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ABSTRACT
Efforts to scale spreadsheets either follow a ‘virtual‘ strat-

egy that imposes a spreadsheet interface over an existing

database engine or a ‘materialized’ strategy based on re-

engineering the spreadsheet engine. Because database en-

gines are not optimized for spreadsheet access patterns, the

materialized approach has better performance. However, the

virtual approach offers several advantages that can not be

easily replicated in the materialized approach, including the

ability to re-apply user interactions to an updated dataset.We

propose a hybrid approach, where patterns of user updates

are indexed (as in the materialized approach) and overlaid

on an existing dataset (as in the virtual approach). We in-

troduce the overlay update model, and outline strategies for

efficiently accessing an overlay spreadsheet. A key feature

of our approach is storing updates generated by bulk oper-

ations (e.g., copy/paste) as “patterns" that can be leveraged

to reduce execution costs. We implement an overlay spread-

sheet over Apache Spark and demonstrate that, compared

to DataSpread (a standard materialized-style spreadsheet), it

can significantly reduce execution costs.

ACM Reference Format:
Oliver Kennedy, Boris Glavic, and Michael Brachmann. 2023. Over-

lay Spreadsheets. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Spreadsheets are a popular tools for data exploration, trans-

formation, and visualization, but have historically had chal-

lenges managing “big data” — as few as 50k rows of data

create problems for existing spreadsheet engines [16]. One

approach to scalability, employed byWrangler [12], Vizier [8,
10], and others [15] relies on translating spreadsheet inter-

actions into declarative transformations (dataflows) that can

be deployed to a database or dataflow system. In this model,

the spreadsheet is a chain of versions, each linked by a light-

weight transformation function [10]. A different approach

employed by DataSpread [5, 6, 16], instead re-architects the

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
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π
Σ

Materialized Virtual Overlay

Figure 1: Approaches to scalable spreadsheet design

spreadsheet runtime and specializes database primitives like

indexes and incremental maintenance for spreadsheet access

patterns. We refer to these as the virtual and materialized

approaches, respectively, and illustrate them in Figure 1.

The materialized approach is optimized for multiple data

access patterns common to spreadsheets [5, 6, 16], including

(i) Data structures specialized for the positional referencing

scheme commonly used in spreadsheet formulas [5], (ii) Ex-

ecution strategies that prioritize completion of portions of

the spreadsheet that the user is viewing [6], and (iii) Indexes

storing compressed dependency graphs [6, 17]. Similar opti-

mizations are considerably harder in the virtual approach,

as the result of updates and their effects on cell position are

only materialized when data is received.

Although the virtual approach is often less efficient, it does

provide capabilities that the materialized approach does not:

(i) It is a naturally efficient encoding of the spreadsheet’s

full version history. (ii) As in Wrangler, the user’s actions

can be re-applied to new data (e.g., an updated version of

the source data); and (iii) As in Vizier, the spreadsheet can

be re-encoded as a relational query allowing it to “plug into”

existing scalable computation platforms (e.g., Spark [1]) and

provenance analysis tools (e.g., [14]).

We propose an optimized hybrid of the virtual and materi-

alized approaches: Overlay Spreadsheets. An Overlay Spread-

sheet (Figure 1) presents an interface analogous to a normal

spreadsheet. User edits are “overlaid” on top of a source

dataset that can be easily be updated to a new version. As

an added benefit, decoupling edits and source data makes it

easier to leverage spreadsheet access patterns, reducing the

time needed to respond to user actions.

