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Figure 1: DDM’s User Interface

ABSTRACT
We explore data management for longitudinal study survey instru-
ments: (i) Survey instrument evolution presents a unique data in-
tegration challenge; and (ii) Longitudinal study data frequently re-
quires repeated, task-specific integration efforts. We present DDM
(Drag, Drop, Merge), a user interface for documenting relation-
ships among attributes of source schemas into a form that can
streamline subsequent efforts to generate task-specific datasets. DDM
employs a ”human-in-the-loop” approach, allowing users to vali-
date and refine semantic mappings. Through a simulation of user
interactions with DDM, we demonstrate its viability as a way to
reduce cognitive overhead for longitudinal study data curators.
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1 INTRODUCTION
In longitudinal studies1, survey instruments (i.e., questionnaires)
evolve over years, or even decades. Questions may be added, re-
moved, or adjusted to account for changes in the social context
in which the study is administered, or as the researcher’s under-
standing of the study domain improves. For example, consider a
longitudinal study of school students. In the midst of the study,
researchers observe an increase in noise in answers to a question
about the family’s postal code. After examining the situation, the
researchers are able to attribute the noise to changing social factors
that result in fewer respondents knowing their postal code. In this
situation, the researchers may opt to modify the question (e.g., to
ask for the student’s school district instead), reducing noise, albeit
at the cost of creating heterogeneity in the data.
1Although we use longitudinal studies as a motivating example, similar challenges
arise in other settings like dataset archival, andmeta-studies designed around creating
publishable datasets.
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Chronological Schema Evolution. Integration of heterogeneous
data (i.e., entity resolution) is a well studied problem [2–5, 7, 12, 18].
A central problem in prior work on data integration is the massive
number of integration options available: Each attribute in every
dataset, could potentially align with any other attribute from any
other dataset. This overwhelming number of options poses both a
computational challenge as the runtime of naive algorithms grows
quadratically with the number of datasets; and a cognitive chal-
lenge, as any errors in predicted aligning attributes require the user
to manually search through a large number of potential matches.

By contrast, longitudinal data lacks this constraint: schema inte-
gration in longitudinal studies can consider each schema chrono-
logically, as illustrated in Figure 2. Survey instruments forming
a chronological chain (i.e., survey instruments in adjacent years
are very similar, even if different) admit multiple opportunities for
improved algorithms and integration interfaces with lower cogni-
tive overheads. For example, the questions from adjacent years in
Figure 3 are similar (i.e., Form 1 and 2, and 2 and 3), so merging
adjacent schemas requires less cognitive overhead.

(a) Classical Ssetting (b) Longitudinal Setting

Figure 2: Classical Schema Integration vs. Longitudinal
Schema Integration

With longitudinal schemas, if Form 1 and 2 are already merged
then by transitivity, Form 3 only needs to be matched against 2. So,
integrating similar questions between adjacent forms and building
up on that iteratively would require ’small’, ’easy’ merges and is
less cognitively demanding, as opposed to attempting all at once.

Hierarchical Form Structure. An additional feature of survey in-
struments over other schemas in general is that questions in survey
forms are categorized hierarchically. For instance, survey forms 1
and 2 in Figure 3 have a category ’Family’ and questions under it
are (a) and (b). Grouping these questions under the same category
and ordering them in a logical sequence emphasizes their related-
ness. Similarly, Form 3 in Figure 3 has a category ’Family Details’
and asks (a). The semantic similarity of these categories is high,
which can be exploited by clustering them together in the user in-
terface. This enables users to search for matching questions within
the cluster, reducing the amount of interaction required.

Integration Reusability. In addition to opportunities for complex-
ity reduction, data collected through longitudinal studies often serves
as the basis for multiple distinct research efforts, each of which has
its own requirements of the integrated dataset. Continuing our ex-
ample, contrast one research effort trying to understand an educa-
tional phenomenon with respect to county-level policies, against
another effort exploring the impact of town-level policies. Both

postal codes and school districts uniquely identify counties, so the
former study would be satisfied with a published dataset that iden-
tifies records at this granularity. The latter study, on the other
hand, would not be satisfied by county-level location data, and in-
stead requires a more nuanced data integration process — for ex-
ample one that discards records identified by zip code. Researchers
must frequently make such trade-offs between precision, number
of records, and data completeness. However, the optimal point on
the trade-off curve varies by the needs of each research effort, of-
ten requiring researchers to duplicate data integration work.

