query is
⟨𝐴,X𝑅,P𝑅,X𝑆 ,P𝑆 ⟩. A result tuple ⟨𝑎⟩ with lineage Φ = 𝑋1𝑋3 + 𝑋1𝑋5 where 𝑝1 = 0.3, 𝑝3 = 0.8, and
𝑝5 = 1.0 would be encoded as two tuples ⟨𝑎, 1, 0.3, 3, 0.8⟩ and ⟨𝑎, 1, 0.3, 5, 1.0⟩.
We summarize a simplified form of GProM’s rewrite semantics [4] for RA+ in Fig. 6. Here 1

denotes a tuple encoding an appropriate number of copies of a dummy variable 𝑋⊥ with probability
8Using linearity of expectation, union operations can be pulled through the aggregation resulting in a union of join-aggregate
queries followed by a final aggregation to combine the expectations produced by the individual join-aggregate queries.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:17

1.0, e.g., for a subquery over relations 𝑅 and 𝑆 with annotation attributes ⟨X𝑅,P𝑅,X𝑆 ,P𝑆 ⟩ we get
1 = ⟨𝑋⊥, 1.0, 𝑋⊥, 1.0⟩.
The rewrite J𝑄K𝐺 , rewrites 𝑄 to include a set of additional annotation attributes vsch(𝑄) that

contain the X𝑅 and P𝑅 attributes from each relation 𝑅 accessed by the query. In other words, for
any row of 𝑄 (𝐷), the attributes in vsch(𝑄) (excluding those with values of 1) collectively define
one monomial𝑀 of the corresponding tuple’s lineage and store the probabilities of variables used
in𝑀.
Computing Exact Expectations in SQL. Recall that the expected multiplicities of a result tuple
𝑡 for a query evaluated over a bag-TIDB can be computed from SoM lineage by summing up the
expectation of each monomial𝑀 which in turn can be computed by multiplying the probability of
all distinct variables in𝑀 (i.e., ignoring exponents). Given the result of the rewritten query J𝑄K𝐺 ,
this can be implemented in SQL using sum and a function:

MonomialProb
(
(𝑋, 𝑝𝑋)𝑋 ∈𝑀

)
≔

∏
𝑋 ∈Distinct(𝑀)

𝑝𝑋

Using this function we can computed expected multiplicities as shown below.

SELECT 𝑠𝑐ℎ(𝑄).*, sum(MonomialProb(vsch(𝑄).*))
FROM J𝑄K𝐺 GROUP BY 𝑠𝑐ℎ(𝑄).*

Approximating Multiplicities with AQP. As in Alg. 2, this query J𝑄K𝐺 may be approximated.
Approximating sums over join outputs is a primary focus of AQP. As first observed by Olken [43],
the key challenge in sampling from join results is sparsity: two tuples selected uniformly at random
are unlikely to join with each other. One approach to AQP called Wander Join [35] addresses this
limitation by (i) sampling first from one input relation, and then (ii) using pre-built indices (that
include weights for computing sampling probabilities like those computed by Alg. 4) to iteratively
sample only joinable tuples from the remaining inputs. We refer the interested reader to [35]
for a detailed overview of the algorithm. For our purposes, it suffices that WanderJoin meets the
criteria of genSamples: (i) it generates a stream of tuples sampled from the result of arbitrary
non-aggregate joins, and (ii) each tuple includes the probability with which it was drawn. The
important advantage of using AQP is that it enables us to compute expected multiplicities without
having to materialize lineage.
Implementation. FastPDB’s implementation stores bag-TIDBs in PostgreSQL. User queries are
rewritten with GProM to pass through variable identifiers and probabilities, and evaluated by
XDB [35], an implementation of WanderJoin in PostgreSQL to produce approximated expected
multiplicities.

7 EXPERIMENTS

7.1 Setup

Our experiments were conducted on a 12th generation Intel Core i5-1240P version 6.154.3 4400
MHz with 8 core processors, 32 GB of RAM, and 500 GB SSD. We compare the following systems
(i) FastPDB: as described in Sec. 6; (ii) ProvSQL-e: expectSumOfProducts (Alg. 1) implemented
as a ProvSQL [51]-compatible UDF that takes a lineage circuit constructed by ProvSQL as in-
put and computes the exact expected multiplicity; (iii) ProvSQL-a: ApproximateΦ̃ (Alg. 2) with
genSamples c (Alg. 3) implemented as a ProvSQL-compatible UDF that takes the lineage circuits
constructed by PostSQL as input; (iv) GProM-e: expectSumOfProducts (Alg. 1) implemented
using GProM [4] to compute a sum-of-products representation of the lineage formula and propa-
gate probabilities and uses sum to calculate the expected multiplicity of each output tuple based

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:18 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

0 20000 40000 60000 80000 100000
Time (ms)

0

10

20

30

R
el

.
E
rr

GProM-e ProvSQL-e PostgreSQL ProvSQL ProvSQL-a FastPDB MCDB

0 10000 20000 30000 40000 50000
Time (ms)

0.00

0.02

0.04

R
el

.
E

rr

MCDB timed out.

