
The Right Tool for the Job: Data-Centric Workflows in Vizier

Oliver Kennedy, Boris Glavic, Juliana Freire, Mike Brachmann

Abstract

Data scientists use a wide variety of systems with a wide variety of user interfaces such as spreadsheets
and notebooks for their data exploration, discovery, preprocessing, and analysis tasks. While this wide
selection of tools offers data scientists the freedom to pick the right tool for each task, each of these tools
has limitations (e.g., the lack of reproducibility of notebooks), data needs to be translated between tool-
specific formats, and common functionality such as versioning, provenance, and dealing with data errors
often has to be implemented for each system. We argue that rather than alternating between task-specific
tools, a superior approach is to build multiple user-interfaces on top of a single incremental workflow /
dataflow platform with built-in support for versioning, provenance, error & tracking, and data cleaning.
We discuss Vizier, a notebook system that implements this approach, introduce the challenges that arose
in building such a system, and highlight how our work on Vizier lead to novel research in uncertain data
management and incremental execution of workflows.

1 Introduction

Interactions with data, whether by experts or less technical users, are frequently iterative. As the user explores
and transforms her data, she regularly backtracks to correct mistakes, extend her work, or to update source
data as it evolves. Throughout this process, users employ a variety of tools, each providing a unique data
interaction modality. For example, it is common for a data-centric workflow to involve some combination of
a web browser (data discovery), a spreadsheet (quick statistics, minor data corrections, data entry), a database
(batch manipulation and aggregation over large tabular data), a computational notebook (data visualization and
model-building), a scripting IDE (modular component development), command-line tools (quick curation or
summary tasks on simple data), and/or a business intelligence dashboard (data visualization).

Each tool provides a unique interaction modality designed for specific tasks and skill levels, but less effective
at others. Thus, users working with data frequently string together workflows out of multiple tools, taking the
most convenient for each task at hand. Such manual orchestration incentivizes bad habits that create challenges
for reproducibility. It is also labor-intensive and error-prone because users have to translate data between the
different formats expected by the tools they use, and must manually track provenance and manage documen-
tation. Manual orchestration of data-centric workflows creates collections of workflow artifacts (e.g., datasets,
code, and images) based on which it can be hard to (i) debug how a particular unexpected result was reached, or
(ii) reapply the workflow when source data changes or if an error has been discovered in the workflow and was
fixed by modifying the workflow. While an automated workflow can address many of these concerns, it can be
difficult to establish across all modalities.

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

In this article, we outline the design of Vizier1, an extensible, multi-modal platform for data-centric work-
flows. At the core of Vizier is a computational notebook, analogous to Jupyter or Zeppelin, that serves to
orchestrate workflows. Vizier distinguishes itself from these tools in two ways. First, Vizier’s modular archi-
tecture allows different interaction modalities to be built as views over the workflow encoded in the notebook.
This includes simple views over individual cells or data artifacts that expose data interaction modalities like
spreadsheets, as well as more complex modalities for data debugging, data documentation, and more. Second,
Vizier’s feature-rich workflow engine supports automatic refresh of stale outputs, fine-grained provenance fea-
tures like propagation of information about uncertainty in data and data documentation through workflow steps,
and supports workflows encoding notebooks where the dataflow between cells is only learned at runtime.

Vizier provides a simple workflow abstraction over which its extensible views are built: a workflow is a linear
sequence of steps (called cells by analog to computational notebooks) and each step manipulates named, typed
artifacts. Crucially, in Vizier, cells are isolated from each other and communicate only through a shared API.
All inter-cell interaction takes place through cells reading and writing artifacts. This is in contrast to notebooks
like Jupyter, where inter-cell interactions occur through the global state of an interpreter for a scripting language
like Python. Vizier provides a streamlined mechanism for ensuring that workflow state (the versions of artifacts
produced by the workflow) is re-computed when necessary. Each cell sees exactly those artifact versions that
would be produced by executing all preceding cells (i.e., in the order they appear in the notebook). The Vizier
workflow engine also has built-in support for versioning workflows and artifacts. Every edit to a cell results in a
new workflow version being created and associated with the corresponding versions of the artifacts it reads and
creates. Both cells and artifacts are (conceptually) immutable and, as in functional data structures, an artifact or
cell version can be shared by multiple versions of a workflow.

In what follows, we describe the Vizier workflow engine, as well as several views built on-top of this engine,
including Vizier’s notebook interface, a spreadsheet mode for interacting with datasets, a history viewer, and a
summary view for data errors. We start with a motivating story of a user interacting with data.

1.1 User Story

Alice is organizing several hundred student volunteers for a multi-day online event. She asks volunteers to
complete an online form with details including name, institutional email address, and time zone. At some point,
many, although not all volunteers have completed the form and she is able to access the results as a downloadable
CSV file. The event organizer has asked for a plot summarizing volunteer availability at different times of day,
based on each participant’s time zone. The availability window for students in adjacent time zones overlaps,
making this a challenging problem for spreadsheets, but trivially solvable in SQL (given a table of time zone
to availability mappings). Alice downloads the CSV file, ingests it into a relational database, runs the query,
exports the result, and imports it into a spreadsheet to create a plot. While not the only approach open to Alice,
using a mix of tools, each specialized for a particular subtask requires her to manually manage multiple versions
of her dataset across the tools.�

�
	Takeaway: Data science benefits from chaining together multiple data interaction modalities, including

but not limited to Exploration/Discovery, Direct Manipulation, and Querying/Scripting.

She then discovers that some volunteers have submitted multiple responses via the form. Automated curation
libraries or stand-alone curation tools [22, 24] are usually sufficient to find and repair duplicate keys. However,
the tool Alice selects is not able to handle several responses where both the original and revised form submissions
contain distinct typos, a fact she does not realize until later.�

�
	Takeaway: Many data curation tasks like key repair can be automated, but uncertainty arising from

heuristics needs to be tracked and communicated to users [36, 25].