We outline a preliminary implementation of Overlay Spread-

sheets within Vizier [7, 8, 13], a multi-modal notebook-style

workflow system built on Apache Spark. Existing versions

of Vizier allow users to define workflow steps through a

1
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spreadsheet-style interface; each action adds a new work-

flow step. In spite of the performance limitations of this

virtual approach, it remains preferable for Vizier, where (i)

changes to an early step in the workflow may require auto-

matically re-applying the user’s edits, and (ii) fine-grained

provenance features rely on encoding data transformations

as Spark dataframes. Our objective is to demonstrate that a

spreadsheet-style interface can provide interactive laten-
cies (i.e., like the materialized approach), while still support-

ing replay and provenance (i.e., like the virtual approach).
As a secondary goal, we explore potential performance

improvements that the overlay approach enables. Specifi-

cally, we observe that bulk updates in a spreadsheet (e.g.,

pasting a formula across a range of cells) rely on expression

“patterns,” which admit more efficient dependency analysis

and bulk computation, when intermediate values are not re-

quired. This hybrid strategy is akin to optimizations applied

in DataSpread [6, 17], but operate over patterns of updates

rather than patterns in the dependency graph, enabling ad-

ditional optimizations.

2 SPREADSHEET DATA MODEL
2.1 Spreadsheets
Let C and R denote domains of column and row labels.

Except where noted, R ⊂ Z. Let V and E ⊃ V denote

domains of values and expressions, respectively. A spread-
sheet S : (C × R) → E is a partial mapping from cells
(𝑐 [𝑟 ] ∈ (C × R)) to expressions. We use S[𝑐, 𝑟 ] to denote

S(𝑐 [𝑟 ]). Let ⊥ ∈ V indicate “undefined” and define the do-
main Dom(S) to be the set of cells 𝑐 [𝑟 ] where S[𝑐, 𝑟 ] ≠ ⊥.
An expression 𝑒 ∈ E is a formula defined over literals

fromV , the standard arithmetic operators, and references

to other cells in the spreadsheet (𝑐 [𝑟 ]). The expression 𝑒 is

evaluated in the context of a spreadsheet (⟦ · ⟧S : E → V)

as follows: (i) Literals and arithmetic are evaluated in the

usual way, and (ii) References to the spreadsheet are eval-

uated recursively (⟦ 𝑐 [𝑟 ] ⟧S ≡ ⟦ S(𝑐, 𝑟 ) ⟧S). By convention,

cyclic references evaluate to ⊥. An expression’s dependen-

cies (deps (𝑒)) are the cells referenced by 𝑒 . Dependencies

induce a graph𝐺S ⟨𝑁, 𝐸⟩ over the spreadsheet, with cells as

nodes (i.e., 𝑁 = C × R), and dependencies as directed edges:

𝐸 =
⋃

𝑐 [𝑟 ]∈C×R
{ 𝑐 [𝑟 ] → 𝑐′ [𝑟 ′] | 𝑐′ [𝑟 ′] ∈ deps (S[𝑐, 𝑟 ]) }

Denote by 𝐺∗
S
the graph ⟨𝑉 , 𝐸∗⟩ where 𝐸∗ is the transitive

closure of 𝐸 (i.e.,𝐺∗
S
captures both direct and indirect depen-

dencies). Note that if all cell expressions are constants (i.e., a

spreadsheet without formulas), then ⟦ 𝑐 [𝑟 ] ⟧S = S[𝑐, 𝑟 ].

Example 2.1. Consider the spreadsheet at the top of Fig-

ure 2. Columns A and B hold constant expressions, while

Spreadsheet S
A B C

1 15 50 A1 + B1

2 20 60 A2 + B2

3 25 100 A3 + B3

4 50 0 A4 + B4

Evaluated Spreadsheet ⟦ · ⟧S
A B C

1 15 50 65

2 20 60 80

3 25 100 125

4 50 0 50

Update𝑈 = {𝐴[1] = 20,𝐶 [3] = 2 · 𝐴3 + 𝐵3}
Updated Spreadsheet𝑈 (S)

A B C

1 20 50 A1 + B1

2 20 60 A2 + B2

3 25 100 2 · A3 + B3

4 50 0 A4 + B4

Evaluated Update ⟦ · ⟧𝑈 (S)
A B C

1 20 50 70

2 20 60 80

3 25 100 150

4 50 0 50

Figure 2: Example spreadsheet with expressions shown
in dark green, and an update applied to the spreadsheet
with updated expressions and values shown in red.

column C holds reference cells from columns A and B. Eval-
uating this spreadsheet assigns each cell a value, as in the

top right. For example, C[1] evaluates to ⟦ 𝐴[1] + 𝐵 [1] ⟧S =
⟦ 𝐴[1] ⟧S + ⟦ 𝐵 [1] ⟧S = 15 + 50 = 65.