(a) road[1.7K]

2500 5000 7500 10000 12500 15000 17500
Time (ms)

0.000

0.005

0.010

0.015

0.020

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,ProvSQL,MCDB timed out.

(b) road[3.3K]

0 20000 40000 60000
Time (ms)

0.000

0.005

0.010

0.015

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,PostgreSQL,ProvSQL,MCDB timed out.

(c) road[6.6K]

1000 2000 3000 4000 5000 6000 7000
Time (ms)

0.000

0.005

0.010

0.015

0.020

R
el

.
E

rr

(d) road[3.2M]

0 10000 20000 30000
Time (ms)

0.000

0.005

0.010

0.015

0.020

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,ProvSQL,MCDB timed out.

(e) skitter[6.4K]

0 10000 20000 30000
Time (ms)

−0.01

0.00

0.01

0.02

0.03

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,ProvSQL,MCDB timed out.

(f) skitter[12.8K]

0 20000 40000 60000 80000
Time (ms)

0.00

0.01

0.02

0.03

0.04

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,ProvSQL,MCDB timed out.

(g) skitter[25.6K]

20000 40000 60000 80000 100000 120000
Time (ms)

−0.5

0.0

0.5

R
el

.
E

rr

(h) skitter[12.7M]

0 20000 40000 60000 80000 100000
Time (ms)

0.00

0.01

0.02

0.03

R
el

.
E
rr

ProvSQL-a,ProvSQL-e,ProvSQL timed out.

MCDB[10]

MCDB[100]
MCDB[1000]

(i) twitch[3.4K]

0 20000 40000 60000
Time (ms)

−0.01

0.00

0.01

0.02

0.03

0.04

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,ProvSQL,MCDB timed out.

(j) twitch[6.9K]

0 10000 20000 30000 40000
Time (ms)

0.00

0.02

0.04

0.06

R
el

.
E

rr
ProvSQL-a,ProvSQL-e,GProM-e,ProvSQL,MCDB timed out.

(k) twitch[13.9K]

1000 2000 3000 4000 5000 6000 7000
Time (ms)

0.0

0.2

0.4

R
el

.
E

rr

(l) twitch[7.0M]

Fig. 7. Canonical hard query 𝑄2
ℎ𝑎𝑟𝑑

on the graph datasets, varying dataset size from
1

2000 th to
1
250 of the

original dataset size.

0 20000 40000 60000 80000 100000
Time (ms)

0

10

20

30

R
el

.
E
rr

MCDB[10]

(a) road[33]

0 20000 40000 60000 80000
Time (ms)

0.00

0.02

0.04

0.06

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,ProvSQL,MCDB timed out.

(b) road[66]

1000 2000 3000 4000 5000 6000 7000
Time (ms)

0.00

0.02

0.04

0.06

0.08

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,PostgreSQL,ProvSQL,MCDB timed out.

(c) road[165]

0 20000 40000 60000 80000 100000 120000
Time (ms)

0.00

0.02

0.04

0.06

R
el

.
E

rr

(d) road[3.2M]

0 20000 40000 60000 80000 100000
Time (ms)

0.0

0.2

0.4

R
el

.
E
rr

ProvSQL-a,ProvSQL-e,GProM-e,ProvSQL timed out.

MCDB[10]

(e) skitter[128]

0 20000 40000 60000 80000 100000 120000
Time (ms)

0.000

0.025

0.050

0.075

0.100

0.125

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,ProvSQL,MCDB timed out.

(f) skitter[256]

1000 2000 3000 4000 5000 6000 7000
Time (ms)

0.00

0.02

0.04

0.06

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,PostgreSQL,ProvSQL,MCDB timed out.

(g) skitter[640]

0 20000 40000 60000 80000 100000 120000
Time (ms)

0.4

0.6

0.8

1.0

R
el

.
E

rr

(h) skitter[12.7M]

0 20000 40000 60000 80000
Time (ms)

0.0

0.2

0.4

0.6

R
el

.
E
rr

ProvSQL-a,ProvSQL-e,ProvSQL timed out.

MCDB[10]
MCDB[100] MCDB[1000]

(i) twitch[70]

2500 5000 7500 10000 12500 15000
Time (ms)

0.00

0.02

0.04

0.06

0.08

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,ProvSQL,MCDB timed out.