1https://vizierdb.info

2

With each error corrected, Alice must return to the workflow and repeat all of the steps she previously
performed so that she can generate a new plot that reflects these changes.�

�
	Takeaway: Data workflows are developed iteratively; revisions to a prior step may require re-execution

of subsequent steps to ensure that the results produced by these steps is up-to-date.

Alice’s next task is to generate a credits page for the event’s website, but she realizes that she has not
asked the students to provide a home institution. Fortunately, using a Python script she can heuristically fetch
institution names based on the domain name of the students’ email address, by scraping the institution’s website
and retrieving the organization name from the web page metadata. Unfortunately, the script fails on a small
number of unusual email addresses — for example some institutions have a separate root domain name for
student emails. Writing generic heuristics to address each outlier individually would be more effort than it is
worth, so Alice opens the script output in a spreadsheet and manually enters institutions for the missing students.�� ��Takeaway: The 80/20 rule applies to data science: uncommon error are often easier to fix manually.

She feeds the resulting spreadsheet into a new script that then generates a credits page. As the credits page
is posted, a new batch of form entries roll in and several students issue corrections. Now, not only does Alice
have to manually re-evaluate her workflow, she also needs to manually merge her manual edits (made in the
spreadsheet) with the updated outputs — a tedious and error-prone process.�

�
	Takeaway: Data science is continuous; workflows, whether containing manual steps or not, will in-

evitably need to be re-applied in new settings.

1.2 Desired Interaction Modalities

Users interacting with data employ a mix of tools at each stage of the data-centric workflow’s life cycle: (i)
Discovery, where users identify relevant datasets; (ii) Exploration, where users become familiar with the data’s
structure and semantics, and identify potential problems; (iii) Curation, where users address data problems,
integrate data, and transform data into a desired form; (iv) Analysis, where users answer questions and/or build
models; and (v) Deployment, where users refactor the workflow into a form suitable for automation and/or
production use. We emphasize that progress through these stages is not monotone: users frequently identify
errors or shortcomings, and go through a (vi) Debugging process that usually results in a return to an earlier
stage of development.

Artifact Manipulation. The first four stages primarily concern themselves with data artifacts like datasets,
machine learning models, and data visualizations. Depending on the specific task, users might interact with these
artifacts through: (i) Scripts in languages like Python, R, Scala, or SQL which are general-purpose tools that
excel at bulk transformations that follow specific patterns; (ii) Direct Manipulation Interfaces like spreadsheets
that enable the user to directly inspect and manipulate the data, making them well suited for small datasets,
quick one-off repairs, and data entry tasks; or (iii) Automated Tools or libraries like command-line utilities, data
curation and cleaning algorithms, and data visualizers that each perform one specific task (e.g., the creation or
transformation of an artifact) sufficiently well to cover most usage. All of these modalities act on one or more
source artifacts, and produce one or more output artifacts as a result.

Workflow Inspection. All stages, but specifically the Debugging and Deployment stages, require a holistic view
of the workflow: (i) Workflow Management provides users with a way to trace back through their exploration
process whether through a full workflow management system like Vistrails [4], a notebook system like Jupyter,
or a provenance capture system like CamFlow [32] or ReproZip [11]; (ii) Versioning through revision control

3

systems like GIT, or through ‘Track Changes’ features allows users to trace back through time to earlier revi-
sions of the data and workflows; (iii) Automatic Data Documentation tools like profilers, semantic types, and
uncertainty trackers help users to understand and develop specific artifacts in the context of the broader work-
flow [26, 10, 36, 15, 16]. (iv) Debuggers and IDEs like PyCharm, or separate tools like PigPen [30] give users
a view of internal system state, helping them to trace forward through their code, and streamline the process of
refactoring. A common theme to all of these modalities is that they provide a way for users to trace (whether
forward or backward) through the execution of their workflow and its state.

1.3 Requirements

We now outline how the modalities exemplified in the prior section translate into concrete requirements for
Vizier. To make our modularity goals concrete, we focus on extensibility in terms of support for new modalities
for Artifact Manipulation, as well as Workflow Inspection.

Workflow Inspection. The first requirement is forced by the objective itself. At a minimum we need a way to
record the steps the user took to achieve her goal.

Requirement W1: Vizier must be able to capture the steps (workflow) the user follows to produce an output artifact.

State, i.e., artifacts created / used by a workflow, plays an important part as well, and we need to track the
evolution of state as it flows through the workflow (step versioning) and over the evolution of the workflow itself
(workflow versioning).

Requirement W2: Vizier must support versioned workflows and both step and workflow versioning of artifacts.

For each version of a workflow, there exist corresponding versions of artifacts produced by Vizier’s workflow
semantics (that we will introduce in Section 1.4). Vizier needs to ensure that artifacts are automatically refreshed
to reflect the latest version of the workflow to avoid bugs and non-reproducible workflows [33].

Requirement W3: Vizier needs to identify (and update) artifacts invalidated by a revision to the workflow.

Artifact Manipulation. To provide a viable alternative to separate tools in a data-oriented workflow that each
implement one particular modality, Vizier has to be a platform that can host a multitude of modalities.

Requirement A1: Vizier must support multiple modalities for interacting with data artifacts

The remaining requirements arise from the diviersity of modalities. Crucially, we wish to decouple modali-
ties from the semantics of the artifacts they create or manipulate.

Requirement A2: Vizier needs standard data formats and APIs for exchanging artifacts between modalities.

We want to leverage standardization to allow users to attach annotations to artifacts or their component parts
as a way to document uncertainty or ambiguity arising from the data or its preparation. However, general pur-
pose annotation management systems like Mondrian [18] or DBNotes [12] do not take any annotation-specific
semantics into account. For example, we should not propagate an annotation marking uncertainty on a value A
used in a computation A ∨B if B is guaranteed to be true.

Requirement A3: Vizier’s data formats should support the efficient propagation of annotations on the component
parts of an artifact through annotation-specific semantics including semantics for uncertainty management.

Some modalities such as spreadsheets allow (manual) updates to data artifacts. If the original data changes,
then it should be possible to automatically re-apply these edits to the modified data.