2.2 Cell Updates
A cell update set𝑈 ⊆ C×R ×E is a set of cell updates of the

form 𝑐 [𝑟 ] = 𝑒 that assign to cell 𝑐 [𝑟 ] the expression 𝑒 . Denote
by Dom(𝑈 ) the domain of update𝑈 , containing all cells 𝑐 [𝑟 ]
defined in𝑈 (i.e., ∃𝑒 : ( [𝑐 [𝑟 ] = 𝑒] ∈ 𝑈 )). Applying an update

𝑈 to a spreadsheet S returns an updated spreadsheet:

𝑈 (S) [𝑐, 𝑟 ] =
{
𝑈 (𝑐 [𝑟 ]) if 𝑐 [𝑟 ] ∈ Dom(𝑈 )
S[𝑐, 𝑟 ] otherwise

An updatemay affect cells beyond its domain. For example,

the update shown in Figure 2 changes two cells A[1] and
C[3], but evaluating the updated spreadsheet𝑈 (S) results in
three cell changes (in red).

2.3 Spreadsheet Access to Datasets
To uniformly model source datasets, whether from relational

databases or other spreadsheets, we assume an input dataset

𝐷 with designated row and column labels C𝐷 and R𝐷 as

appropriate to the source data. In a relational table, these are

the table’s columns and the values of a key or rowid attribute,

respectively. For csv data, R𝐷 ⊂ Z is the position of the row

in the file. We write 𝐷 [𝑟, 𝑐] to denote the value at column

𝑐 ∈ C𝐷 of row 𝑟 ∈ R𝐷 in 𝐷 .

Denote by F : R𝐷 → Z a reference frame, an injective

map from rows in𝐷 to rows of the spreadsheet. A spreadsheet
overlay for a dataset 𝐷 is then a pair (𝐷, F ) that defines a
spreadsheet S𝐷,F with domains C = C𝐷 , R = Dom(F ) as
S𝐷,F [𝑐, 𝑟 ] = 𝐷 [𝑐, F −1 (𝑟 )]

2
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2.4 Overlay Updates
An Overlay Update describes a set of changes to a spread-

sheet (or dataset). As we discuss in Section 3.1, column op-

erations are purely cosmetic in our model, and we focus on

cell and row updates exclusively. Concretely, a spreadsheet

overlay O = ⟨T ,U⟩ is a reference frame transformation T
and a set of pattern updatesU, terms we now define.

Reference Frame Transformations. Recall that a refer-
ence frame maps the spreadsheet’s positional row references

to native record identifiers. Thus, to insert, delete, or move

rows in the spreadsheet, it is sufficient to modify the refer-

ence frame. Formally, a reference frame transformation T is

an injective mapping Z→ Z ∪ ⊥ from initial row positions

to new row positions, or the value ⊥ for a deleted row. The

new reference frame, after applying O is F ′ = T ◦F , where
◦ denotes function composition. As an example, consider

deleting the 2nd row of the spreadsheet from Figure 2. The

positions of rows 3 and 4 are decreased by one, while row 1

retains its position

T (𝑥) =


𝑥 if 𝑥 < 2

⊥ if 𝑥 = 2

𝑥 − 1 otherwise

Row insertions and movement are handled analogously.

Note that row insertions, deletions, and movement are ex-

pressible in constant size, independent of the size of the data.