(j) twitch[139]

1000 2000 3000 4000 5000 6000 7000
Time (ms)

0.00

0.02

0.04

0.06

0.08

R
el

.
E

rr

ProvSQL-a,ProvSQL-e,GProM-e,PostgreSQL,ProvSQL,MCDB timed out.

(k) twitch[348]

0 20000 40000 60000 80000 100000 120000
Time (ms)

0

1

2

3

R
el

.
E

rr

(l) twitch[7.0M]

Fig. 8. Canonical hard query 𝑄4
ℎ𝑎𝑟𝑑

on the graph datasets, varying dataset size.

on this SoM representations using the propagated probabilities for input tuples; (v) MCDB: A
re-implementation of MCDB [32]’s tuple bundles included in Pip [33]9, the expected multiplicity
is computed based on a set of sampled worlds, MCDB[n] denotes the version which generates 𝑛
worlds. As comparison points, we also include the deterministic query runtime of PostgreSQL

9MCDB’s original implementation is not generally available.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:19

0 20000 40000 60000 80000 100000
Time (ms)

0

10

20

30

R
el

.
E
rr

GProM-e ProvSQL-e PostgreSQL ProvSQL ProvSQL-a FastPDB MCDB

5000 10000 15000 20000
Time in ms

0.00

0.02

0.04

0.06

R
el

.
E
rr

ProvSQL

ProvSQL-a

ProvSQL-e

GProM-e

FastPDB

MCDB

MCDB[10]

MCDB[100]

MCDB[1000]

(a) urel-1

2000 4000 6000 8000
Time in ms

0.000

0.005

0.010

R
el

.
E
rr

ProvSQL

ProvSQL-a

ProvSQL-e

GProM-e

FastPDB

MCDB

MCDB[10]

MCDB[100]

MCDB[1000]

(b) urel-2

2000 4000 6000 8000 10000
Time in ms

−1

0

1

2

3

R
el

.
E
rr

ProvSQL

ProvSQL-a

ProvSQL-e

GProM-e

FastPDB

MCDB

MCDB[10]

MCDB[100]

MCDB[1000]

(c) urel-3

Fig. 9. Relative approximation error and runtime comparing FastPDB against competitors for pdbench [3]

queries.

0 20000 40000 60000 80000
Time in ms

−1

0

1

2

R
el

.
E
rr

ProvSQL

ProvSQL-a

ProvSQL-e

GProM-e

FastPDB

MCDB

MCDB[10]

MCDB[100] MCDB[1000]

(a) tpch query 9

0 2000 4000 6000 8000
Time in ms

0.000

0.005

0.010

0.015

0.020

0.025

R
el

.
E
rr

ProvSQL

ProvSQL-a

ProvSQL-e

GProM-e

FastPDB

MCDB

MCDB[10]

MCDB[1000]

MCDB[100]

(b) tpch query 14

0 2000 4000 6000 8000
Time in ms

−0.5

0.0

0.5

1.0

R
el

.
E
rr

ProvSQL

ProvSQL-a

ProvSQL-e

GProM-e

FastPDB

MCDB

MCDB[10]

MCDB[100]
MCDB[1000]

(c) tpch query 19

Fig. 10. Hierarchical TPC-H queries Q9, Q14, Q19 (without aggregation) on SF1.

and the time taken by ProvSQL to construct a lineage circuit without calculating any expected
multiplicities.
FastPDB is implemented on XDB [36], a probabilistic database built using PostgreSQL 9.4.2.

