
Multiquery Optimization for Declarative Compilers
Darshana Balakrishnan
darshbal@amazon.com

Amazon
Toronto, Canada

Oliver Kennedy
okennedy@buffalo.edu
University at Buffalo
Buffalo, NY, USA

Lukasz Ziarek
lziarek@buffalo.edu
University at Buffalo
Buffalo, NY, USA

Johannes Luong
jluong@amazon.de

Amazon
Toronto, Canada

Hinnerk Gildhoff
hinnerk@amazon.de

Amazon
Toronto, Canada

Gaurav Saxena
gssaxena@amazon.com

Amazon
Toronto, Canada

1 Introduction
Program analyses grapple with exceedingly large state spaces, a
struggle that has historically required breaking down high-level
analyses into smaller, manageable chunks (e.g., separate compila-
tion units and limited context-sensitivity). Unfortunately, such a
granular analysis methodology can prohibit the idiomatic expres-
sion of useful analyses, and the resulting loss of precision limits op-
timizations. For example Rust’s borrow checker can add minutes
to compilation times, and at the scale of the Linux Kernel, non-
trivial cross-module optimizations are simply not possible. In this
talk, we will outline our initial efforts to create a compiler capa-
ble of scalable, orders-of-magnitude faster, cross-module program
analysis, optimization, and compilation, without increased devel-
opment complexity. In doing so, our hope is to make feasible many
optimizations and analysis techniques thus far unexplored.

Multiple recent efforts have attempted to tackle compiler scala-
bility challenges, for example by leveraging incremental viewmain-
tenance to avoid repeated tree-traversals during optimization [1],
or by leveraging distributed datalog engines to scale up program
analysis [2, 4]. These efforts share a common strategy of re-casting
compiler problems (i.e., program analysis and optimization tasks)
into a declarative, relational abstraction, and then leveraging al-
ready existing relational query processing techniques. By imple-
menting the compiler declaratively, these approaches decouple the
compiler’s implementation from its performance: (i) Compilation
performance improvements that may be too complicated or too
small to implement safely by hand can be automated; (ii) Com-
pilers be implemented through simpler, more idiomatic develop-
ment patterns, avoiding complexity for the sake of reduced com-
pile times; (iii) Static analysis can be used to assert soundness,
completeness, and/or stability of the compiler itself; and (iv) Data
structures that encode the program are decoupled from compiler
logic, allowing substantial reorganization with no change to the
compiler. In short, a compiler whose rules, analyses, and optimiza-
tions are specified declaratively can be analyzed, and accelerated
like queries in a database.

Declarative Compiler Engines. Although similar to a database, a
declarative compiler engine is unique in several key respects. First,
like graph databases, declarative compilers involve high-width joins
(e.g., subgraph isomorphism over abstract syntax trees), and recur-
sive queries (e.g., existential tests over subtrees). However, unlike
graph databases, joins often have low fan-outs [3, 4], or even sim-
ply foreign-key joins. Finally, declarative compilers feature large

numbers of queries (e.g., Spark 3.2 has over 300 distinct optimiza-
tion rules, each being effectively a query), all known upfront, and
with many work-sharing opportunities.

2 Multiquery Optimization
The search for optimization opportunities, in particular accounts
for up to 50% of the runtime of Spark’s Optimizer and up to 20%
of Orca’s optimizer [1], and is a huge source of work sharing op-
portunities. For example, Spark’s fixed point optimizer performs
a full tree traversal for every one of its 300 rules, with each tra-
versal applying predicates to the nodes of the tree, and replac-
ing nodes when the predicate succeeds (i.e., when an optimization
is found). If a node is replaced, the process must restart, and all
rules must be applied again. As a result, the optimizer’s runtime is
𝑂 (|Rules| · |Abstract Syntax Tree|) per fixed point iteration.

Fortunately for us, many of these passes are replicating work.
For example, Constant Folding and Predicate Pushdown, both stan-
dard rules, both unwrap and manipulate Selection (Filter) opera-
tors. This work can be shared if both rules (along with all other
Filter-oriented rules) are in-lined into a single pass: (i) Unwrapping
and matching structured data (e.g., S-expressions or Scala Case
Classes) only needs to happen once; (ii) Expensive predicates only
need to be evaluated once; (iii)The resulting access pattern is more
cache friendly for especially large queries.

Our talk will focus on our preliminary efforts on multiquery
optimization, leveraging opportunities for work sharing in query
optimization. We will focus, in particular on one especially costly
predicate: Recursive predicates. For example, consider an optimiza-
tion rule that removes ’Distinct’ operators in a relational algebra
query when the subquery is already distinct. Determining whether
a subquery is already distinct may require a recursive traversal of
the tree, leading to an 𝑂 (𝑁 2) runtime in tree size, where every
candidate node triggers a recursive tree traversal. We will outline
our approach to inlined evaluation of sets of optimization rules
containing partly overlapping, recursive predicates.

References
[1] Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy, and Lukasz Ziarek. 2021.

TreeToaster: Towards an IVM-Optimized Compiler. In SIGMOD.
[2] Thomas Gilray, Sidharth Kumar, and Kristopher K. Micinski. 2021. Compiling

data-parallel Datalog. In CC. ACM, 23–35.
[3] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality sat-

uration: a new approach to optimization. In POPL. ACM, 264–276.
[4] Yihong Zhang, Yisu RemyWang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosen-

thal, Zachary Tatlock, and Max Willsey. 2023. Better Together: Unifying Datalog
and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI (2023), 468–492.

	1 Introduction
	2 Multiquery Optimization
	References