Requirement A4: Manual updates to an artifact must be re-applicable when the artifact is updated upstream.

4

1.4 Solution Overview

Workflow API

Artifact
Store

Scheduler

Command
Implementation

Data Processing BackendsWorkflow Mirror

Workflow Interaction UI

Artifact Manipulation UI

Core System Modular

User-Facing Frontend Workflow Manager

Figure 1: Vizier’s architecture, comprised of a user-facing frontend component
and a backend component.

An overview of Vizier’s ar-
chitecture is shown in Fig-
ure 1. Addressing require-
ment W1, the central ab-
straction in Vizier is a work-
flow: a linear sequence of
steps. Unlike classical work-
flow systems, Vizier does not
require users to explicitly de-
clare information flow between
steps. Rather Vizier borrows
the model employed in popular
computational notebooks like Jupyter, where inter-cell communication occurs through a global state (artifacts)
passed sequentially through steps. Following notebook conventions, we refer to these steps as cells, and the
global state as a scope, a map from artifact name to the version of the artifact valid at this point in the workflow.
Vizier stores artifacts in common formats through a versioned Artifact Store (Section 2), addressing require-
ment A2. In Section 3, we formalize Vizier’s workflow model, and show how we satisfy requirement W3 by
instrumenting how each cell interacts with the scope, allowing us to determine what artifact versions are valid.

Vizier’s workflow semantics, paired with the versioned artifact store and workflow versioning (Section 3.2)
addresses requirement W2. In contrast, classical notebooks like Jupyter or Zeppelin rely on the global state of
an interpreter for inter-cell communication. Reverting this state to an earlier revision proves challenging [38],
limiting their ability to satisfy requirement W3. Vizier instead relies on its versioning system, allowing its
Scheduler to automatically detect and re-evaluate stale cells (Section 3.3). To address requirement A3, we
designed a light-weight uncertain data model that is implemented in Vizier in the form of caveats, annotations
on data that indicate uncertain values and rows (Section 6).

Addressing requirement A1 requires modularity in both Vizier’s front- and back-end components. First, the
user’s interactions with a workflow and artifacts, whether through a scripting language, graphical interaction, or
any other modality, need to be captured for replay (simultaneously addressing requirement A4). In Vizier this is
achieved by requiring that every update to an artifact made through a particular modality has to be reflected as
an operation in the workflow, i.e., a data update is translated into a workflow update. Vizier manages a collection
of Command Implementations that implement the logic behind these artifact transformations (Section 4). To
streamline the implementation of commands, Vizier’s data formats and transformations are built over standard
Data Processing Backends like Apache Spark.

The frontend is implemented over a Workflow Mirror that uses websockets to reflect a live view of the
workflow the user is editing. Vizier automatically derives a default Artifact Manipulation User Interface for
its notebook interface from each command’s parameter schemas. This interface suffices for many templated
commands, but the frontend can be further extended to provide a more customized experience, for example
for Spreadsheet-style direct manipulation of data (Section 5). As illustrated in Figure 2, the frontend displays
three Workflow Interaction User Interfaces by default: (i) A direct display of the workflow as a notebook,
(ii) a table of contents summary of the notebook, including highlighting from documentation, and (iii) a list
of artifacts derived by the notebook. Several of these components, including the notebook and the artifact list
provide access to direct manipulation interfaces. Additional views currently implemented in Vizier include: (iv)
A caveat view (Section 6) that shows and tracks potential errors in the workflow and data, (v) a history view that
shows the evolution of the workflow over time, and (vi) a data provenance subway diagram view.

5

Table of Contents: Shows the
of cells in the workflow with a
brief summary. In code cells,
users can specify the cell's table
of contents entry with a comment
on the first line.

Artifacts: Shows all artifacts
produced by the workflow, with
quick action links for each.

Modality Links: Artifacts include
links to artifact-specific interaction
modalities, like the caveat list or
spreadsheet view for a dataset
artifact.

Provenance: Jump directly to the
point in the workflow where the
artifact was created.

Branch Menu: Provides access to
alternative branches, workflow
history, and allows viewing and
reverting to old versions of the
current branch.

Insert Cell: Insert new cells, with
quick access to markdown docs
cells, and a special "artifact
inspector cell that allows easy
debugging of workflows.

Cell: Steps in a Vizier workflow are
defined by "cells" that can contain
python code, SQL, or specialized
modalities for tasks like discovering
and loading datasets.

Figure 2: The Vizier User Interface

2 Versioned Data Artifact Store

Steps in Vizier workflows create, read, and update “data artifacts” or artifacts for short. To maximize interop-
erability between cells, Vizier establishes standards for how these artifacts are serialized, which we now discuss.
Versions of artifacts are immutable. An update to an artifact creates a new object representing the updated arti-
fact. Immutability greatly simplifies handling of state in Vizier and enables us to share artifact versions across
multiple revisions of a workflow.

Dataset Artifacts. Tabular data is represented by Vizier as a Spark dataframe [3], a logical encoding of how a
dataset is derived from source data. The choice to store datasets through a logical representation (specifying the
computation instead of its result) is driven largely by the need for managing annotations (requirement A3 which
is implemented by rewriting the computation to handle annotations), but also results in lower space consumption.

Parameter Artifacts. A parameter artifact can be any primitive value of any data type supported by Apache
Spark; We note that this includes simple nested collections like Arrays and Maps. This type of artifact provides
a way to parameterize scripts and other system components, particularly for non-technical users. and parameter
artifacts are used to pass simple data (e.g., simple constants in Python) between cells.

In addition to these two artifact types, Vizier also supports plots (stored in the vegalite [35] format), blobs
and uninterpreted files, and language-specific constructs, e.g., Python function definitions. For lack of space, we
do not further discuss these other artifact types.

3 Workflow Provenance Model and Runtime

In this section, we outline Vizier’s workflow and versioning model, how we determine which cells of a workflow
need to be re-executed if a cell is changed, and introduce the parallel scheduler of the system.