Form 1
1. Degree of Schooling
2. Family
(a) Do you have children?
(b) How many? What are their ages?

3. Consultant’s personal details
(a) Village & Quarter

Form 2
1. What are the schools that you attended?
2. Family
(a) Do you have children?
(b) How many? What are their ages?

3. Consultant’s personal details
(a) Village & Quarter

Form 3
1. Schooling (list all the schools attended, with location and

remarks on schoolmates provenance and languages)
2. Family Details
(a) List out the names and ages of your children

3. Biographic Questionnaire
(a) Current Residence? Village, quarter, compound

Figure 3: Survey questions from three years, listed chrono-
logically by year [11]

In this paper, we propose DDM (Drag, Drop, Merge), a data in-
tegration tool aimed at reducing per-use data integration effort in
analytics over longitudinal study data. As input, DDM takes a set of
schemas: one for each individual revision of a survey instrument,
where each attribute of the schema corresponds to the answer to
one specific question. DDM aims to simultaneously assist the re-
searchers conducting the longitudinal study in data publication;
as well as researchers attempting to leverage the published data,
as they integrate it for the needs of their individual research ef-
forts. The key insight behind DDM is to split the data integration
process into two phases: (i) a curation phase in which study design-
ers document relationships between the attributes of the source
datasets; and (ii) a integration phase in which researchers leverage
this documentation to explore the skyline of quality trade-offs, and
generate a dataset that meets their needs. Although our primary
focus for this paper is the first, curation phase, we first explore the
needs of the second, integration phase.

Target Audience. DDM is developed through an interdisciplinary
collaboration involving experts from linguistics, medicine, and sta-
tistics. The target group for DDM is domain experts conducting
longitudinal studies in their respective fields. These experts are
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already familiar with the process of data integration, which they
currently perform manually. The design considerations for DDM
evolved based on the feedback from preliminary usability tests con-
ducted with these collaborators, the prospective users of DDM.

1.1 Generating Task-Specific Datasets
The primary objective of researchers at this phase is to trade off be-
tween the quantity of data that they plan to analyze, and the com-
pleteness/precision of that data. As the researcher incorporates
more years of data from the longitudinal survey, the number of
questions missing from one or more revisions of the instrument
grows. In some cases (e.g., counties in our running example), some
attributes may be available at a reduced precision; or only in ap-
proximation for some source datasets. In other cases, questions
may only have answers that are comparable in specific situations.
For example, consider a question that asks respondents to list di-
alects that they speak, and a revision in which a specific dialect is
introduced as an example. Such a revision may have a negligible
impact on some analyses (e.g., if the new example dialect has few
speakers), but could have a drastic effect on others (e.g., a study
involving the dialect itself).

The goal of the curation phase, then, is to document the relation-
ships between attributes, giving researchers using the published
data (i) a starting point for their integration task, while simultane-
ously (ii) retaining the provenance of those relationships to allow
researchers to refine the integrated dataset, based on study-specific
criteria. In classical approaches to data integration, the objective is
usually a single, clean, redundancy-free target schema. By contrast
DDM’s curation step adopts a flat, graph-based schema model.The
focus of the model, and accordingly of the curation step, is on doc-
umenting relationships between attributes, and not on creating a
single global schema. We discuss the model further in Section 3.

