
On-Disk Datalog Engine using Semirings

Nick Brown* Oliver Kennedy

University at Bu�alo
{ njbrown4, okennedy }@bu�alo.edu

1 Introduction
Program analysis is the search for patterns in and/or
gathering of statistics over a program's source code,
typically expressed in the form of a tree and/or a
directed acyclic graph. Such analyses frequently in-
volve very large state spaces � one analysis over the
chrome source code conducted by an author gener-
ated 64GB of intermediate state. A typical devel-
oper workstation (∼8 CPU cores and 16-64GB of
RAM) simply can not perform such an analysis in-
memory. Recent e�orts revolve around the Datalog
programming language, leveraging its similarity to
standard inference rules to identify opportunities for
parallelization [4] or incrementality [1]. E�orts to
scale-up analysis have focused on the use of graph-
ics cards or large-scale distributed systems. How-
ever, moving program analysis o� local hardware is
expensive, and may simply not be feasible for (e.g.,
for proprietary code or in restricted settings).

In this talk, we argue for local-only program anal-
ysis on commodity hardware by using out-of-core
database techniques. We outline our implementa-
tion of an on-disk datalog engine based on the Aggre-
gate Calculus [3], speci�cally focusing on its ability
to leverage group-theory for more e�cient storage
and access of intermediate analysis state.

2 Semiring (and Ring) Relations
In [2], Green et. al. introduced semiring relations;
relations where each tuple is associated with an an-
notation drawn from a mathematical abstraction of
addition and multiplication called a semiring. This
annotation may encode a range of things, from the
presence or multiplicity of the tuple, all the way up
to a full derivation of its existence from the source
data. Semiring relations, and the related Ring rela-
tions [3] admit a lazy evaluation of pipeline blockers;
deferring costly materialization to a later stage of a
streaming pipeline. Consider the tuple 𝑡 = ⟨1, 2⟩; A
relation encoded as 𝑅1 = [𝑡 → 1, 𝑡 → 1] (i.e., a list
containing two copies of the tuple, annotated by a

*Presenter

multiplicity of 1) is semantically equivalent to the en-
coding 𝑅2 = [𝑡 → 2] (i.e., a list containing a single
copy of the tuple annotated by a multiplicity of 2).
Deferring pipeline blockers is especially useful when
the value of interest is a non-continuous function of
the annotation (i.e., a morphism). For example, to
test for existence, �nding one copy of 𝑡 in 𝑅1 su�ces;
a full materialization into 𝑅2 is not required.

3 Semirings on Disk
Our talk will overview our e�orts to leverage
[semi]ring relations to improve out-of-core perfor-
mance of existing data structures. Our prelimi-
nary explorations have focused on B+Trees, a stan-
dard out-of-core index structure. Our key insights
are that a single analysis may feature multiple dis-
tinct access patterns to a single dataset, some of
which can be expressed through non-continuous mor-
phisms (e.g., existential tests) over collections of tu-
ples. Consider a relation 𝐶𝑎𝑙𝑙 (𝐶, 𝐹) that stores the
caller 𝐶 of every function 𝐹 . We might access this
relation by enumerating every function called by a
block of code (𝜋𝐹 (𝜎𝐶=𝑐1 (𝐶𝑎𝑙𝑙))), or by testing for
the existence of a caller (

∑
count(*)(𝜎𝐹=𝑓1 (𝐶𝑎𝑙𝑙)) ≥ 1).

The former requires an exact computation over the
full set of relational elements where 𝐶 = 𝑐1. However,
in the latter case, a nonlinear semiring morphism
(≥ 1) is applied to the query result, allowing us to
stop as soon as a tuple is found. Such early stop op-
timizations can be applied manually, but semiring
relations allow us to automatically leveragel nonlin-
earities to stop enumerating tuples early.

References
[1] Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy,

and Lukasz Ziarek. Treetoaster: Towards an ivm-
optimized compiler. In SIGMOD, 2021.

[2] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings. In PODS, pages 31�40, 2007.

[3] Christoph Koch. Incremental query evaluation in a ring
of databases. In PODS, pages 87�98, 2010.

[4] Ahmedur Rahman Shovon, Thomas Gilray, Kristopher K.
Micinski, and Sidharth Kumar. Towards iterative rela-
tional algebra on the GPU. In USENIX ATC, 2023.

mailto:njbrown4@buffalo.edu
mailto:okennedy@buffalo.edu

	Introduction
	Semiring (and Ring) Relations
	Semirings on Disk