Pattern Updates. Spreadsheets allow a formula from one

cell to be pasted across a range of cells. In a classical spread-

sheet, bulk interactions like thismodify each cell’s expression

individually. Overlay spreadsheets avoid the high cost that

individual modifications can entail by grouping together the

set of pasted cells into a single pattern.
A range 𝐶 [𝑅] is the Cartesian product 𝐶 × [𝑙, ℎ] of a set

of columns (𝐶 ⊆ C) and row positions (𝑅 = [𝑙, ℎ] ⊂ Z). A
pattern updateU is a set of pairs {(𝐶𝑖 [𝑅𝑖 ], 𝑃𝑖 )} where𝐶𝑖 [𝑅𝑖 ]
is a range and 𝑃𝑖 is a pattern expression, i.e., an expression

that may also contain cell references where rows are relative

offsets (written as +𝑖 or −𝑖). Ranges in an update𝐶𝑖 [𝑅𝑖 ] must

be pairwise disjoint. A pattern update (𝐶𝑖 [𝑅𝑖 ], 𝑃𝑖 ) assigns
an expression to every cell 𝑐 [𝑟 ] in 𝐶𝑖 [𝑅𝑖 ] by replacing any

relative references of the form 𝑐 [+𝛿] in 𝑃𝑖 with 𝑐 [𝑟 + 𝛿]. We

use 𝑃𝑖 (𝑐 [𝑟 ]) to denote instantiation of pattern 𝑃𝑖 for cell 𝑐 [𝑟 ].
For instance, to store a running sum of the values in col-

umn C into column D (for the spreadsheet from Figure 2):

U𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = (𝐷 [1], (𝐶, +0)), (𝐷 [2 − 4], (𝐶, +0) + (𝐷,−1))

Semantics for Overlay Updates. An overlay update O
applied to a spreadsheet S defines the spreadsheet O(S)
computed by applying the reference frame update and then

applying all pattern updates (with O = ⟨T , {(𝐶𝑖 , 𝑅𝑖 , 𝑃𝑖 )}⟩):

Spreadsheet S
A B C D

1 15 50 A1 + B1 C1

2 20 60 A2 + B2 C2 + D1

3 25 100 A3 + B3 C3 + D2

4 50 0 A4 + B4 C4 + D3

Evaluated Spreadsheet ⟦ · ⟧S
A B C D

1 15 50 65 65

2 20 60 80 145

3 25 100 125 270

4 50 0 50 320

Figure 3: Example overlay update and result (updated
expressions and values are shown in red).

O(S) [𝑐, 𝑟 ] =


𝑃𝑖 (𝑐 [𝑟 ]) if∃𝑖 : 𝑐 [𝑟 ] ∈ 𝐶𝑖 [𝑅𝑖 ]
S[𝑐,T −1 (𝑟 )] if∃𝑟 ′ : T (𝑟 ′) = 𝑟

⊥ otherwise

Example 2.2. Consider our example update (O𝑟𝑢𝑛𝑛𝑖𝑛𝑔 =

(T𝑖𝑑 ,U𝑟𝑢𝑛𝑛𝑖𝑛𝑔) where T𝑖𝑑 (𝑥) = 𝑥 ). Figure 3 shows the result

of applying O𝑟𝑢𝑛𝑛𝑖𝑛𝑔 to our running example spreadsheet.

Several remarks are in order. First, overlays can be used to

encode common spreadsheet update operations in constant

space (per update), including bulk updates via copy/paste.

Second, [17] uses similar ideas to compress the dependencies

in a spreadsheet using ranges and patterns, but focuses ex-

clusively on the dependency graph rather than expressions.

2.5 Replacing Source Data
An overlay designed for source data (𝐷, F ) may be applied

to a dataset (𝐷 ′, F ′) as long as each 𝑟 ∈ R𝐷 that corresponds

to some 𝑟 ′ ∈ R𝐷 ′ , F ′ (F −1 (𝑟 )) = 𝑟 ′. This is possible if, for
example, R𝐷 = R𝐷 ′ is a semantic key for the dataset.