1.2 Curating Longitudinal Study Data
DDM’s schema curation interface focuses on helping study design-
ers in identifying relationships between attributes (questions) from
distinct survey instruments and their revisions, specifically: (i) Pairs
of questions from different revisions where answers to one or both
may be derived from the other, and (ii) New, “least-upper-bound”
attributes that may be derived from answers to related questions
where no direct interchange is possible. Although this is funda-
mentally similar to a classical data integration process, DDM’s use
of a flat, relationship-based model, rather than one based on creat-
ing a single target schema, substantially increases the number of
attributes that the user must sift through. Like other approaches to
integration, DDM heuristically generates an approximate schema
matching as a starting point. However, when this approximation
is incorrect (e.g., if it misses a pair of equivalent questions), the
survey designer must sift through a substantially larger number
of attributes to manually declare the match. Worse, with a large
number of attributes, it becomes easier for the designer to miss an
unlisted equivalence.

Our key contribution here is to note that the order in which
schemas are integrated can significantly affect the cognitive over-
head placed on DDM curators. Specifically, we observe that asking
users to perform many isolated 1-1 schema matchings (e.g., pair-
wise matching between schema revisions), can actually result in

less work than asking them to match all schemas at once. Even
though the latter approach involves less work overall, havingmore
attributes under consideration at the same time creates a higher
cognitive overhead for the curator when the approximate initial
matching is incorrect.

Outline. The rest of the paper is organized as follows. Section 2
discusses related work, including table union search, schema evo-
lution, and user interfaces for data integration. In Section 3, we
introduce the DDM system and its schema model, and outline key
features in the design of its interface. Section 4 reports the results
of a simulation study, demonstrating howDDM can streamline the
cost of integration. Section 5 briefly discusses our longer term vi-
sion for the DDM system, and we conclude in Section 6.

2 RELATEDWORK
Schema Evolution. PRISMworkbench [3] addresses schema evo-

lution by using theories of mapping composition and invertibility.
Its concise Schema Modification Operators (SMOs) language en-
ables efficient representation of schema changes, facilitating pre-
dictability and automating verification processes for information
preservation and query support. PRISM adopts a similar evolution-
ary model of schema evolution, but focuses on providing query
compatibility with specific schema revisions, rendering certain at-
tribute combinations inaccessible. Adaptive SchemaDatabases [19]
explores query support for ambiguously defined schemas, but as-
sumes that a space of possible schemas has already been defined.
DDM could be used to create such a space.

Table Enrichment. As discussed in [14], table enrichment entails
identifying unionable (resp., joinable) tables for a provided query
table: Unionable tables contribute new tuples, while joinable tables
add new attributes. Although DDM adopts similar mechanisms, ta-
ble enrichment focuses on discovery, rather than integration.

UIs for Data Cleaning and Alignment. In Clio [7], users can view,
insert, and delete correspondences between schemas. Additionally,
users can assign transformation functions to these correspondences
and inspect and modify the resulting logical mappings. However,
the system has scalability issues when schemas are large because
it can take exponential time in the worst case as it explores expo-
nential path variable assignments. Muse [1], built on top of Clio,
uses a series of simple data examples to discern between alterna-
tive mapping specifications and deduces the desired mapping se-
mantics based on the actions of the designer. Wrangler [10] is an
interactive data transformation tool that uses a spreadsheet-style
interface allowing direct manipulation of visualized datawith auto-
matic deduction of pertinent transforms. Unlike conventional tools
focusing on pairwise settings, SMART [16] addresses scenarios in-
volving a large number of schemas through a pay-as-you-go ap-
proach that leverages integrity constraints. GestureDB [9], a data-
base architecture system for keyboardless database interaction, in-
cludes a high-performance unionability index to allow low-latency
gestural specification of unions.

3 SYSTEM OVERVIEW
3.1 Overview
DDM’s system architecture is shown in Figure 4. In DDM, a list
of source schemas is uploaded to the workspace, and a subset (or



HILDA 24 , June 14, 2024, Santiago, AA, Chile Juseung Lee, Pratik Pokharel, Marianthi Markatou, Andrew Talal, Raktim Mukhopadhyay, Jeff Good, and Oliver Kennedy

Figure 4: System Architecture

all) of it can be selected to document relationships among source
attributes in 5⃝. These documented relationships can then be trans-
formed into study-specific schemas 6⃝, and corresponding datasets
7⃝. Without the documented relationships, researchers with new
requirements must revisit the entire integration process for each
new study; DDM kick-starts this integration process through a
schema relationship graph (defined formally below).

