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ABSTRACT
Incomplete and probabilistic database techniques are principled
methods for coping with uncertainty in data. Unfortunately, the
class of queries that can be answered efficiently over such databases
is severely limited, even when advanced approximation techniques
are employed. We introduce attribute-annotated uncertain databases
(AU-DBs), an uncertain data model that annotates tuples and at-
tribute values with bounds to compactly approximate an incomplete
database. AU-DBs are closed under relational algebra with aggre-
gation using an efficient evaluation semantics. Using optimizations
that trade accuracy for performance, our approach scales to complex
queries and large datasets, and produces accurate results.
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1 INTRODUCTION
Uncertainty arises naturally in many application domains due to
data entry errors, sensor errors and noise [39], uncertainty in infor-
mation extraction and parsing [54], ambiguity from data integra-
tion [8, 35, 50], and heuristic data wrangling [15, 24, 62]. Analyzing
uncertain data without accounting for its uncertainty can create
hard to trace errors, with severe real world implications. Incomplete
database techniques [22] have emerged as a principledway tomodel
and manage uncertainty in data1. An incomplete database models
uncertainty by encoding a set of possible worlds, each of which
is one possible state of the real world. Under the commonly used
certain answer semantics [5, 36], a query returns the set of answer

1Probabilistic databases [57] generalize incomplete databases with a probability distri-
bution over possible worlds. We focus on contrasting with the former for simplicity, but
many of the same cost and expressivity limitations also affect probabilistic databases.
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tuples guaranteed to be in the result, regardless of which possi-
ble world is correct. Many computational problems are intractable
over incomplete databases. Even approximations (e.g., [28, 31, 42])
are often still not efficient enough, are insufficiently expressive,
or exclude useful answers [22, 25]. Thus, typical database users
resort to resolving uncertainty using heuristics and then treating
the result as a deterministic database [62]. In other words, this ap-
proach selects one possible world for analysis, ignoring all other
possible worlds. We refer to this approach as selected-guess query
processing (SGQP). SGQP is efficient, since the resulting dataset is
deterministic, but discards all information about uncertainty, with
the associated potential for severe negative consequences.

Example 1. Alice is tracking the spread of COVID-19 and wants
to use data extracted from the web to compare infection rates in popu-
lation centers of varying size. Fig. 1a (top) shows example (unreliable)
input data. Parts of this data are trustworthy, while other parts are
ambiguous; [𝑣1, . . . , 𝑣𝑛] denotes an uncertain value (e.g., conflicting
data sources) and null indicates that the value is completely unknown
(i.e., any value from the attribute’s domain could be correct). D en-
codes a set of possible worlds, each a deterministic database that
represents one possible state of the real world. Alice’s ETL heuristics
select (e.g., based on the relative trustworthiness of each source) one
possible world 𝐷𝑆𝐺 (Fig. 1b) by selecting a deterministic value for
each ambiguous input (e.g., an infection rate of 3% for Los Angeles).
Alice next computes the average rate by locale size.

SELECT size , avg(rate) AS rate

FROM locales GROUP BY size

Querying 𝐷𝑆𝐺 may produce misleading results, (e.g., an 18% aver-
age infection rate for cities). Conversely, querying D using certain
answer semantics [36] produces no results at all. Although there
must exist a result tuple for metros, the uncertain infection rate of
Los Angeles makes it impossible to compute one certain result tuple.
Furthermore, the data lacks a size for Sacramento, which can con-
tribute to any result, rendering all rate values uncertain, even for
result tuples with otherwise perfect data. An alternative is the possible
answer semantics, which enumerates all possible results. However, the
number of possible results is inordinately large (e.g., Fig. 1a, bottom).
With only integer percentages there are nearly 600 possible result
tuples for towns alone. Worse, enumerating either the (empty) certain
or the (large) possible results is expensive (coNP-hard/NP-hard).