Experiments with GProM and PostgreSQL use the same version of Postgres. ProvSQL requires more
recent features, and so these experiments use PostgreSQL 15.1. Pip is not compatible with versions
of PostgreSQL more recent than 8.4.22, and so experiments with Pip’s MCDB implementation use
this version. In all cases, each system is supplied with an appropriate index on each of the attributes
appearing in selection predicates across all test queries. For ProvSQL-a, we set 𝜖 = 0.05 and 𝛿 = 0.97
that is with 97% probability the estimated multiplicity will be within 5% of the real value. For
MCDB, we use 10, 100, and 1000 samples and report results for each (MCDB[10], MCDB[100],
MCDB[1000]). As XDB is the only system capable of anytime estimates, we allow FastPDB to run
for 7 seconds and report predictions available after each second. All experiments were repeated 10
times. We report median runtimes and median and standard deviation for relative estimation error
for systems that produce approximate results.
Datasets and Queries. pdbench: pdbench [3] extends the TPC-H benchmark data generator [54]
to introduce attribute-level uncertainty into records. Except where noted, test data was generated
with a scale factor of 1.0 (i.e., one possible world consumes ∼ 1.0 GB in uncompressed CSV
form), using the default uncertainty ratio. The generated database uses about 3.2 GB of space
in uncompressed CSV form due to the addition of uncertainty. Experiments use the standard
pdbench test queries [3], identified as urel-1, urel-2, and urel-3. These are versions of TPC-H
queries 3, 6, and 7 respectively, modified by removing aggregation. We modify these queries only
to compute multiplicities rather than existentials. road, skitter, twitch: We also use several graph
datasets from https://snap.stanford.edu/data/index.html. The Texas road network dataset (road)
has ∼ 1.3𝑀 nodes and ∼ 1.9𝑀 edges. The skitter dataset is the internet topology graph generated
from traceroutes run daily in 2005 (∼ 1.7𝑀 nodes an ∼ 11𝑀 edges). The twitch dataset (twitch) is
a social networks of Twitch users (∼ 168𝐾 nodes and ∼ 6.8𝑀 edges). For each of these datasets
we choose random probability values for each of the tuples sampled from a uniform distribution
over [0, 1]. We created smaller versions of these datasets by randomly selecting joining tuples from
the original tables, preserving the relative size difference between the node and edge tables. We

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

https://snap.stanford.edu/data/index.html

041:20 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

use road[n] (skitter[n], and twitch[n]) to denote the scaled down version with ∼ 𝑛 rows. We
evaluate variants of the canonical hard query𝑄𝑘

ℎ𝑎𝑟𝑑
(see Sec. 4.1) for 𝑘 ∈ {2, 4} to stress test systems

on a hard query.

7.2 HardQueries on Graph Datasets

We use two versions of the canonical hard query𝑄𝑘
ℎ𝑎𝑟𝑑

on the graph dataset to evaluate the runtime
and accuracy of systems for queries that are known to be hard. We use a timeout of 120 seconds
and vary the dataset size. The results for 𝑄2

ℎ𝑎𝑟𝑑
are shown in Fig. 7. While most systems are able to

compute approximate expected multiplicities for the smallest dataset (road[1.6k]), constructing
the linage circuit is expensive (50 seconds) and sampling from the circuit is not beneficial, taking
more time than exactly computing the result. FastPDB computes a more accurate estimate than
ProvSQL-a in less time. While GProM-e can still produce a result for datasets with less than 10K
tuples, FastPDB is the only one to scale to large datasets with millions of tuples and produces
estimates that are within a few percent of the correct result the smaller datasets. For the full datasets,
for 𝑄2

ℎ𝑎𝑟𝑑
the error is around 10% for skitter and twitch which are more skewed and around 1%

for road. This is impressive given that 𝑄2
ℎ𝑎𝑟𝑑

’s lineage for the full skitter has ∼ 1.2 × 1014. MCDB,
the only competitor that does not produce full lineage, suffers from having to compute large join
results. Even MCDB[10] timed out for the smallest dataset.

Fig. 8 shows the results for𝑄4
ℎ𝑎𝑟𝑑

. As this query has extremely large lineage formulas (∼ 1.5×1028
monomials for the full skitter dataset), we use smaller versions of the datasets to compare against
the baselines. Most systems only finish execution for road[32] (32 tuples) and FastPDB is the
only system that produces results for the full datasets, reaching less than 1% relative errors within
seconds for the smaller datasets. For skitter and twitch the relative error is large for the full dataset.
This is to be expected given that the size of the lineage. In summary, these experiments clearly
demonstrate the need to avoid materialization of lineage circuits.

7.3 pdbench and TPC-HQueries

Fig. 9 shows the total runtimes of all systems for the pdbench (probabilistic) TPC-H data & queries.

urel-1 (modified TPC-H Q3). urel-1 is a 3-way foreign-key join over the customer, orders, and
lineitem tables. FastPDB achieves a relative error below 0.5% within 1s, about five times faster
than PostgreSQL deterministic execution that does not compute any expectations. Because urel-1
uses exclusively foreign-key joins, the number of monomials is linear in the data size. As a result,
GProM’s SoM lineage encoding introduces minimal overhead compared to PostgreSQL. ProvSQL-a
and ProvSQL-e’s runtimes are dominated by lineage construction costs, which roughly doubles
their runtime relative to deterministic PostgreSQL. For this simple query, MCDB shines, achieving
a nearly perfect answer with only 10 samples, albeit still at a significant higher cost than both exact
approaches.

urel-2 (modified TPC-H Q6). This is a single-table query with multiple selections and low
selectivity, making the query a poor fit for systems like XDB. Still, FastPDB achieves ∼ 0.3%
relative error within 1s, twice as fast as deterministic query evaluation. As in urel-1, the number of
monomials is linear in the data size, and GProM performs competitively with PostgreSQL. While
MCDB achieves accurate estimates, it is again slower than both exact approaches.

urel-3 (modified TPC-H Q7). This is a 5-way cyclic join. After 1s, FastPDB achieves 0.5% relative
error. Due to the greater number of joins, the majority of tuples in a sample generated by MCDB
do not join, leading to poor estimation accuracy. Lineage construction continues to dominate the
runtime for the ProvSQL variants. .