We would like to avoid the need for schema curators to de-
fine this graph manually. Instead, DDM streamlines the process by
proposing a schema relationship graph for review and manual cor-
rection. As shown in 4⃝, the user validates the candidates, applies
corrections as needed, and potentially marks specific relationships
as requiring a mapping function. As part of this process, DDM uses
the graph to warns users about attributes that have not been re-
viewed or matched. Once the user is satisfied, they commit their
changes to a database of documented relationships.

In order for DDM to propose a preliminary graph to the cura-
tor, we needed a metric that could quantify the similarity between
two attributes. Many such measures exist, relating categorical and
prose data [14, 15], numerical data [20], or semantics [8]; but fre-
quently rely on the data behind the schemas. We adopted a sim-
pler semantic measure based on the question contents [13], lever-
aging vector embeddings of attribute names (i.e., question plain-
text and their containing context). DDM identifies related ques-
tions from different instrument revisions by performing a top-k
similarity search using Faiss[6], a library tailored for efficient sim-
ilarity search and clustering of dense vectors in 3⃝. Two attributes
(questions) are considered to be related if their cosine distance ex-
ceeds a threshold, 𝛼 . A higher value of 𝛼 decreases false positives
in the candidates list, but increases the number of false negatives.

We assume that the schemas are provided by the survey de-
signer. Our initial approach is modeled after a collection of medi-
cal intake forms, used in a recent study on opioid use disorder[13].
The structure of the forms (i.e., the schema) had already been digi-
tized into a hierarchical Json schema mirroring each individual in-
strument’s structures and questions. Each section of the form and
its questions are represented as nested objects, aligned with their
hierarchy in the forms. Questions are encoded according to their
type (e.g., free text, number, multiple choice) with appropriate data
fields, including enums for multiple choice questions. This struc-
ture facilitates efficient data entry and supports automated valida-
tion and management of evolving schemas. To make the attributes

easier to workwith, we first project the hierarchical source schema
into a flat collection of attributes. These projected attributes from
multiple source forms are identified by the question text and ele-
ments from the hierarchy of section headers. The set of attributes
(denoted D in 1⃝) is the set of all projected attributes. D is trans-
formed into vector embeddings using a pre-trained model [17] and
clustered in 2⃝ based on the sentence embeddings of their root
question category. Clustering the questions has two advantages:
(i) it preserves the order of the question asked in original source
schema up to some extent, and (ii) it minimizes the user effort to
find an attribute from similar root question categories.

The entire process is iterative and the information obtained from
human interaction is used in future iterations to reduce required
calculations for similarity search and suggest preciser candidates.

3.2 Model
Definition 3.1. (Dictionary). A schema set S = {𝑆1, . . . , 𝑆𝑁 } is a

set of disjoint source schemas, where 𝑆𝑖 = {𝑎𝑖1, . . . , 𝑎𝑖 𝑗 } is a set of
attributes in the schema 𝑆𝑖 . We typically assume that each pair 𝑆𝑖
and 𝑆 𝑗 (where 𝑖 ≠ 𝑗 ) is fully disjoint. An attribute 𝑎𝑖 𝑗 indicates 𝑗 th
attribute of schema 𝑆𝑖 . A dictionary D is the union of all of the
attributes in source schemas: D =

∪𝑁
𝑖=1 𝑆𝑖 .

Definition 3.2 (Correspondence). A lossy correspondence ⟨𝑎 𝑗 , 𝑎𝑘 , f⟩
defines a relationship between a pair of attributes 𝑎 𝑗 , 𝑎𝑘 from two
distinct source schemas 𝑎 𝑗 ∈ 𝑆 𝑗 , 𝑎𝑘 ∈ 𝑆𝑘 through a function 𝑓𝑗,𝑘
that maps values of attribute 𝑎 𝑗 into values of attribute 𝑎𝑘 . If 𝑓𝑗,𝑘
is invertible, we call it a lossless correspondence ⟨𝑎 𝑗 , 𝑎𝑘 , f, f−1⟩.