3.1 Workflow Model

A workflow in Vizier is a sequence of workflow steps (cells) that can read and write artifacts. Artifacts are
versioned at the granularity of cells. A cell writing an artifact a causes a new version of a to be created. We
will discuss the APIs Vizier exposes to the data interaction modalities for accessing artifacts in Section 4. The
semantics of a Vizier workflow is the serial execution of the cells of the workflow, where the latest version of
each artifact is passed as input to the cell that will be executed next. Thus, as long as the cells themselves
are deterministic, the artifact versions created by the execution of a workflow are uniquely determined by the
workflow itself.

6

� �
1 data = read_csv("social_data.csv")
2 show(data)� �� �
1 data["latlon"] = geocode(data["address"])
2 show(data)� �� �
1 censusblocks = read_geojson("blocks.json")
2 show(censusblocks)� �� �
1 data = spatial_join(data, censusblocks, ["latlon", "geometry"])
2 count_per_block = data.groupby("block_id").count()
3 show(count_per_block)� �

Figure 3: A simplified example notebook

Example 3.1. Figure 3 shows a notebook with a simplified data ingestion, cleaning, and analysis task. The
notebook loads the dataset (cell 1), geocodes listed street addresses (cell 2), loads a collection of census blocks
(cell 3), and computes summary statistics for each census block (cell 4). We use this notebook to illustrate a
key challenge of traditional notebook architectures. The user modifies cell 2 to switch to a different geocoder,
potentially requiring re-evaluation of the notebook. In this specific notebook, the user had the foresight to
write in an idempotent style, making it unnecessary to re-run cell 1 to recover the state needed to run cell 2
correctly. It is also unnecessary to re-run cell 3, as it does not depend on the output of cell 2. However, in
traditional notebooks like Jupyter the burden of deciding which cells to re-evaluate rests on the user, creating
added overhead and increasing the chance of errors.

Formally, a Vizier workflow is a sequence N = {c1, . . . , cN} of cells ci. The versions of artifacts valid
after execution of cell ci are modeled as a global scope G that maps artifact names to artifact versions or the
distinguished symbol ⊥, which indicates that no version of the artifact has been produced yet. A cell c is a
function that takes a scope G as input and produces an updated scope G′: c(G) = G′. We use r⃗G,i to denote
the names of artifacts accessed by cell ci applied to Gi. The scope parameter is necessary, because a cell may
dynamically decide which artifacts to read based on the content of other artifacts. The result JN K of evaluating
workflow N = {c1, . . . , cN} is defined as the scope Gn produced by starting with an empty scope G0 (where all
artifact names are mapped to ⊥), and by computing Gi = ci(Gi−1).

c1

c1

c2

c2'

c3

c3'

c4

c4'
+

Figure 4: Evaluation logic for the example notebook in Figure 3. Edges
are labeled with global scope versions. Cells that are (re-)evaluated are
highlighted, dotted lines represent simulated state flow.

If workflow N is modified by re-
placing a cell ci with a cell c′i (de-
noted as N [ci\c′i]), we need to ob-
tain the updated scope JN [ci\c′i]K. Of
course this can be achieved by evalu-
ating N [ci\c′i]. However, to improve
performance, Vizier attempts to up-
date the output of JN K by only re-
evaluating a subset of the cells. First, observe that G1, . . . ,Gi−1 are independent of ci; and remain unchanged if
ci is modified. It is still necessary to have Gi−1 to evaluate c′i; so Vizier caches all intermediate global scopes
after evaluating each workflow revision.

Naively, we have to still re-evaluate ci+1, . . . , cN using the new scope produced by c′i. Let us denote the
scopes produced by this evaluation as G′

i+1, . . . ,Gn. Vizier uses the readsets r⃗G,i+1, . . . , r⃗G,N , to identify cells
cj for which the same output (artifact versions written by the cell) in JN [ci\c′i]K is guaranteed. Denote by
∆(G,G′) = {k|G(k) ̸= G′(k)} the names of artifacts that differ between G and G′. We have to re-execute cell

7

ci+1 if an artifact read by ci+1 has changed, which is the case if ∆(Gi,G′
i) ∩ r⃗G,i+1 ̸= ∅. If ci+1 needs to be

re-executed, then we set G′
i+1 = ci+1(G′

i). Otherwise, we generate Gi+1 by merging the changes made by ci+1

in N to Gi into G′
i. That is, for all artifacts k we set G′

i+1(k) = Gi+1(k) if k ∈ ∆(Gi,Gi+1) and G′
i+1(k) = G′

i(k)
otherwise. The same approach is applied to decide whether to evaluate or skip the remaining cells in N [ci\c′i].

Example 3.2. Figure 4 continues the running example from Example 3.1. The user has replaced the initial
version of cell c2 with an updated version c′2. The global scope produced by preceding cells (G1) may be re-used
unchanged to evaluate c′2, producing scope G′

2. ∆(G2,G′
2) is the data artifact, but the readset of c3 is empty,

and so this cell does not need re-evaluation. Instead G′
3 is derived by merging variables the cell previously

changed (i.e., ∆(G2,G3)) into the current global scope. Finally, Vizier identifies that an element of r⃗G,4 (the
data variable) has changed between G3 and G′

3, necessitating a re-evaluation of cell 4.

3.2 Versioning Workflows

c1

Branch

c1'

m1

r1

c2 c2'

m2

r2 r2'

m2'

c3 c3'

m3

r3

c4 c4'

m4

r4 r4'

derivedFrom

re
fe
re
n
ce
s

re
fe
re
n
ce
s

re
f…

contains

Figure 5: History for the running example, assuming
cell 2 was changed as in Figure 4.

Vizier maintains a branching history of the evolution of
the notebook. A cell is further subdivided into (i) cell
metadata (ci) that is unique to the workflow (e.g., times-
tamps and execution status), (ii) results (ri) of executing
the cell, and (iii) a module (mi) describing the command
executed in the cell. The latter two components (results
and modules) may be shared across workflows. A mod-
ule object describes the command to be evaluated in a
cell. This includes its type (e.g., Python or Scala script;
SQL query; or one of the graphical widgets), as well as
any parameters to the command (e.g., the script itself, or the artifact name to materialize query results as). A
results object stores references to versions of artifacts in the artifact store created by the execution of the cell.
We do not materialize the full global scope after each cell, but rather only the changes made to the global scope
by the cell (i.e., the cell’s write set). Any global scope Gi can be reconstructed from the preceding write sets.