3 SYSTEM DESIGN
Our prototype overlay spreadsheet is implemented within

the Vizier reproducible notebook platform [7, 8, 13]. Vizier

leverages Apache Spark [1] for data provenance, processing,

and data import/export. Our prototype is designed to accept

any Spark dataframe as a data source.

Client applications connect through a thin Presentation
layer that mediates concurrent access to the spreadsheet

and translates to our simplified model of a spreadsheet to a

more natural interface. AnExecution layer is responsible for

evaluating spreadsheet cells and materializing values for the

viewable set of cells. An Indexing layer provides efficient

access to the updates themselves, and a simple LRU cache

provides efficient random access to the source dataframe.

3
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3.1 Presentation Layer
User-facing client applications connect to the overlay spread-

sheet through a presentation layer. This layer mediates con-

current updates of the spreadsheet and provides clients with

the illusion of a fixed grid of cells by defining and main-

taining an explicit order over columns. Column operations

(insertion, deletion, reordering) are handled at this layer, so

lower levels can reference the (comparatively small) set of

columns solely by column identity. Other updates are put

into a serial order and relayed to lower levels.

The presentation layer expects the Executor to provide

efficient random access to cell values and support updating

ranges of cells with pattern expressions.

3.2 Executor
The executor provides efficient access to cell values and gen-

erates notifications about cell state changes. Cell values are

derived from two sources: (i) A data source (𝐷, F ) defines
a base spreadsheet S𝐷 [𝑐, 𝑟 ] = 𝐷 [𝑐, F −1 (𝑟 )], and (ii) A se-

quence of overlay updates (O1 . . .O𝑘 ; where O𝑖 = ⟨T𝑖 ,U𝑖⟩)
that extend the spreadsheet S = (O𝑘 ◦ . . . ◦ O1) (S𝐷 ). These
sources are implemented by a cache around S𝐷 and the up-

date index, as discussed below.

The naive approach to materializing S (e.g., as in [6]) com-

putes a topological sort over cell dependencies and evaluates

cells in this order. The Executor side-steps the linear (in the

data size) cost of the naive approach through two insights:

(i) Updates applied over multiple cells are already provided

by higher layers as patterns, and (ii) Only a small fraction

of cells will be visible at any one time. Assuming the depen-

dencies of a range of cells can be computed efficiently (we

return to this assumption in Section 3.3), only the visible

cells and any hidden dependencies need to be evaluated. The

Executor only evaluates cell expressions on rows that are

(close to being) visible to the user, and the transitive closure

of their dependencies.

Some dependency chains (e.g., running sums) still require

computation for each row of data. Although we leave a de-

tailed exploration of this challenge to future work, we ob-

serve that the fixed point of such pattern expressions can

often be rewritten into a closed form. For example, any cell in

a running sum column is equivalent to a sum over the preced-

ing cells. Our preliminary experiments (Section 4) suggest

promise in a hybrid evaluation strategy that evaluates visi-

ble cells individually and computes cells defined by patterns

through closed form aggregate queries.

Updates. When the executor receives an update to a cell,

it uses the index to compute the set of invalidated cells,

marks them as “pending,” and begins re-evaluating them in

topological order. An update to the reference frame is applied

to both the index and the data source. Following typical

V1 V2 V3 V4

Figure 4: A range map maps disjoint ranges to values.

spreadsheet semantics, an insertion or row move updates

references in dependent formulas, so no re-evaluation is

typically required. If a row with dependent cells is deleted,

the dependent cells need to be updated to indicate the error.

3.3 Update Index
The update index stores sequence of updates (O = O𝑘 ◦
. . . ◦ O1) and provide efficient access to the cells of an over-

lay spreadsheet (denoted SO) where undefined cells have

the value ⊥. This entails: (i) cell expressions SO [𝑐, 𝑟 ] (for
cell evaluation); (ii) upstream dependencies of a range (for

topological sort and computing the active set), and (iii) down-

stream dependents of a range (for cell invalidation after an

update). The key insight behind the index is that updates are

stored as pattern-range tuples instead of as individual cells.