Neither certain answers nor possible answer semantics are mean-
ingful for aggregation over uncertain data (e.g., see [22] for a deeper
discussion), further encouraging the (mis-)use of SGQP. One possi-
ble solution is to develop a special query semantics for aggregation,
either returning hard bounds on aggregate results (e.g., [6, 13, 49]),
or computing expectations (e.g., [40, 49]) when probabilities are
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D
locale rate size

Los Angeles [3%,4%] metro
Austin 18% [city,metro]
Houston 14% metro
Berlin [1%,3%] [town,city]

Sacramento 1% null
Springfield null town

𝑄 (D)
size rate

village 0%
village 1%
town 0%
. . . . . .

metro 12%

(a) X-DB

𝐷𝑆𝐺
locale rate size

Los Angeles 3% metro
Austin 18% city
Houston 14% metro
Berlin 3% town

Sacramento 1% town
Springfield 5% town

𝑄 (𝐷𝑆𝐺 )
size rate
metro 8.5%
city 18%
town 3%

(b) A possible world

𝐷𝐴𝑈

locale rate size N3
Los Angeles [3%/3%/4%] metro (1,1,1)

Austin 18% [𝑐𝑖𝑡𝑦/𝑐𝑖𝑡𝑦/𝑚𝑒𝑡𝑟𝑜 ] (1,1,1)
Houston 14% metro (1,1,1)
Berlin [1%/3%/3%] [𝑡𝑜𝑤𝑛/𝑡𝑜𝑤𝑛/𝑐𝑖𝑡𝑦 ] (1,1,1)

Sacramento 1% [𝑣𝑖𝑙𝑙𝑎𝑔𝑒/𝑡𝑜𝑤𝑛/𝑚𝑒𝑡𝑟𝑜 ] (1,1,1)
Springfield [0%/5%/100%] town (1,1,1)

𝑄 (𝐷𝐴𝑈 )
size spop N3
metro [6%/8.5%/12%] (1,1,1)
city [7.33%/18%/18%] (0,1,1)
town [0.33%/4%/100%] (1,1,1)

[𝑣𝑖𝑙𝑙𝑎𝑔𝑒/𝑣𝑖𝑙𝑙𝑎𝑔𝑒/𝑚𝑒𝑡𝑟𝑜 ] 1% (0,0,1)

(c) Possible AU-DB Encoding (based on 𝐷𝑆𝐺 )
Figure 1: Example incomplete database and query results.
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Figure 2: AU-DBs sandwich cer-
tain answers between an under-
approximation and the SGW and
over-approximate possible answers.
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Figure 3: AU-DBs are created from uncertain data, possibly
represented using incomplete or probabilistic data models.

available. Unfortunately, for such approaches, aggregate queries
and non-aggregate queries return incompatible results, and thus
the class of queries supported by these approaches is typically quite
limited. For example, most support only a single aggregation as the
last operation of a query. Worse, these approaches are often still
computationally intractable. Another class of solutions represents
aggregation results symbolically (e.g., [9, 27]). Evaluating queries
over symbolic representations is often tractable (PTIME), but the
result may be hard to interpret for a human, and extracting tangible
information (e.g., expectations) from symbolic instances is again
hard. In summary, prior work on processing complex queries in-
volving aggregation over incomplete (and probabilistic) databases
(i) only supports limited query types; (ii) is often expensive; and/or
(iii) returns results that are hard to interpret.

We argue that for uncertain data management to be accepted
by practitioners it has to be competitive with the selected-guess
approach in terms of (i) performance and (ii) the class of supported
queries (e.g., aggregation). In this work, we present AU-DBs, an
annotated data model that approximates an incomplete database
by annotating one of its possible worlds. As an extension of the
recently proposed UA-DBs [25], AU-DBs generalize and subsume
current standard practices (i.e., SGQP). An AU-DB is built on a
selected world, supplemented with two sets of annotations: lower
and upper bounds both on attributes, and on tuple multiplicities.
Thus, each tuple in an AU-DB may encode a set of tuples from
each possible world, each with attribute values falling within the
provided bounds. In addition to being a strict generalization of
SGQP, an AU-DB relation also includes enough information to
bound both the certain and possible answers as illustrated in Fig. 2.