Example 3.3. Figure 5 continues our running example, which in our new terminology is a single branch com-
prised of two workflows W1 and W2. Both notebooks are comprised of four cell objects each. Cells 1, 3, and
4 were unchanged between workflows, and so the corresponding cell objects for W2 reference the same module
description object as the corresponding cell for W1, while the module descriptions referenced by c2 and c′2 differ.
Cells 1 and 3 do not need to be re-evaluated, and so can share their result objects, while Cells 2 and 4 both
require re-evaluation and create new result objects.

Workflow and Branch History. Similar to version control systems like git, each workflow version in Vizier
stores a reference to the workflow version it was derived from. A branch is an append-only sequence of workflow
versions. The branch contains a reference to the most recent workflow version in the branch. A new branch may
be created from any existing workflow version, including a historical one.

3.3 Parallel Scheduler

The evaluation model presented in Section 3.1 relies exclusively on dynamic provenance, where Vizier is in-
formed about the readset and writeset of a cell at runtime when the cell accesses artifacts through Vizier’s API.
However, dynamic provenance is not always sufficient. For example, Vizier evaluates cells in parallel where pos-
sible, but dynamic provenance is not available until the cell has already been evaluated. Static provenance, which
can derive a cell’s read and write sets through static dataflow analysis of its source code, can be computed up-
front. However, static dataflow analysis is of necessity an approximation for some cell types; language features

8

like control flow and dynamic code evaluation can lead to over- (or under-) estimates of the cell’s read and write
sets. Vizier uses a novel hybrid of static provenance that is refined at runtime using dynamic provenance [14].

Fundamentally, Vizier’s scheduler needs to assign each cell in a running workflow to one of four lifecycle
stages: (i) DONE when the cell has a valid result object, (ii) PENDING when the cell depends (directly or
transitively) on a cell that does not have a result object, and (iii) RUNNING when the cell’s dependencies
have a valid result object but the cell itself does not. We further distinguish as (iv) STALE those cells in the
PENDING stage for which we can conclusively determine that re-evaluation is required.

To manage lifecycle transitions, Vizier’s scheduler relies on a combination of static and dynamic prove-
nance [14]. It uses static provenance to generate an over-approximation on the read and write dependencies
of a cell2. Accordingly, the scheduler tracks an over-approximation of the read and writesets at each step of
the workflow, and refines them when the execution of cell finishes and we know its precise read and write set.
This approximation is used by Vizier’s scheduler to omit cells from re-execution or schedule them for parallel
execution if we can determine that it is safe to do so based on these over-approximations.

4 Multimodality

As noted in Section 3.2, cells in Vizier implement a variety of different modalities, including scripting languages
(e.g., Python, Scala), query languages (e.g., SQL), as well as graphical widgets for data ingestion, transforma-
tion, and curation (e.g., Load Dataset, Pivot Table, Repair Key). We refer to the evaluation logic for each
modality as cell command. Each cell in a Vizier workflow identifies the command that should run to evaluate
the cell, along with a set of arguments to that command. For example, the SQL cell (sql.query) takes two
arguments: the text of a SQL query, and an optional name to materialize the result table as. In this section, we
discuss how these modalities are implemented as cell types in Vizier.

A command is defined by the following methods: (i) schema: Returns a schema for the arguments the com-
mand accepts; (ii) summary(arguments): Returns a textual description of the behavior of the command when
parameterized by the provided arguments; (iii) dependencies(arguments): Returns the over-approximation of
the set of names of artifacts read (resp., written) by the cell as parameterized by the provided arguments, or
indicates that either or both bounds can not be computed; and (iv) evaluate(arguments, context): Evaluates the
cell on the command, parameterized by the provided arguments and a context object.

The context object on which commands are evaluated provides a read/write interface to the global scope and
a way to emit messages to be displayed alongside the cell in the notebook view. As we discuss in Section 3, the
global scope maps artifact names to artifact versions. Artifacts are not persisted directly as part of the global
scope, but rather are references to our write-only artifact store.3 When a cell implementation writes an artifact
through the context, the artifact version is serialized and written into the artifact store. The artifact store assigns
the artifact (version) a unique identifier, which is then saved into the scope. Similarly, to read an artifact, a cell
implementation first reads the artifact identifier out of the scope, and then accesses the corresponding artifact
version from the store.

Cells implementing runtimes for general-purpose languages need to provide users of those languages with a
way to interact with the global notebook state. This entails (i) providing a mechanism to reference the scope and
import artifacts within a language-specific format, and (ii) predicting how the user-provided code will interact
with the state to bound provenance.

Python. Python cells are evaluated in an independent interpreter to avoid concurrency bottlenecks from the
2As we argue in [14], to deal with languages that support dynamic code evaluation such as Python, it would be necessary to al-

low under-approximations of read and write sets (missed data dependencies) and compensate for them at runtime. However, this not
implemented in Vizier yet; attempts to dynamically read variables not in the maximal readset are flagged as errors.

3Artifact versions are immutable in Vizier which simplifies version management. We leave optimizations that selectively violate this
policy and update artifacts or store deltas instead of creating full updated versions of artifacts to future work.

9

global interpreter lock (GIL). Thus, a key challenge is minimizing the volume of state transferred into and out
of each interpreter. Global scope is lazily loaded by populating the global state with a set of proxy objects, one
for each artifact in the scope. Access to the Vizier context for messaging and artifact access occurs through a
control bus that, by default, operates over the python process’ standard input and output streams. Vizier defines a
special ‘show’ command within the module to produce structured messages (analogous to placing an item on the
last line of a Jupyter cell). The show command includes support for most Vizier-defined types, matplotlib and
bokeh plots, and provides fallbacks using the Jupyter-standard repr html method, or direct stringification
as a final resort. For predictive dependency tracking, and to identify variables that are modified, Vizier relies
on Python’s ast module, which provides an introspective compilation and code analysis framework. Vizier
performs lightweight dependency analysis [14] to bound the cell’s read and write dependencies.