RangeMaps.The update index is built over a one-dimensional

range map, an ordered map with integer keys. In addition

to the usual operations of an ordered map (e.g., put, get,
successorOf), we define the operation bulkPut(low, high,
value) which is equivalent to a put on every element in the

range from low to high. Implemented naively (e.g. a size 𝑁

binary tree), this operation is 𝑂 ((high − low) · log(𝑁 )).
A range map avoids the (high − low) factor (and corre-

spondingly reduces 𝑁 ) by storing an ordered sequence of

disjoint ranges, each mapping one specific value as illus-

trated in Figure 4. A binary tree provides efficient member-

ship lookups over the ranges. With a range map, the set

of distinct values appearing in a range can be accessed in

𝑂 (log(𝑁 ) + 𝑀) time (where 𝑀 is the number of distinct

values), and has similar deletion and insertion costs.

Cell Access. The index layer maintains a “forward” index:

An unordered map I that stores a range map I[𝑐] for each
column. The expression for a cell 𝑐 [𝑟 ] is stored at I[𝑐] [𝑟 ].

Upstream Reachability. The execution layer needs to be

able to derive the set of cells on which a specific target cell (or

range) depends. We refer to this set as the target’s upstream.

Algorithm 1 illustrates a naive breadth-first search to obtain

the full upstream set for a given target range. Each item in

the BFS’s work queue consists of a column, a row set, and a

lineage; We will return to the lineage shortly. For each work

item enqueued, we query the forward index to obtain the set

of patterns in the range (line 4), and iterate over the set of
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Algorithm 1 upstream(𝐶 , 𝑅)

Require: 𝐶, 𝑅 []: A range to compute the upstream of.

Ensure: upstream: Cells on which 𝑐 [𝑅] is a dependency.
1: upstream← {}
2: work← { (𝑐, 𝑅, {}) | 𝑐 ∈ 𝐶 }
3: while (𝑐′, 𝑅′, lineage) ← work.dequeue do
4: for (𝑅′′, pattern) ← forwardIndex(𝑐′, 𝑅′) do
5: for (𝑐𝑑 , 𝑅𝑑 , offset) ←

getDeps(pattern, 𝑐′, 𝑅′′) do
6: (𝑐𝑑 , 𝑅𝑑 ) ← (𝑐𝑑 , 𝑅𝑑 ) − upstream
7: if (𝑐𝑑 , 𝑅𝑑 ) is non-empty then
8: upstream← upstream + (𝑐𝑑 , 𝑅𝑑 )
9: queue.enqueue(𝑐𝑑 , 𝑅𝑑 ,
10: { p′ → (o′ + offset)
11: | (p′ → o′) ∈ lineage}
12: ∪{pattern→ offset})

their dependencies (line 5). If we discover a new dependency

(lines 6-7), the newly discovered range is added to the return

set and the work queue. We will explain lines 10-12 shortly.

The getDeps operation (Line 5; Algorithm 2) computes

the immediate dependencies of a range of cells 𝑐 [𝑅] that
share a pattern. Concretely, it returns a set of cells deps such
that for each cell 𝑐 [𝑟 ] ∈ deps, there exists at least one cell
𝑐 [𝑟 ]′ ∈ 𝑐 [𝑅] such that 𝑐 [𝑟 ] is in the transitive closure of

deps (𝑐 [𝑟 ]′). The algorithm uses a recursive traversal (lines

6-7) to visit every cell reference (offset or explicit): For offset

references (lines 2-3), the provided range of rows is offset

by the appropriate amount. For explicit cell references (lines

4-5), the explicit reference is used.