Example 2. Fig. 1c shows an AU-DB constructed from one possible
world 𝐷𝑆𝐺 of D. We refer to this world as the selected-guess world
(SGW). Each uncertain attribute is replaced by a 3-tuple, consisting
of a lower bound, the value of the attribute in the SGW, and an
upper bound, respectively. Additionally, each tuple is annotated with
a 3-tuple consisting of a lower bound on its multiplicity across all
possible worlds, its multiplicity in the SGW, and an upper bound on its
multiplicity. For instance, Los Angeles is known to have an infection
rate between 3% and 4% with a guess (e.g., based on a typical ETL

approach like giving priority to a trusted source) of 3%. The query
result is shown in Fig. 1c. The first row of the result indicates that
there is exactly one record for metro areas (i.e., the upper and lower
multiplicity bounds are both 1), with an average rate between 6%
and 12% (with a selected guess of 8.5%). Similarly, the second row of
the result indicates that there might (i.e., lower-bound of 0) exist one
record for cities with a rate between 7.33% and 18%. This is a strict
generalization of how users presently interact with uncertain data, as
ignoring everything but the middle element of each 3-tuple gets us
the SGW. However, the AU-DB also captures the data’s uncertainty.

As we will demonstrate, AU-DBs have several beneficial proper-
ties that make them a good fit for dealing with uncertain data:
Efficiency. Query evaluation over AU-DBs is PTIME, and by us-
ing novel optimizations that compact intermediate results to trade
precision for performance, our approach scales to large datasets
and complex queries. While still slower than SGQP, AU-DBs are
practical, significantly outperforming alternative uncertain data
management systems, especially for queries involving aggregation.
Query Expressiveness. The under- and over-approximations en-
coded by anAU-DB are preserved by queries from the full-relational
algebra with multiple aggregations (RA𝑎𝑔𝑔). Thus, AU-DBs are
closed under RA𝑎𝑔𝑔 , and are (to our knowledge) the first incom-
plete database approach to support complex, multi-aggregate queries.
Compatibility. Like UA-DBs [25], an AU-DB can be constructed
from many existing incomplete and probabilistic data models, in-
cluding C-tables [36] or tuple-independent databases [57], making
it possible to re-use existing approaches for exposing uncertainty
in data (e.g., [12, 14, 15, 31, 42, 51, 62]). Moreover, although this
paper focuses on bag semantics, our model is defined for the same
class of semiring-annotated databases [32] as UA-DBs [25] which
include, e.g., set semantics, security-annotations, and provenance.
Compactness. As observed elsewhere [33, 34, 47], under-approxi-
mating certain answers for non-monotone queries (like aggregates)
requires over-approximating possible answers. A single AU-DB
tuple can encode a large number of tuples, and can compactly ap-
proximate possible results. This over-approximation is interesting
in its own right to deal with missing data in the spirit of [44, 46, 58].
Simplicity. AU-DBs use simple bounds to convey uncertainty, as
opposed to the more complex symbolic formulas of m-tables [58]
or tensors [9]. Representing uncertainty as ranges has been shown
to lead to better decision-making [43]. AU-DBs can be integrated
into uncertainty-aware user interfaces, e.g., Vizier [16, 43].



2 RELATEDWORK
We build on prior research in uncertain databases, specifically, tech-
niques for approximating certain answers and aggregation.

Approximations of Certain Answers. Queries over incomplete
databases typically use certain answer semantics [5, 33, 34, 36, 47]
first defined in [48]. Computing certain answers is coNP-complete [5,
36] (data complexity) for relational algebra. Several techniques for
computing an under-approximation (subset) of certain answers
have been proposed. Reiter [52] proposed a PTIME algorithm for
positive existential queries. Guagliardo and Libkin [33, 34, 47] pro-
posed a scheme for full relational algebra for Codd- and V-tables,
and also studied bag semantics [21, 34]. Feng et. al. [25] general-
ized this approach to new query semantics through Green et. al.’s
K-relations [32]. m-tables [58] compactly encode large amounts
of possible tuples, allowing for efficient query evaluation. How-
ever, this requires complex symbolic expressions which necessitate
schemes for approximating certain answers. Consistent query an-
swering (CQA) [12, 14] computes the certain answers to queries
over all possible repairs of a database that violates a set of con-
straints. Variants of this problem have been studied extensively
(e.g., [19, 41, 42]) and several combinations of classes of constraints
and queries permit first-order rewritings [30, 31, 59, 60]. Geerts et.
al. [31] study first-order under-approximations of certain answers
in the context of CQA. Notably, AU-DBs build on the approach
of [25] (i.e., a selected guess and lower bounds), adding an upper
bound on possible answers (e.g., as in [34]) to support aggregations,
and bound attribute-level uncertainty with ranges instead of nulls.