SQL. SQL cells are parsed and evaluated by Apache Spark. Vizier intercepts the parsed SQL query AST
and manually injects references to the corresponding artifacts — either datasets or python functions — where
needed. Spark-provided view name decorators make it possible for the injected views to retain their names from
the query, avoiding incomprehensible error messages. The same injection logic is also used to statically identify
exact read and write dependencies.

5 Interactive Spreadsheets

A key feature of Vizier is support for direct interaction with artifacts [10], most notably a spreadsheet-like
interface for interacting with Spark Data Frames. Spreadsheets provide a data exploration experience that is
distinct from notebooks. Users are limited to a single dataset, but have significantly more flexibility when
exploring the data. For example, it is common on small datasets (e.g., under 1000 rows) for users to complete
preliminary data cleaning tasks like outlier detection, data integration, repair of typos and outliers, and even
some limited computation (e.g., deriving new fields) in a spreadsheet prior to working with the data further (e.g.,
in a notebook). Another common use case is manual data entry; The user may enter the entire dataset, or may
generate a data entry template (e.g., with a script) and import the resulting file into another tool.

Vizier’s spreadsheet interface is intended to provide a view over a subset of the notebook, allowing users
to interact with the dataset in the appropriate modality, while simultaneously preserving workflow provenance
through interactions. As the user interacts with the spreadsheet, their edits are reflected in the notebook as new
cells. As the user edits the notebook, their edits are likewise reflected in the spreadsheet — If the source data
frame is updated in the notebook, Vizier attempts to re-apply the user’s edits to the updated data.

Track Changes as a View. To support bi-directional interaction between spreadsheet and notebook views,
Vizier implements a series of specialized cell types that mimic SQL DDL and DML operations, allowing for
inserting, deleting, or reordering columns and rows, or for updating individual cell values. We refer to the
operations described by these cell types collectively as the Vizual language [17, 10].

Vizual is based on the principle that the user’s interactions with a database can be modeled as views over
an original version of the data. As prior work has shown, a view defined over a table can mimic the effects
of any DDL [13] or DML [29] operation applied to the table. Analogously, each Vizual cell in the notebook
uses Spark’s standard data frame manipulation language to apply a successive transformation to the dataset that
mimics the user’s interaction. To ensure that the spreadsheet remains responsive, a shim layer tentatively injects
predicted updates to the user’s interactions until the effects of the user’s edit are fully applied (e.g., as [20]).

In SQL DML, update operations specify target rows by a predicate. By contrast, operations in a spreadsheet
explicitly target specific rows of data, requiring Vizier to assign unique identifiers to each record to encode their
order in the spreadsheet4. To allow Vizual operations to be replayed as source data changes, these identifiers
should remain stable through data transformations. For derived data, Vizier uses a row identity model similar

4We assume that the number of columns will remain manageable and reference them purely by name

10

to GProM’s [2] encoding of provenance. Derived rows, such as those produced by declaratively specified table
updates, are identified by an appropriate combination of input tuple identifiers. For example, rows in the output
of a join are identified by combining identifiers from the source rows that produced them into a single identifier,
and rows in the output of a projection or selection use the identifier of the source row that produced them.

The remaining challenge is assigning row identifiers to source data, which we want to remain stable through
changes to the source data so that spreadsheet operations can be replayed. Ideally, the data would include
a unique identifier that we can leverage; but this is not always the case. Storing the data in a revision control
system [9, 21], is not always a viable option [1]. A more heavyweight approach is to link records across revisions
of a dataset [37], but this adds non-negligible overhead to common-case data revisions. Vizier presently supports
persistent identifiers through append- or edit-only revisions by assigning each record a unique identifier based
on its position, and a hash of its contents. This approach has the benefit of being lightweight (it can be applied in
a single pass), and resilient. In contrast to simply using a hash-based identifier, the approach supports duplicate
records. Conversely, solely using a position-based identifier could lead to spreadsheet operations being applied
to the wrong row in case of insertions. While techniques for creating identifiers that are stable under updates has
been studied extensively for XML databases (e.g., ORDPATH [31]) and recently also for spreadsheet views of
relational databases [5], the main challenge we face in Vizier is how to retain row identity when a new version of
a dataset is loaded into Vizier, as opposed to keeping identity consistent once the data is already in the system.

6 Data Documentation, Error, and Uncertainty Management with Caveats

Like notebook systems, Vizier enables users to document their workflow through markdown cells which do not
manipulate artifacts, but simply serve as documentation. However, some documentation is specific to individual
artifacts, or their component parts (e.g., rows, or columns); We would like such documentation to accompany
the data as it is transformed [26]. Like other annotation management systems including Mondrian [18] and
DBNotes [8], Vizier empowers users to annotate data with textual comments. However, in contrast to these
systems, in Vizier these annotations also have a precise semantics: they encode uncertainty about an attribute
value of a row or the existence of a row. This is important, because uncertainty arises naturally in most data
science pipelines (e.g., because of errors in the data or because of heuristic choices during data cleaning) and
if data analysis ignores the uncertainty in the data, it can lead to analysis results that cannot be trusted. To
address this issue, caveats are propagated through operations on dataset artifacts in Vizier using an efficient
uncertain query semantics we have developed [15, 16]. Thus, caveats on values and rows in the result of an
analysis conducted using Vizier encode information about how data cleaning and curation operations on the data
used in the analysis affect the analysis result. Furthermore, Vizier’s implementation of data cleaning operations
introduce caveats to encode information about other possible repairs.