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:21

Hierarchical TPC-H Queries.We also ran experiments with TPC-H queries 9, 14, and 19 without
aggregation which are supported by all of the compared systems. Note that these are hierarchical
queries, which are computational easy even for set probabilistic databases. Fig. 10 shows the results
of this experiment. For these queries, deterministic query evaluation is fast, requiring less than a
second for all three queries. GProM-e performs well for all queries. Nonetheless, FastPDB produces
accurate estimates within or slightly above the deterministic runtime of these queries. Q19 is
challenging for XDB and, thus, also FastPDB, as it contains a disjunctive selection condition that is
very selective: only ∼ 0.001 of the join results fulfill the condition. Thus, most sampled monomials
(join results) have to be rejected as they do not fulfill the selection condition resulting in inaccurate
estimates. As the final provenance circuit is very small, ProvSQL-a produces very accurate estimates
and the overhead of ProvSQL-e over just constructing the circuit (ProvSQL-e) is neglectable. MCDB
is accurate, but slower than the exact approaches.

Sampling Rate vs Variance. XDB’s [36] sampling is biased (e.g., towards source tuples with high
join fan-outs). Although the expectation computation corrects for this bias (see Alg. 2), this does
result in an increase in variance, especially for datasets with highly skewed distributions of the
number of join partners such as skitter. In practice this means that ProvSQL-a has significantly
higher sample efficiency, i.e., it often produces an order of magnitude more accurate results for the
same amount of samples. However, FastPDB typically already converges on an accurate estimate
in the time it takes ProvSQL-a to construct the lineage circuit, negating this disadvantage. We show
a more detailed analysis in [6].

Summary. Overall, FastPDB benefits from its anytime approximation approach based on XDB
that avoids materializing the full lineage formulas for a query. For many settings, FastPDB can
produce accurate results before the competitors have even finished materializing the lineage. This
is critical for queries with large lineage formulas such as 𝑄𝑘

ℎ𝑎𝑟𝑑
where often FastPDB is the only

system that is able to generate estimated expected multiplicities within the allocated time and easily
scales to dataset sizes several orders of magnitude larger than any of the baselines. Computing
estimates over a full lineage circuit produced by ProvSQL (ProvSQL-a) is typically not beneficial as
the runtime savings compared to exact computation are either neglectable or, even worse, this is
slower than exact computation (ProvSQL-e).

Even though GProM-e does use the SMB representation of polynomials, GProM-e outperforms
ProvSQL-e on the settings presented here, because of its use of simpler relational operations instead
of constructing circuits as UDTs. Using sampling with MCDB can have very large error for some
queries and is in general slower than lineage-based solutions. FastPDB is the most stable in terms
of runtime being the only approach that can finish all queries under all settings of consideration,
and in most cases produces estimates faster than alternative approaches. The only exception is
TPC-H Q19 where the extremely low selectivity results in many samples being rejected. For such
queries it may be beneficial to consider a hybrid approach that uses the database to estimate the
selectivity of a query and falls back to use an exact approach or ProvSQL-a if the selectivity is very
low.
As there is an obvious trade-off between latency and approximation errors and the choice

between an exact approach and FastPDB, the users of FastPDB may want to accurately estimate
the total cost given a desired error bound and decide between an exact and approximate approach.
Furthermore, the frequency for reporting updated predictions in FastPDB should ideally be adjusted
based on the total runtime of a query, i.e., whether it is a hard query or not. Unfortunately, as we
have not established a dichotomy for computing expected multiplicities, we do not know how to
determine whether a query will be efficient when evaluated using an exact approach. Furthermore,
accurate estimation of statistical information about the data to compute pessimistic or conservative