Definition 3.3 (Relationship Set). A relationship set is a mixed
graph 𝐺 : (𝒟, 𝐸, 𝐴), where 𝐸 is a set of undirected edges repre-
senting lossless correspondences, and 𝐴 is a set of directed edges
representing lossy correspondences.

We emphasize the choice to explicitly distinguish lossless and
lossy edges as undirected and directed edges, respectively. This
treatment simplifies the handling of bidirectional transformations
and allows for efficient processing of inverse relationships. A cor-
respondence is either (i) lossless, or (ii) lossy. If 𝑓 ( 𝑗) = 𝑘 and 𝑓 −1

exists such that 𝑓 −1 (𝑘) = 𝑗 , then the correspondence is lossless
and is denoted as a tuple ⟨𝑎 𝑗 , 𝑎𝑘 , 𝑓 , 𝑓 −1⟩. For instance, temperature
unit conversion from Celsius to Fahrenheit is a lossless correspon-
dence. On the other hand, the correspondence is lossy if 𝑓 ( 𝑗) = 𝑘
and 𝑓 −1 does not exist, denoted as tuple ⟨𝑎 𝑗 , 𝑎𝑘 , 𝑓 ⟩. An example of
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a lossy correspondence is the mapping from school district and zip
code to county from the introduction.

Definition 3.4 (Global Attribute). A global attribute is a fully con-
nected component𝐶 in𝐺 :𝐶 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} ⊆ 𝑉 , where∀𝑣𝑖 , 𝑣 𝑗 ∈
𝐶, 𝑖 ≠ 𝑗, ∃𝑒𝑖 𝑗 ∈ 𝐸 ∨ ∃𝑎𝑖 𝑗 ∈ 𝐴.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥7

𝑥8

𝑥9
C1

C2

Figure 5: Global attributes as fully connected components.
Node 𝑥5 has lossy correspondence to both 𝐶1 and 𝐶2 and be-
longs to both of them

If we can find a correspondence for a vertex 𝑣 with any one of
the vertices 𝑣𝑖 in the fully connected component𝐶𝑘 , then 𝑣 can be
assigned to 𝐶𝑘 . Similarly, a vertex 𝑣 can have a lossy correspon-
dence to multiple fully connected components 𝐶𝑘 and can be as-
signed to all of them. For every vertex 𝑣, 𝑣 ′ ∈ 𝑉 , if 𝑣 has a lossy
correspondence to the fully connected component𝐶𝑘 and 𝑣 ′ has a
lossless correspondence to 𝑣 , then we remove 𝑣 from 𝐶𝑘 and form
a new fully connected component 𝐶′

𝑘
by including 𝑣 and 𝑣 ′.

3.3 Interface Design Considerations
Our choice of the mixed graph model for DDM was backed by its
flexibility in including various types of mappings and transforma-
tions between different data elements. This modular approach fa-
cilitates the incremental development of integration workflows. In
addition, the features of connected components in a graph can be
leveraged to reduce computation time and document more refined
mappings.

The primary goal of DDM’s user interface is to produce the re-
lationship set 𝐺 for a set of source schemas S. As a completion
measure, DDM requires every attribute in D to be associated with
a global attribute; If the attribute is a singleton in the relationship
set, we require the user to explicitly confirm this fact, to avoid ac-
cidentally omitted attributes.