6.1 Incomplete Databases

Formally, caveats in Vizier are based on an approximation of incomplete databases. An incomplete database
D = {D1, . . . , Dn} is a set of deterministic databases called possible worlds that encode alternative possibilities
for the state of the real world: one possible world corresponds to the actual state of the real world, but we do
not know which. As an example, consider an analyst that has to find the names of important customers (e.g.,
who ordered products totaling more than $500). An example instance is shown in Figure 6. A common method
for primary key repair is to group rows by their PK values and select one row from each group to be retained.
However, typically we have insufficient information to know which row is the correct choice and will have to rely
on heuristics (e.g., selecting the most recently updated row if this information is available). Incomplete databases
can be used to model this uncertainty: we create an incomplete database whose worlds are all the repairs of the
database violating the constraint [7]. Figure 6 shows two (out of 4) possible repairs for this dataset.

11

Customer Relation

cid name total
1 Peter Petersen 1000
1 Peter Petersen 950
2 Bob Smith 300
3 Alice Smith 400
3 Alice Smith 600

Possible World (Repair) D1

cid name total
1 Peter Petersen 1000
2 Bob Smith 300
3 Alice Smith 400

Possible World (Repqir) D2

cid name total
1 Peter Petersen 1000
2 Bob Smith 300
3 Alice Smith 600

Certain Answers

name
Peter Petersen

Answers in D1

name
Peter Petersen

Answers in D2

name
Peter Petersen
Alice Smith

Figure 6: Example customer database violating the primary key constraint that cid is unique and two possible
worlds corresponding to some of the possible repairs of the database achieved by selecting one row among each
group of rows with the same primary key value.

Typical constraint-repair algorithms will select one repair (one possible world) based on a heuristic like
selecting the row whose values are most common in the dataset [34]. For instance, the cleaning algorithm may
choose D1 and the user would then evaluate their query (shown below) over D1.

SELECT name FROM Customer WHERE total > 500;

Figure 7: A UB-DB in Vizier encoding D1 with pos-
sibly uncertain cells marked with caveats.

While such heuristics may be quite effective on aver-
age and are certainly superior to just randomly selecting
a world, it is unavoidable that they fail for some clean-
ing scenarios. An alternative approach called consistent
query answering [6] takes a conservative stance, instead
of selecting one repair, we reason about all possible re-
pairs and only return query answers (the so-called cer-
tain answers) that are in the query’s results for every re-
pair (i.e., are guaranteed to be in the result independent of
which repair is correct). This approach has the advantage
that only correct query answers are returned, but is com-
putationally expensive, may exclude many very likely an-
swers (if they are not 100% certain), and is not closed
(it is not possible to evaluate queries with certain answer
semantics over the certain answers of a query).

6.2 Attribute- and Row-level Caveats and Uncertainty-Annotated Databases

For Vizier, we developed an uncertain data model called uncertainty-annotated databases [15] that annotates one
possible world (the so-called selected-guess world with an under-approximation of certain answers (if we claim
that a row is certain, then it is certain) that can be computed efficiently. This is encoded by marking a subset of
the rows of a dataset as not being certain. In Vizier, these are rows annotated with row-level caveats. The reason
that we use an under-approximation is to be able to evaluate complex queries (full relational algebra including
aggregation) efficiently (with PTIME data complexity and small overhead over deterministic query processing).

12

7 Conclusions and Future Work

Figure 8: Caveats annotating the relation D1

In this paper, we have made the case for a multi-modal
data science platform built on top of an incremental, data-
centric workflow engine and have introduced the reader
to Vizier, our system implementing this vision. Because
each modality (notebooks, spreadsheets, the caveat view,
etc. . .) is a “view” interacting with the same underlying
workflow and datasets, it is easy to extend the system to support new interaction paradigms in the future. Build-
ing our system so that cells execute in isolation, cells only interact through dataflow makes it easy to add new
cell types to the system, because we only have to worry about the interaction of the new cell type with Vizier
data artifacts. Thus, adding support for other interaction modalities (e.g., new programming languages) into the
system is straight-forward: we implement a new cell type and an API to access Vizier artifacts from within the
modality.

As demonstrated in recent preliminary work, having a scheduler that reacts at runtime for dependencies
discovered at runtime and using static dataflow analysis, we can execute notebook cells in parallel and avoid re-
executing cells that are guaranteed not to change during automatic refresh. Significantly more opportunities for
avoiding work exist, in particular by leveraging Vizier’s standardized representation of artifacts. For example, by
representing updates to dataset artifacts as change sets, existing approaches for incremental view maintenance
can reduce the runtime overhead of recomputing workflow steps, as well as the space costs of preserving multiple
artifact versions.

Similarly, standard representations of artifacts can be used to help users better understand the outputs of
their workflows; For example, numerous efforts have explored causal explanations in database query results
([23, 27, 28, 19], and explainability in machine learning has recently become an area of active research. For
such techniques to be truly valuable, they need to operate across artifact types; For example, what would it take
to link a sudden change in predictions made by a model to the addition of a new category in source data five
transformations removed from the model training step.

Finally, we note that Vizier provides a “ground-up” approach to stitching different interaction modalities
into a single workflow. Tools implemented as views over Vizier’s workflow model seamlessly interact with
each other, with coarse-grained provenance, reactive cell execution, and repeatability/reproducibility. However,
these capabilities are limited to a single Vizier instance, and are of limited value to already existing tools. An
interesting and valuable open challenge is the design of a federated infrastructure for data analytics workflows,
allowing multiple Vizier instances or unrelated tools to interoperate.

Acknowledgements. This work was supported by NSF Awards ACI-1640864, IIS-1750460, IIS-1956149, and
IIS-2125516.

References

[1] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: efficient query execution on raw
data files. In SIGMOD Conference, pages 241–252. ACM, 2012.

[2] B. S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and Q. Zeng. Gprom - A swiss army knife for your
provenance needs. IEEE Data Eng. Bull., 41(1):51–62, 2018.

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark sql: Relational data processing in spark. In Proceedings of the ACM
International Conference on Management of Data (SIGMO), pages 1383–1394. ACM, 2015.