Algorithm 2 getDeps(pattern, 𝑐, 𝑅)
Require: pattern: An expression pattern

Require: 𝑐 [𝑅]: A range of cells

Ensure: deps: The dependencies of pattern applied to

𝑐 [𝑅]
1: deps← {}
2: if pattern is an offset reference 𝑐′, 𝛿 ′ [] then
3: deps← deps ∪ {(𝑐′, 𝑅 + 𝛿 ′, 𝛿 ′)}
4: else if pattern is a direct reference 𝑐′, 𝑟 ′ [] then
5: deps← deps ∪ {(𝑐′, 𝑟 ′, ∅)}
6: else
7: deps← deps

⋃
child∈pattern

getDeps(child, 𝑐, 𝑅)

Optimizing Recursive Reachability. Consider a running
sum, such as the one in Example 2.2. The 𝑘th element will

have 𝑂 (𝑘) upstream dependencies, and so naively following

Algorithm 1 requires 𝑂 (𝑘) compute. However, observe that

a single pattern is responsible for all of these dependencies,

suggesting that a more efficient option may be available.
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Figure 5: Time to initialize the spreadsheet (a-b) and
cost to update one cell (c-d)

This dependency chain arises from recursion over single

pattern; most cells depend on other cells defined by the same

pattern. We refer to such a pattern as recursive, even if it

does not create dependency cycle over individual cells.

As with cell execution, the transitive closure of the depen-

dencies of a recursive pattern has a closed-form represen-

tation. In our running example, the upstream of any 𝐷 [𝑘]
is exactly 𝐷 [1 − (𝑘 − 1)] and 𝐶 [1 − 𝑘]. The lineage field

of Algorithm 1 is used to track the set of patterns visited,

and the offset(s) at which they were visited. If the pattern

being visited already appears in the lineage, then we know it

is recursive and that we can extend out the sequence of up-

stream cells across the remaining cells of the pattern. When

the offset is ±1, the elements of this sequence are efficiently

representable as a range of cells, computable in 𝑂 (1) time.

Downstream Reachability. When a cell’s expression is

updated, cells that depend on it (even transitively) must be

recomputed, so the index must support downstream reacha-

bility queries. For efficient downstream lookups, the index

maintains a “backward” index relating ranges to the set of

patterns that depend on all cells in the range. The resulting

algorithm over the backward index is analogous to getDeps.

4 EXPERIMENTS
In this section we explore the performance of the overlay

approach. Concretely, we are interested in two questions: (i)

How does data size affect the performance of each system? (ii)

How does dependency chain length affect the performance

of each system? Experiments were run on an 8-core 2.3 GHz

Intel i7-11800H running Linux (Kernel 5.19), with 32G of

DDR4-3200 RAM, and a 2TB 970 EVONVME solid state drive.

We compare three systems: (i) DataSpread: Dataspread ver-

sion 0.5 [4]; (ii) Vizier: Our prototype implementation of

overlay spreadsheets; and (iii) Vizier (Simulated Batch-
ing): Simulated hybrid batch processing (see Setup, below).

All experiments were performed with a warm cache.
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Setup.We address our questions through a microbenchmark

modeled after TPC-H query 1 [9]: The spreadsheet is defined

by the TPC-H lineitem dataset with N rows and four addi-

tional columns defined by the patterns:

base_price[1-N] = ext_price[+0]
disc_price[1-N] = base_price[+0] * (1 - discount[+0])
charge[1-N] = disc_price[+0] * (1 + tax[+0])
sum_charge[1] = charge[1]
sum_charge[2-N] = charge[+0] + sum_charge[-1]

The sum_charge column is a running total, creating a depen-

dency chain that grows linearly with row index. As the user

scrolls down the page (under normal usage), the runtime to

compute visible cells grows linearly. Each system loads the

spreadsheet with a viewable area of 50 rows and updates a

single cell. Wemeasure (i) the cost of initialization and (ii) the

cost of a single update. Time is measured until quiescence.

To emulate batch processing, we replace the formula for the

sum_change[𝑖 − 1] (where 𝑖 is the first visible row) with a

formula that computes the analogous aggregate query.