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

041:22 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

confidence intervals is hard [28, 38]. Leveraging the join order optimization with trial samples
in XDB, it is possible to obtain a rough estimation of the cost under the best join order to reach
a certain error bound. However, such approach is also susceptible to extremely low selectivity
of predicates, resulting in inaccurate cost estimation, which we leave for future work to further
improve.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we investigate computing expected multiplicities over bag probabilistic databases for
RA+ from both a theoretical as well as systems perspective. We show using fine-grained complexity
that computing exact expectations, while in PTIME, is provably less efficient than deterministic
query evaluation. While we present an approximation scheme that returns a (1± 𝜖)-approximation
with high probability with linear overhead for the class of hard queries we identify, in practice a
main overhead is the generation of lineage. We overcome this bottleneck by exploiting approximate
query processing for sampling monomials from a tuple’s lineage without having to materialize it.
The resulting anytime approximation scheme works well for both hard and “easy” queries scaling
to several orders of magnitude larger databases than both exact and approximate competitors while
often achieving equal approximation in less time. This paper opens several avenues of follow-up
work. Given that computing expected multiplicities is equivalent to computing expectations of
group-by count queries, we conjecture that our approach could be extended to support other
aggregates. We also leave open the question of whether this approach generalizes beyond the bag-
TIDB model and RA+ language we explored here — for example, whether the approach generalizes
to uncertainty expressed at the level of attributes. Similarly, for many queries, we observe that
GProm-e, an evaluation strategy that directly generates monomials for query results, performs
surprisingly well. However, for hard queries, only FastPDB can answer these queries in reasonable
time. If a dichotomy for RA+ on bag-probabilistic databases exists and testing whether a query is
PTIME is efficient, then a hybrid approach would be effective that uses GProM-e for easy queries
and uses FastPDB for hard queries.. Similar approaches applied to linear algebra could be used to
develop high-performance, uncertainty-aware neural network inference.

ACKNOWLEDGMENTS

This work was supported by grants NSF Award IIS-1956149, NSF Award IIS-2420577 and NSF Award
IIS-2420691.

REFERENCES

[1] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U. Nabar, Tomoe Sugihara, and Jennifer
Widom. 2006. Trio: A System for Data, Uncertainty, and Lineage. In VLDB. 1151–1154.

[2] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. 2015. Provenance Circuits for Trees and Treelike Instances. In
ICALP. 56–68.

[3] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. 2008. Fast and Simple Relational Processing of
Uncertain Data. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (ICDE ’08). IEEE
Computer Society, USA, 983–992. https://doi.org/10.1109/ICDE.2008.4497507

[4] Bahareh Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian Zeng. 2018. GProM - A Swiss Army Knife for
Your Provenance Needs. IEEE Data Eng. Bull. 41, 1 (2018), 51–62.

[5] Subi Arumugam, Ravi Jampani, Luis Leopoldo Perez, Fei Xu, Christopher M. Jermaine, and Peter J. Haas. 2010. MCDB-R:
Risk Analysis in the Database. Proc. VLDB Endow. 3, 1 (2010), 782–793.

[6] ANONYMOUS AUTHORS. 2023. Probabilistic Databases Don’t Have to Be Slow. https://anonymous.4open.science/r/
2024_Bag_PDBs_Reproducibility-FA3F/tech_report.pdf

[7] Omar Benjelloun, Anish Das Sarma, Chris Hayworth, and Jennifer Widom. 2006. An Introduction to ULDBs and the
Trio System. IEEE Data Eng. Bull. 29, 1 (2006), 5–16.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

https://doi.org/10.1109/ICDE.2008.4497507
https://anonymous.4open.science/r/2024_Bag_PDBs_Reproducibility-FA3F/tech_report.pdf
https://anonymous.4open.science/r/2024_Bag_PDBs_Reproducibility-FA3F/tech_report.pdf

FastPDB: Towards Bag-Probabilistic Queries at Interactive Speeds 041:23

[8] George Beskales, Ihab F. Ilyas, and Lukasz Golab. 2010. Sampling the Repairs of Functional Dependency Violations
under Hard Constraints. Proc. VLDB Endow. 3, 1 (2010), 197–207.

[9] Radu Curticapean. 2013. Counting Matchings of Size k Is W[1]-Hard. In ICALP, Vol. 7965. 352–363.
[10] Radu Curticapean and Dániel Marx. 2014. Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-

Cover Number Counts. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science
(FOCS ’14). IEEE Computer Society, USA, 130–139. https://doi.org/10.1109/FOCS.2014.22

[11] Nilesh Dalvi and Dan Suciu. 2007. The Dichotomy of Conjunctive Queries on Probabilistic Structures. In PODS.
293–302.