Aggregation in Incomplete/Probabilistic Databases.While ag-
gregation of uncertain data has been studied extensively (see [26]
for a comparison of approaches), general solutions remain an open
problem [22]. A key challenge lies in defining a meaningful se-
mantics, as aggregates over uncertain data frequently produce
empty certain answers [18]. An alternative semantics adopted for
CQA and ontologies [6, 13, 18, 29, 55] returns per-attribute bounds
over all possible results [13] instead of a single certain answer. In
contrast to prior work, we use bounds as a fundamental building
block of our data model. Because of the complexity of aggregat-
ing uncertain data, most approaches focus on identifying tractable
cases and producing statistical moments or other lossy represen-
tations [4, 17, 20, 38, 40, 49, 56, 61]. Even this simplified approach
is expensive (often NP-hard, depending on the query class), and
requires approximation. Statistical moments like expectation may
be meaningful as final query answers, but are less useful if the
result is to be subsequently queried (e.g., HAVING queries [53]).

Efforts to create a lossless symbolic encoding closed under aggre-
gation [27, 45] exist, supporting complex multi-aggregate queries
and a wide range of statistics (e.g, bounds, samples, or expecta-
tions). However, even factorizable encodings like aggregate semi-
modules [9] usually scale in the size of the aggregate input and not
the far smaller aggregate output, making these schemes impracti-
cal. AU-DBs are also closed under aggregation, but replace lossless
encodings of aggregate outputs with lossy, but compact bounds.

A third approach, exemplified by MCDB [37] queries sampled
possibleworlds. In principle, this approach supports arbitrary queries,

but is significantly slower than SGQP [25], only works when proba-
bilities are available, and only supports statistical measures that can
be derived from samples (i.e., moments and epsilon-delta bounds).

A similarly general approach [44, 58] determines which parts of
a query result over incomplete data are uncertain, and whether the
result is an upper or lower bound. However, this approach tracks
incompleteness coarsely (horizontal table partitions). AU-DBs are
more general, combining both fine-grained uncertainty information
(individual rows and attribute values) and coarse-grained informa-
tion (one row in a AU-DB may encode multiple tuples).

3 NOTATION AND BACKGROUND
We now reviewK-relations, a generalization of classical incomplete
databases called incompleteK-relations, and the UA-DBs model ex-
tended here. A database schema Sch(𝐷) = {Sch(𝑅1), . . . , Sch(𝑅𝑛)}
is a set of relation schemas Sch(𝑅𝑖 ) = ⟨ 𝐴1, . . . , 𝐴𝑛 ⟩. The arity
𝑎𝑟𝑖𝑡𝑦 (Sch(𝑅)) of Sch(𝑅) is the number of attributes in Sch(𝑅). As-
sume a universal domain of attribute valuesD. A tuple with schema
Sch(𝑅) is an element fromD𝑎𝑟𝑖𝑡𝑦 (Sch(𝑅)) . We assume the existence
of a total order over the elements of D.2

3.1 K-Relations
The generalization of incomplete databases we use here is based
on K-relations [32]. In this framework, relations are annotated
with elements from the domain 𝐾 of a (commutative) semiring
K = ⟨ 𝐾, +K , ·K , 1K , 0K ⟩, i.e., a mathematical structure with com-
mutative and associative addition (+K ) and product (·K ) operations
where +K distributes over ·K and 𝑘 ·K 0K = 0K for all 𝑘 ∈ 𝐾 . An
𝑛-nary K-relation is a function that maps tuples to elements from
𝐾 . Tuples that are not in the relation are annotated with 0K . Only
finitely many tuples may be mapped to an element other than 0K .
Since K-relations are functions from tuples to annotations, it is
customary to denote the annotation of a tuple 𝑡 in relation 𝑅 as
𝑅(𝑡). In this work we are interested in bag semantics, which can be
encoded using the semiring of natural numbers with standard addi-
tion and multiplication ⟨ N, +,×, 0, 1 ⟩ to annotate each tuple with
its multiplicity. We discuss the applicability of our framework to a
larger class of semirings in an accompanying technical report [26].