We considered two design options for the user interface: (i) al-
lowing users to manually explore the top-k similar candidates list
generated by Faiss, for each attribute in D, and (ii) suggesting
the mergeable candidates (based on the Faiss metric) for all at-
tributes inD andmaking them visible as a list in the UI.The former
approach allows more control to the user, in terms of exploring
mergeable candidates. However, based on the preliminary usabil-
ity study with our area-expert collaborators, we observed that it re-
quired far too many user interactions to generate (𝐸,𝐴), because
the user had to click each attribute in D and choose from their
top-k list; we ultimately adopted the latter approach. We wanted
to preserve the order of questions asked in the source schemas, so
the attributes in D are displayed in tree-view format as shown in
Figure 1. Here, each node is a cluster that represents root category

of a question. Each attribute appears with a list of potential merge
candidates. To allow users to distinguish the strength of similarity
between an attribute in D and the merge candidates, the merge
candidates are ordered in descending order of the similarity scores,
appearing with a color gradient as shown in Figure 1.

Since the user begins with a proposed relationship set, there are
three fundamental interactions that the user needs to perform in
DDM: (i) confirming True Positives (correctly predicted merge can-
didates), (ii) rejecting False Positives (incorrectly predicted merge
candidates), and (iii) repairing False Negatives (missed merge can-
didates). Confirming true positives can be done by dragging a can-
didate attribute from candidates branch to merge branch of the cor-
responding global attribute in the tree-view. Untouched attributes
are rejected as false positives. We note that a key challenge in re-
solving false negatives is the need to find the mapped attribute
among the list of available mappable attributes. To mitigate the
scrolling distance that the user needs to drag a value, as shown in
Figure 1, DDMprovides a separate temporarymerge area where at-
tributes can be dragged from tree-view of D, dropped in the pane,
and merged.

(a) Lesser number of source at-
tributes

(b) Large number of source at-
tributes

Figure 6: Graph Visualization of Relationships Among
Source Attributes

A visualization tab, powered by D3 was created to allow users
to visualize the status of the identified relationships in the current
workspace and quickly locate global attributes (i.e., connected com-
ponents in the graph). The initial approach allowed the user to see
all relationships of attributes in D, but it did not provide a clear
indication of which attributes were candidates for merging when
there were many source attributes. To provide users with a clear vi-
sualization, the latter approach only displays attributes with their
merge candidates in the visualization tab. As shown in Figure 6, the
graph was useful as long as the number of attributes was small in
the workspace since it fills the graph with a thick cloud of nodes
and edges that hinders visualization as the number of attributes
grows. It also explains why one should not want to integrate many
things at once.

A few fundamental considerations were made in terms of the
user interface to improve the user experience: (i) use of a fixed-
width panel to display candidate attributes instead of a single line
panel with a horizontal scroll bar, (ii) auto-collapse of attributes
with candidates available (to reduce the need for vertical scrolling),
and (iii) use of a brighter color gradient (e.g. red) for the appearance
of candidates list.



HILDA 24 , June 14, 2024, Santiago, AA, Chile Juseung Lee, Pratik Pokharel, Marianthi Markatou, Andrew Talal, Raktim Mukhopadhyay, Jeff Good, and Oliver Kennedy

4 EXPERIMENTS
Experiments were performed to assess the impact of the following
factors on building mappings: (i) the order of source datasets sub-
jected during merging, and (ii) the number of attributes attempted
to merge at once (i.e. size of D).

Dataset. We used a collection of medical intake forms (schemas
only) used in a recent Social Determinants of Health (SDOH) study
on opioid use disorder[13]. The subset of the form layouts we used
involved three distinct instruments, includingmedical intake forms
from two sites (i.e., clinics) A and B, with form revisions denoted
𝑎1 and 𝑎2, and 𝑏1, respectively.

Overview. We were interested in the relationship between the
effort required to merge schemas and the order in which integra-
tion was performed. To understand this relationship, we simulated
merging between the source schemas belonging to the same sites
as well as different sites was simulated in different orders. Recall
that three classes of user input are required: (i) Confirming a pre-
dicted attribute relationship (TP), (ii) Rejecting a predicted attribute
relationship (FP), and (iii) Adding a non-predicted attribute rela-
tionship (FN). Additionally, recall that adding a non-predicted at-
tribute relationship requires exploring the full list of available at-
tributes. We simulate this by measuring how far two mergeable
candidates (missed by similarity search) are in the tree-view, where
two attributes appearing one after another in the treeview have a
distance of 1. This metric is summed over all the False Negative
pairs. We set the word embedding threshold 𝛼 to 0.7.
We considered three different orders:
Experiment 1 [(𝑎1 +𝑎2) +𝑏1]: First, the schemas belonging to site
A were merged, followed by a schema belonging to site B.
Experiment 2 [(𝑎1+𝑏1) +𝑎2]: First, one schema from each of sites
A and B were merged, then the remaining schema of site A.
Experiment 3 [𝑎1+𝑎2+𝑏1]: All three source schemasweremerged
simultaneously.