[12] N. Dalvi and D. Suciu. 2007. Efficient query evaluation on probabilistic databases. VLDB 16, 4 (2007), 544.
[13] Nilesh Dalvi and Dan Suciu. 2012. The dichotomy of probabilistic inference for unions of conjunctive queries. JACM

59, 6 (2012), 30.
[14] Maarten Van den Heuvel, Peter Ivanov, Wolfgang Gatterbauer, Floris Geerts, and Martin Theobald. 2019. Anytime

Approximation in Probabilistic Databases via Scaled Dissociations. In SIGMOD. 1295–1312.
[15] Shiyuan Deng, Shangqi Lu, and Yufei Tao. 2023. On Join Sampling and the Hardness of Combinatorial Output-Sensitive

Join Algorithms. In PODS. ACM, 99–111.
[16] Su Feng, Boris Glavic, Aaron Huber, and Oliver Kennedy. 2021. Efficient Uncertainty Tracking for Complex Queries

with Attribute-level Bounds. In SIGMOD.
[17] Su Feng, Boris Glavic, and Oliver Kennedy. 2023. Efficient Approximation of Certain and Possible Answers for Ranking

and Window Queries over Uncertain Data. Proc. VLDB Endow. 16, 6 (2023), 1346–1358.
[18] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2019. Uncertainty Annotated Databases - A Lightweight

Approach for Approximating Certain Answers. In SIGMOD.
[19] Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approximation in probabilistic databases. VLDBJ 22, 6

(2013), 823–848.
[20] Robert Fink and Dan Olteanu. 2011. On the optimal approximation of queries using tractable propositional languages.

In ICDT. 174–185.
[21] Robert Fink and Dan Olteanu. 2016. Dichotomies for Queries with Negation in Probabilistic Databases. TODS 41, 1

(2016), 4:1–4:47.
[22] Jörg Flum and Martin Grohe. 2002. The Parameterized Complexity of Counting Problems. In Proceedings of the 43rd

Symposium on Foundations of Computer Science (FOCS ’02). IEEE Computer Society, USA, 538.
[23] Wolfgang Gatterbauer and Dan Suciu. 2017. Dissociation and Propagation for Approximate Lifted Inference With

Standard Relational Database Management Systems. VLDB J. 26, 1 (2017), 5–30.
[24] Erich Grädel, Yuri Gurevich, and Colin Hirsch. 1998. The Complexity of Query Reliability. In Proceedings of the

Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Seattle, Washington, USA)
(PODS ’98). Association for Computing Machinery, New York, NY, USA, 227–234. https://doi.org/10.1145/275487.295124

[25] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. 31–40.
[26] Martin Grohe, Peter Lindner, and Christoph Standke. 2023. Probabilistic Query Evaluation with Bag Semantics. In

ICDT, Floris Geerts and Brecht Vandevoort (Eds.), Vol. 255. 20:1–20:19.
[27] Paolo Guagliardo and Leonid Libkin. 2017. Correctness of SQL Queries on Databases with Nulls. SIGMOD Rec. 46, 3

(2017), 5–16.
[28] P.J. Haas. 1997. Large-sample and deterministic confidence intervals for online aggregation. In Proceedings. Ninth

International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150). 51–62. https:
//doi.org/10.1109/SSDM.1997.621151

[29] P. J. Haas and J. M. Hellerstein. 1999. Ripple Joins for Online Aggregation. In SIGMOD. 287–298.
[30] D. G. Horvitz and D. J. Thompson. 1952. A Generalization of Sampling Without Replacement from a Fi-

nite Universe. J. Amer. Statist. Assoc. 47, 260 (1952), 663–685. https://doi.org/10.1080/01621459.1952.10483446
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483446

[31] R. Impagliazzo and R. Paturi. 1999. Complexity of k-SAT. In Proceedings. Fourteenth Annual IEEE Conference on
Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317). 237–240. https:
//doi.org/10.1109/CCC.1999.766282

[32] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine, and Peter J Haas. 2008. MCDB: a monte
carlo approach to managing uncertain data. In SIGMOD.

[33] Oliver Kennedy and Christoph Koch. 2010. PIP: A Database System for Great and Small Expectations. In ICDE.
[34] Kyoungmin Kim, Jaehyun Ha, George Fletcher, andWook-Shin Han. 2023. Guaranteeing the Õ(AGM/OUT) Runtime for

Uniform Sampling and Size Estimation over Joins. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, Floris Geerts, Hung Q. Ngo, and
Stavros Sintos (Eds.). ACM, 113–125. https://doi.org/10.1145/3584372.3588676

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1145/275487.295124
https://doi.org/10.1109/SSDM.1997.621151
https://doi.org/10.1109/SSDM.1997.621151
https://doi.org/10.1080/01621459.1952.10483446
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483446
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1145/3584372.3588676

041:24 Aaron Huber, Oliver Kennedy, Atri Rudra, Zhuoyue Zhao, Su Feng, and Boris Glavic

[35] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggregation via Random Walks. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association
for Computing Machinery, New York, NY, USA, 615–629. https://doi.org/10.1145/2882903.2915235

[36] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2017. Wander Join and XDB: Online Aggregation via Random Walks.
SIGMOD Rec. 46, 1 (May 2017), 33–40. https://doi.org/10.1145/3093754.3093763

[37] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New and Where to Go? - A Survey on
Approximate Query Processing. Data Sci. Eng. 3, 4 (2018), 379–397.