Operators of positive relational algebra (RA+) over N-relations
combine input annotations using + and ·.

Union: (𝑅1 ∪ 𝑅2) (𝑡) = 𝑅1 (𝑡) + 𝑅2 (𝑡)
Join: (𝑅1 Z 𝑅2) (𝑡) = 𝑅1 (𝑡 [Sch(𝑅1)]) · 𝑅2 (𝑡 [Sch(𝑅2)])

Projection: (𝜋𝑈 (𝑅)) (𝑡) =
∑︁

𝑡=𝑡 ′ [𝑈 ]
𝑅(𝑡 ′)

Selection: (𝜎𝜃 (𝑅)) (𝑡) = 𝑅(𝑡) · 𝜃 (𝑡)

Wewill make use of the so called natural order ⪯K for a semiring
K which is the standard order ≤ of natural numbers for N.

3.2 Incomplete K-Relations
Instead of using the classical set-based definition of incomplete
databases and certain answers, we apply the generalization from [25]
called incomplete K-relations, specifically the N-relations that

2The order over D may be arbitrary, but range bounds are most useful when the order
makes sense for the domain values (e.g., the ordinal scale of an ordinal attribute).



model bag-incomplete databases. An incompleteN-database is a set
of N-databases D = {𝐷1, . . . , 𝐷𝑛} called possible worlds. Queries
over an incomplete N-database use possible world semantics: The
result of a query 𝑄 over an incomplete N-database D is the set of
possible worlds derived by evaluating 𝑄 over every world in D.

𝑄 (D) B { 𝑄 (𝐷) | 𝐷 ∈ D } (possible world semantics)

Generalizing certain and possible answers, the certain (possible)
multiplicity of a tuple 𝑡 in an incomplete N-database D is the mini-
mum (maximum) multiplicity of the tuple across all possible worlds:

certN (D, 𝑡) B min({𝐷 (𝑡) | 𝐷 ∈ D})
possN (D, 𝑡) B max({𝐷 (𝑡) | 𝐷 ∈ D})

3.3 UA-Databases
Using K-relations, Feng et al. [25] introduced UA-DBs (uncertainty-
annotated databases) which, in the case of semiring N, encode a
tuple level under- and over-approximation of the certain multiplic-
ity of tuples from an incomplete N-database D. In a bag UA-DB
(semiring N), every tuple is annotated with a pair [𝑐, 𝑑] ∈ N2
where 𝑑 is the tuple’s multiplicity in a selected possible world
𝐷𝑠𝑔 ∈ D i.e., 𝑑 = 𝐷𝑠𝑔 (𝑡) and 𝑐 is an under-approximation of the
tuple’s certain multiplicity, i.e., 𝑐 ≤ certN (D, 𝑡) ≤ 𝑑 . The selected
world 𝐷𝑠𝑔 is called the selected-guess world (SGW). Formally, these
pairs [𝑐, 𝑑] are elements from a semiring N𝑈𝐴 which is the direct
product of semiring N with itself (N2). Operations in the product
semiring N2 =

〈
N2, +N2 , ·N2 , 0N2 , 1N2

〉
are defined pointwise, e.g.,

[𝑘1, 𝑘1 ′] ·N2 [𝑘2, 𝑘2 ′] = [𝑘1 · 𝑘2, 𝑘1 ′ · 𝑘2 ′]. UA-DBs are created
from an incomplete or probabilistic data source by selecting a SGW
𝐷𝑠𝑔 and generating an under-approximation L of the certain multi-
plicty certN of tuples. In the UA-DB, the annotation of each tuple
𝑡 is set to: 𝐷𝑈𝐴 (𝑡) B [L(𝑡), 𝐷𝑠𝑔 (𝑡)]. UA-DBs constructed in this
fashion are said to bound D through L and 𝐷𝑠𝑔 . Feng et al. [25]
discussed how to create UA-DBs that bound C-tables, V-tables, and
x-DBs. [25, Theorem 1] shows that standard N2-relational query
semantics preserves bounds under RA+ queries, i.e., if the input
bounds an incompleteN-databaseD, then the result bounds𝑄 (D).