13

[4] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. Crossno, C. T. Silva, and J. Freire. Vistrails:
Enabling interactive multiple-view visualizations. In IEEE Visualization, pages 135–142. IEEE Computer
Society, 2005.

[5] M. Bendre, B. Sun, D. Zhang, X. Zhou, K. C. Chang, and A. G. Parameswaran. DATASPREAD: unifying
databases and spreadsheets. Proc. VLDB Endow., 8(12):2000–2003, 2015.

[6] L. Bertossi. Database repairing and consistent query answering. Synthesis Lectures on Data Management,
3(5):1–121, 2011.

[7] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin. Sampling from repairs of conditional functional
dependency violations. VLDB J., 23(1):103–128, 2014.

[8] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annotation management system for rela-
tional databases. VLDB J., 14(4):373–396, 2005.

[9] A. P. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore, S. Madden, and A. G.
Parameswaran. Datahub: Collaborative data science & dataset version management at scale. In CIDR.
www.cidrdb.org, 2015.

[10] M. Brachmann, W. Spoth, O. Kennedy, B. Glavic, H. Müller, S. Castel, C. Bautista, and J. Freire. Your
notebook is not crumby enough, replace it. In Proceedings of the 10th Conference on Innovative Data
Systems, 2020.

[11] F. S. Chirigati, D. E. Shasha, and J. Freire. Reprozip: Using provenance to support computational repro-
ducibility. In TaPP. USENIX Association, 2013.

[12] L. Chiticariu, W. C. Tan, and G. Vijayvargiya. Dbnotes: a post-it system for relational databases based on
provenance. In SIGMOD Conference, pages 942–944. ACM, 2005.

[13] C. Curino, H. J. Moon, and C. Zaniolo. Graceful database schema evolution: the PRISM workbench. Proc.
VLDB Endow., 1(1):761–772, 2008.

[14] N. Deo, B. Glavic, and O. Kennedy. Runtime provenance refinement for notebooks. In Proceedings of the
14th International Workshop on the Theory and Practice of Provenance, 2022.

[15] S. Feng, A. Huber, B. Glavic, and O. Kennedy. Uncertainty annotated databases - a lightweight approach
for approximating certain answers. In Proceedings of the 44th International Conference on Management
of Data, 2019.

[16] S. Feng, A. Huber, B. Glavic, and O. Kennedy. Efficient uncertainty tracking for complex queries with
attribute-level bounds. In Proceedings of the 46th International Conference on Management of Data, page
528 – 540, 2021.

[17] J. Freire, B. Glavic, O. Kennedy, and H. Müller. The Exception that Improves the Rule. In SIGMOD
Workshop on Human-In-the-Loop Data Analytics, 2016.

[18] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN: Annotating and Querying Databases through
Colors and Blocks. Technical report, University of Edinburgh, 2005.

[19] B. Glavic, A. Meliou, and S. Roy. Trends in explanations: Understanding and debugging data-driven
systems. Found. Trends Databases, 11(3):226–318, 2021.

14

[20] N. Gupta, A. J. Demers, J. Gehrke, P. Unterbrunner, and W. M. White. Scalability for virtual worlds. In
ICDE, pages 1311–1314. IEEE Computer Society, 2009.

[21] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. G. Parameswaran. Orpheusdb: Bolt-on versioning for
relational databases. Proc. VLDB Endow., 10(10):1130–1141, 2017.

[22] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and deduplication. Found. Trends
Databases, 5(4):281–393, 2015.

[23] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations for robust query evaluation in
probabilistic databases. In SIGMOD Conference, pages 841–852. ACM, 2011.

[24] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Wrangler: interactive visual specification of data
transformation scripts. In CHI, pages 3363–3372. ACM, 2011.

[25] P. Kumari, S. Achmiz, and O. Kennedy. Communicating data quality in on-demand curation. In QDB,
2016.

[26] P. Kumari, M. Brachmann, O. Kennedy, S. Feng, and B. Glavic. Datasense: Display agnostic data docu-
mentation. In CIDR, 2021.

[27] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality and responsibility for
query answers and non-answers. Proc. VLDB Endow., 4(1):34–45, 2010.

[28] A. Meliou, S. Roy, and D. Suciu. Causality and explanations in databases. Proc. VLDB Endow.,
7(13):1715–1716, 2014.

[29] X. Niu, B. S. Arab, S. Lee, S. Feng, X. Zou, D. Gawlick, V. Krishnaswamy, Z. H. Liu, and B. Glavic. De-
bugging transactions and tracking their provenance with reenactment. Proc. VLDB Endow., 10(12):1857–
1860, 2017.

[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD Conference, pages 1099–1110. ACM, 2008.

[31] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. Ordpaths: Insert-friendly XML
node labels. In SIGMOD Conference, pages 903–908. ACM, 2004.

[32] T. F. J. Pasquier, X. Han, M. Goldstein, T. Moyer, D. M. Eyers, M. I. Seltzer, and J. Bacon. Practical
whole-system provenance capture. In SoCC, pages 405–418. ACM, 2017.

[33] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire. A large-scale study about quality and reproducibility
of jupyter notebooks. In M. D. Storey, B. Adams, and S. Haiduc, editors, Proceedings of the 16th Inter-
national Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada.,
pages 507–517. IEEE / ACM, 2019.

[34] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with probabilistic inference.
PVLDB, 10(11):1190–1201, 2017.

[35] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A grammar of interactive graph-
ics. IEEE Trans. Vis. Comput. Graph., 23(1):341–350, 2017.

[36] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy. Lenses: an on-demand approach to etl.
Proceedings of the VLDB Endowment, 8(12):1578–1589, 2015.

15

[37] G. S. Yilmaz, T. Wattanawaroon, L. Xu, A. Nigam, A. J. Elmore, and A. G. Parameswaran. Datadiff: User-
interpretable data transformation summaries for collaborative data analysis. In SIGMOD Conference, pages
1769–1772. ACM, 2018.

[38] K. Zielnicki. Nodebook. https://multithreaded.stitchfix.com/blog/2017/07/26/
nodebook/.

16