[38] Stephen Macke, Maryam Aliakbarpour, Ilias Diakonikolas, Aditya Parameswaran, and Ronitt Rubinfeld. 2021. Rapid
Approximate Aggregation with Distribution-Sensitive Interval Guarantees. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE). 1703–1714. https://doi.org/10.1109/ICDE51399.2021.00150

[39] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Trans. Model. Comput. Simul. 8, 1 (1998), 3–30.

[40] Barzan Mozafari. 2017. Approximate query engines: Commercial challenges and research opportunities. In SIGMOD.
521–524.

[41] Barzan Mozafari and Ning Niu. 2015. A Handbook for Building an Approximate Query Engine. IEEE Data Eng. Bull.
38, 3 (2015), 3–29.

[42] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. 2011. Making Aggregation Work in Uncertain and Probabilistic
Databases. IEEE Trans. Knowl. Data Eng. 23, 8 (2011), 1261–1273.

[43] Frank Olken and Doron Rotem. 1986. Simple Random Sampling from Relational Databases. In VLDB. Morgan Kaufmann,
160–169.

[44] Dan Olteanu, Jiewen Huang, and Christoph Koch. 2010. Approximate confidence computation in probabilistic databases.
In ICDE. 145–156.

[45] Laurel J. Orr, Magdalena Balazinska, and Dan Suciu. 2020. EntropyDB: a probabilistic approach to approximate query
processing. VLDB J. 29, 1 (2020), 539–567.

[46] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained Lineage at Interactive Speed. Proc. VLDB Endow. 11, 6
(2018), 719–732.

[47] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: Holistic Data Repairs with
Probabilistic Inference. Proc. VLDB Endow. 10, 11 (2017), 1190–1201.

[48] Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. 2007. Efficient Top-k Query Evaluation on Probabilistic Data. In ICDE.
886–895.

[49] Christopher Ré and Dan Suciu. 2009. The trichotomy of HAVING queries on a probabilistic database. VLDBJ 18, 5
(2009), 1091–1116.

[50] Christopher De Sa, Alexander Ratner, Christopher Ré, Jaeho Shin, Feiran Wang, Sen Wu, and Ce Zhang. 2017.
Incremental knowledge base construction using DeepDive. VLDB J. 26, 1 (2017), 81–105.

[51] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018. ProvSQL: Provenance and Probability Manage-
ment in PostgreSQL. Proc. VLDB Endow. 11, 12 (aug 2018), 2034–2037. https://doi.org/10.14778/3229863.3236253

[52] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan & Claypool
Publishers.

[53] Bruhathi Sundarmurthy, Paraschos Koutris,Willis Lang, Jeffrey Naughton, and Val Tannen. 2017. m-tables: Representing
Missing Data. In ICDT, Vol. 68.

[54] The Transaction Processing Performance Council. [n. d.]. The TPC-H Benchmark. http://www.tpc.org/tpch/.
[55] Guy Van den Broeck and Dan Suciu. 2017. Query Processing on Probabilistic Data: A Survey. Foundations and Trends

in Databases (2017).
[56] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random Variables with General Distributions.

ACM Trans. Math. Softw. 3, 3 (1977), 253–256.
[57] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, Dieter Gawlick, and Oliver Kennedy. 2015. Lenses: An

On-Demand Approach to ETL. PVLDB 8, 12 (2015), 1578–1589.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 041. Publication date: January 2025.

https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/3093754.3093763
https://doi.org/10.1109/ICDE51399.2021.00150
https://doi.org/10.14778/3229863.3236253

	Abstract
	1 Introduction
	2 Bag Probabilistic Databases
	2.1 Provenance Polynomials

	3 Related Work
	4 On the Complexity of BPQP
	4.1 Subgraph Counting and Qhardk
	4.2 Reduced Polynomials
	4.3 Hardness Reduction
	4.4 Summary

	5 Sampling Algorithm
	5.1 Exact Expectations
	5.2 Approximate"0365
	5.3 Circuit based genSamples

	6 Implementation
	6.1 Approximate"0365 with genSamplesc
	6.2 FastPDB: Sampling Pushdown with AQP

	7 Experiments
	7.1 Setup
	7.2 Hard Queries on Graph Datasets
	7.3 pdbench and TPC-H Queries

	8 Conclusions and Future Work
	Acknowledgments
	References