4 OVERVIEW
Query evaluation over UA-DBs is efficient (PTIME data complex-
ity and experimentally shown to have performance comparable to
SGQP). However, UA-DBs may not be as precise and concise as
possible since uncertainty is only recorded at the tuple-level. For
example, the encoding of the town tuple in Fig. 1a needs just shy of
600 uncertain tuples, one for each combination of possible values of
the uncertain size and rate attributes. Additionally, UA-DB query
semantics does not support non-monotone operations like aggre-
gation and set difference, as this requires an over-approximation of
possible answers.

We address both shortcomings in AU-DBs through two changes
relative to UA-DBs: (i) Tuple annotations include an upper bound
on the tuple’s possible multiplicity; and (ii) Attribute values become
3-tuples, with lower- and upper-bounds and a selected-guess (SG)
value. These building blocks, range-annotated scalar expressions
and N𝐴𝑈 -relations, are formalized in Sec. 5 and 6, respectively.

Supporting both attribute-level and tuple-level uncertainty cre-
ates ambiguity in how tuples should be represented. As noted above,

the tuple for towns is certain (i.e., deterministically present) and has
uncertain (i.e., multiple-possible values) attributes, but could also
be expressed as 600 tuples with certain attribute values whose exis-
tence is uncertain. This ambiguity makes it challenging to define
what it means for an AU-DB to bound an incomplete database, a
problemwe resolve in Sec. 6.3 by defining tuplematchings that relate
tuples in an AU-DB to those of a possible world. An AU-DB bounds
an incomplete database if such a mapping exists for every possible
world. This ambiguity is also problematic for group-by aggrega-
tion, as aggregating a relation with uncertain group-by attribute
values may admit multiple, equally viable output AU-relations. We
propose a specific grouping strategy in Sec. 8.1 that mirrors SGW
query evaluation, and show that it behaves as expected.

5 SCALAR EXPRESSIONS
Consider a domain D that consists of R and the boolean values (⊥
and ⊤). Furthermore, letV denote a countable set of variables. For
any variable 𝑥 ∈ V, 𝑥 is an expression and for any constant 𝑐 ∈ D,
𝑐 is an expression. If 𝑒1, 𝑒2 and 𝑒3 are expressions, then . . .

𝑒1 ∧ 𝑒2 𝑒1 ∨ 𝑒2 ¬𝑒1 𝑒1 = 𝑒2 𝑒1 ≠ 𝑒2 𝑒1 ≤ 𝑒2
𝑒1 + 𝑒2 𝑒1 · 𝑒2 if 𝑒1 then 𝑒2 else 𝑒3

are also expressions. Given an expression 𝑒 , we denote the variables
of 𝑒 by vars(𝑒). We will also use ≠, ≥, <, −, and > since these
operators can be defined using the expression syntax above, e.g.,
𝑒1 > 𝑒2 = ¬ (𝑒1 ≤ 𝑒2). For an expression 𝑒 , given a valuation 𝜑
that maps variables from vars(𝑒) to constants from D, the expres-
sion evaluates to a constant J𝑒K𝜑 from D. The semantics of these
expressions are standard (see [26] for explicit definitions).

5.1 Incomplete Expression Evaluation
We now define evaluation of expressions over incomplete valua-
tions, which are sets of valuations. Each valuation in such a set,
called a possible world, represents one possible input for the expres-
sion. The semantics of expression evaluation are then defined using
possible worlds semantics: the result of evaluating an expression 𝑒
over an incomplete valuation Φ = {𝜑1, . . . , 𝜑𝑛} denoted as J𝑒KΦ is
the set of results obtained by evaluating 𝑒 over each 𝜑𝑖 using deter-
ministic expression evaluation semantics: J𝑒KΦ B {J𝑒K𝜑 | 𝜑 ∈ Φ}.
Consider an expression 𝑒 B 𝑥 + 𝑦 and an incomplete valuation
Φ = {(𝑥 = 1, 𝑦 = 4), (𝑥 = 2, 𝑦 = 4), (𝑥 = 1, 𝑦 = 5)}. We get
J𝑒KΦ = {1 + 4, 2 + 4, 1 + 5} = {5, 6}.