4.1 Experimental Results
The comparison of the number of validations required and cogni-
tive overhead for the three different approaches of experiments is
shown in Table 1. The union of the TP, FP, and FN scores across
all the steps for all the experiments were found to be the same.
Meaning that the order of merging has no bearing on the merge
candidates generated altogether. This is due to the fact that the
final dictionary D would eventually be the same for each of the
approaches and the semantic similarity search would generate the
same results overall. However, it significantly affected the effort to
find False Negative pairs. In experiment 3, we found that merging
all schemas at once would result in a higher overhead than merg-
ing two schemas in a single step and building up on that in further
iterations. This is because having more attributes under consider-
ation at the same time creates a higher cognitive overhead for the
curator when there are False Negatives to identify manually.

5 FUTURE WORK
DDM is a proof of concept, but substantial work remains to be done
to identify pain points. We plan to conduct comprehensive expert

Experiment Step TP FP FN
∑

Distance to FN

1 1 16 3 7 356
2 2 1 1 8

2 1 2 1 1 4
2 16 3 7 476

3 1 18 4 8 562

Table 1: Comparison of cognitive overheads for merging
schemas from same sites first vs. merging schemas from a
different site first
and user studies to confirm our hypothesis that incremental inte-
gration can produce a more reliable relationship set. If this hypoth-
esis is supported, we will explore the design of a recommendation
system that suggests an order of source datasets in which merging
should be performed. For this work, we adopted a simpler seman-
tic similarity measure. Unlike classical database schemas with at-
tribute names identified by short keywords or codes, survey ques-
tionnaires are often succinct, clearly informative, and sometimes
verbose. However, we understand this approach may not be en-
tirely sufficient. We will further explore the possibilities of using
ontologies, taxonomy, and most importantly profiling actual data
values behind the schemas.Thesemethodologiesmight further help
identify similarities.

The dataset [13] used in Section 4 contains multiple years of
medical intake forms from multiple sites and the results in Sec-
tion 4.1 show that site has a significant impact on the cognitive
overhead of merging schemas, so we plan to apply a hybrid strat-
egy that combines our methods with more classical techniques.

In this paper, we focus exclusively on schema integration; Lever-
aging these mappings for subsequent analysis is left to future work.
The key challenge here is helping users to identify which attribute
relationships can be safely leveraged. We plan to explore strate-
gies for measuring whether the form and/or question variant acts
as a meaningful predictor of participant responses, and for helping
users to visualize relationships between the quantity and quality
of data extracted.

Similarly, as in to PRISM [3] and similar works, it may be im-
possible to define some schemamappings precisely, a problem that
only becomes more acute in survey instruments. For example, mi-
nor changes in phrasing can substantially impact how respondents
interact with it. End even if a question is unaltered, changing social
context (e.g., the relative value of a dollar) may affect the compara-
bility of answers from across instrument revisions.Wewill explore
how such partial relationships can be captured, and safely incoro-
porated into the dataset construction phase.

6 CONCLUSION
This paper describes an initial implementation of DDM- an ap-
proach to simplifying the documentation of attribute relationships
within a pool of source schemas. By employing a user-friendly in-
terface and a human-in-the-loop approach, DDM facilitates the val-
idation and refinement of semantic mappings, with a goal of reduc-
ing cognitive overload for data curators. DDM aims to aid in effi-
cient management of longitudinal study data integration tasks, of-
fering researchers the flexibility to generate task-specific datasets
tailored to their unique requirements.
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