Moving View. Figure 5(a,c) shows costs for a fixed dataset

size of approximately 600,000 rows, varying the viewable

rows. Due to the running sum, later rows require more com-

putation. Costs for Vizier and Dataspread grow significantly

with the length of the dependency chain, while batch pro-

cessing can compute the updated sum significantly faster.

Scaling Data. Figure 5(b,d) shows costs when varying data

size, with the view fixed on the first cell. Because dependen-

cies in the visible area are of constant size, Vizier is faster.

5 RELATEDWORK
Although spreadsheets present a convenient interface to data,

they lack the scalability to manage large data. A common

approach to scaling spreadsheets (the “virtual” approach)

reformulates the interface to an existing database or work-

flow system using spreadsheet-style direct manipulation

metaphors [2, 10–12, 15]. The resulting systems bear varying

levels of resemblance to existing spreadsheets, usually intro-

ducing concepts from relational databases like explicit tables,

attributes, and records. Wrangler [12] is an ETL workflow

development tool with an interface inspired by spreadsheets.

Users open a small sample of a dataset in Wrangler and use

spreadsheet-style direct manipulations to indicate desired

changes to the dataset. Vizier [7, 8, 13, 14] is a computa-

tional notebook system that allows users to define work-

flow stages through a spreadsheet-style interface. Other

approaches more directly mimic relational databases: The

Spreadsheet Algebra [11, 15] allows users to specify any

SPJGA-query purely through spreadsheet-style user inter-

actions. Related Worksheets [2, 3] re-imagines the classical

spreadsheet-style interface with record structure and inlined

display of foreign-key references.

A second approach (the “materialized” approach) instead

redesigns the spreadsheet engine itself through database con-

cepts; An example is DataSpread [5, 6, 16]. A key challenge

is that classical database techniques, which exploit common

structures in a dataset, are not directly applicable. [5] ex-

plores data structures that can leverage partial structure; for

example, when a range of cells are structured as a relational

table. [6] explores strategies for quickly invalidating cells

and computing dependencies, by leveraging a (lossy) com-

pressed dependency graph that can efficiently bound a cell’s

downstream. [17] introduces a different type of compressed

dependency graph which is lossless, instead exploiting re-

peating patterns in formulas. This is analogous to our own

approach, but focuses on the dependency graph rather than

expressions, limiting opportunities for optimization.

In summary, DataSpread introduced multiple efficient al-

gorithms for storing, accessing, and updating spreadsheets.

The virtual approach is often less efficient, but has the ad-

vantage of supporting light-weight versioning, tracking the

provenance. Crucially, this approach also enables replaying

a user’s updates, originally applied to one dataset, on a new

dataset (e.g., to re-apply curation work on an updated ver-

sion of the data). The overlay approach we present in this

work has the potential to retain these benefits while enabling

performance competitive with DataSpread.

6 CONCLUSIONS AND FUTUREWORK
In this work, we introduced overlay spreadsheets as a poten-

tial direction for reproducible spreadsheets in workflow and

provenance analysis systems like Vizier. This novel capability

is powered by overlays that decouple the user’s edits from the

source data they are applied to. We also demonstrated how

updates to ranges of cells can be represented declaratively,

improving performance and enabling optimized evaluation

of recursive patterns.

Recursive patterns remain the source of several open chal-

lenges for us. Most notably, in the absence of recursive pat-

terns, the depth of a dependency chains is bounded by the

number of user interactions. We suggested two strategies for

improving performance in the presence of recursive patterns:

(i) Closed-form computation of dependencies, and (ii) using

bulk processing to avoid individual evaluation of cells that

are not being shown to the user.

We also observe two additional challenges of adapting a

dataset to new source data. As we noted, row identity is a

critical challenge for updating source data, as each row in the

updated dataset needs to be mapped to its corresponding row

in the original. Additionally, the spreadsheet itself may need

to change, for example extending patterns to incorporate

newly introduced rows in the dataset.
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