5.2 Range-Annotated Domains
We now define range-annotated values, which are domain values
that are annotated with an interval that bounds the value from
above and below. We define an expression semantics for valuations
that maps variables to range-annotated values and then prove that if
the input bounds an incomplete valuation, then the range-annotated
output produced by this semantics bounds the possible outcomes
of the incomplete expression.

Definition 1. Let D be a domain and let ≤ denote a total order
over its elements. Then the range-annotated domain D𝐼 is defined as:{

[𝑐↓/𝑐𝑠𝑔/𝑐↑] | 𝑐↓, 𝑐𝑠𝑔, 𝑐↑ ∈ D ∧ 𝑐↓ ≤ 𝑐𝑠𝑔 ≤ 𝑐↑
}



A value 𝑐 = [𝑐↓/𝑐𝑠𝑔/𝑐↑] from D𝐼 encodes a value 𝑐𝑠𝑔 ∈ D and
two values (𝑐↓ and 𝑐↑) that bound 𝑐𝑠𝑔 from below and above. We
call a value 𝑐 ∈ D𝐼 certain if 𝑐↓ = 𝑐𝑠𝑔 = 𝑐↑. Observe, that the
definition requires that for any 𝑐 ∈ D𝐼 we have 𝑐↓ ≤ 𝑐𝑠𝑔 ≤ 𝑐↑. We
use valuations that map the variables of an expression to elements
from D𝐼 to bound incomplete valuations.

Definition 2. A range-annotated valuation 𝜑̃ for an expression
𝑒 is a mapping vars(𝑒) → D𝐼 . Given an incomplete valuation Φ and
a range-annotated valuation 𝜑̃ for 𝑒 , we say that 𝜑̃ bounds Φ iff

∀𝑥 ∈ vars(𝑒) : ∀𝜑 ∈ Φ : 𝜑̃ (𝑥)↓ ≤ 𝜑 (𝑥) ≤ 𝜑̃ (𝑥)↑

∃𝜑 ∈ Φ : ∀𝑥 ∈ vars(𝑒) : 𝜑 (𝑥) = 𝜑̃ (𝑥)𝑠𝑔

Consider the incomplete valuation Φ = {(𝑥 = 1), (𝑥 = 2), (𝑥 =

3)}. The range-annotated valuation 𝑥 = [0/2/3] is a bound for Φ,
while 𝑥 = [0/2/2] is not a bound. We now define a semantics for
evaluating expressions over range-annotated valuations. We then
demonstrate that this semantics preserves bounds.

Definition 3. Let 𝑒 be an expression. Given a range valuation 𝜑̃ :
vars(𝑒) → D𝐼 , we define 𝜑̃𝑠𝑔 (𝑥) B 𝜑̃ (𝑥)𝑠𝑔 . The result of expression
𝑒 over 𝜑̃ denoted as J𝑒K𝜑̃ is defined as:

J𝑥K𝜑̃ B [𝜑̃ (𝑥)↓/𝜑̃ (𝑥)𝑠𝑔/𝜑̃ (𝑥)↑] J𝑐K𝜑̃ B [𝑐/𝑐/𝑐]

For any of the following expressions we define J𝑒K𝜑̃ 𝑠𝑔 B J𝑒K𝜑̃𝑠𝑔 . Let
J𝑒1K𝜑̃ = 𝑎, J𝑒2K𝜑̃ = 𝑏, and J𝑒3K𝜑̃ = 𝑐 . All expressions omitted below
are defined point-wise (e.g., J𝑒1 + 𝑒2K𝜑̃ ↓ B 𝑎↓ + 𝑏↓).

J¬𝑒1K𝜑̃ ↓ B ¬𝑎↑ J¬𝑒1K𝜑̃ ↑ B ¬𝑎↓

J𝑒1 · 𝑒2K𝜑̃ ↓ B min( 𝑎↑ · 𝑏↑, 𝑎↑ · 𝑏↓, 𝑎↓ · 𝑏↑, 𝑎↓ · 𝑏↓ )

J𝑒1 · 𝑒2K𝜑̃ ↑ B max( 𝑎↑ · 𝑏↑, 𝑎↑ · 𝑏↓, 𝑎↓ · 𝑏↑, 𝑎↓ · 𝑏↓ )
J𝑒1 ≤ 𝑒2K𝜑̃ ↓ B 𝑎↑ ≤ 𝑏↓ J𝑒1 = 𝑒2K𝜑̃ ↓ B 𝑎↑ = 𝑏↓ ∧ 𝑏↑ = 𝑎↓

J𝑒1 ≤ 𝑒2K𝜑̃ ↑ B 𝑎↓ ≤ 𝑏↑ J𝑒1 = 𝑒2K𝜑̃ ↑ B 𝑎↓ ≤ 𝑏↑ ∧ 𝑏↓ ≤ 𝑎↑

Jif 𝑒1 then 𝑒2 else 𝑒3K𝜑̃ ↓ B


𝑏↓ if 𝑎↓ = 𝑎↑ = ⊤
𝑐↓ if 𝑎↓ = 𝑎↑ = ⊥
min(𝑏↓, 𝑐↓) else

Jif 𝑒1 then 𝑒2 else 𝑒3K𝜑̃ ↑ B


𝑏↑ if 𝑎↓ = 𝑎↑ = ⊤
𝑐↑ if 𝑎↓ = 𝑎↑ = ⊥
max(𝑏↑, 𝑐↑) else

Assuming that an input range-annotated valuation bounds an
incomplete valuation, we need to prove that the output of range-
annotated expression evaluation also bounds the possible outcomes.

Definition 4. A value 𝑐 ∈ D𝐼 bounds a set of values 𝑆 ⊆ D if:

∀𝑐𝑖 ∈ 𝑆 : 𝑐↓ ≤ 𝑐𝑖 ≤ 𝑐↑ ∃𝑐𝑖 ∈ 𝑆 : 𝑐𝑖 = 𝑐𝑠𝑔

Theorem 1. Let 𝜑̃ be a range-annotated valuation that bounds an
incomplete valuation 𝑒 for an expression 𝑒 , then J𝑒K𝜑̃ bounds J𝑒KΦ.

Proof Sketch. Proven by straightforward induction over the
structure of formulas. We present the full proof in [26]. □

Conditional range-annotated expressions are bound-preserving
for any totally-ordered domain. For categorical values where no
sensible order can be defined, we impose an arbitrary order.

6 AU-DBS
We define attribute-annotated uncertain databases (AU-DBs) as
a special type of K-relation over range-annotated domains and
demonstrate how to bound an incomplete K-relation using this
model. Afterwards, we define a metric for how precise the bounds
of an incompleteK-database encoded by an AU-DB are, and define
a query semantics for AU-DBs that preserves bounds. We limit the
discussion to semiring N (bag semantics). See [26] for the general-
ization to other semirings including B (set semantics).

6.1 N𝐴𝑈 -relations
In addition to allowing for range-annotated values, AU-DBs also
differ from UA-DBs in that they encode an upper bound of the
possible annotation of each tuple. We use N3 annotations to encode
for each tuple: a lower bound on the certain multiplicity of the tuple,
the multiplicity of the tuple in the SGW, and an over-approximation
of the tuple’s possible multiplicity.

Definition 5. The range-annotated multiplicity domain N𝐴𝑈 is
defined as:

{(𝑘↓, 𝑘, 𝑘↑) | 𝑘↓, 𝑘, 𝑘↑ ∈ N ∧ 𝑘↓ ≤ 𝑘 ≤ 𝑘↑}
We use N𝐴𝑈 to denote semiring N3 restricted to elements from N𝐴𝑈 .

Note that N𝐴𝑈 is a semiring since when combining two ele-
ments of N𝐴𝑈 with +N3 and ·N3 , the result (𝑘↓, 𝑘𝑠𝑔, 𝑘↑) fulfills the
requirement 𝑘↓ ≤ 𝑘𝑠𝑔 ≤ 𝑘↑. This is the case because addition and
multiplication in N preserve order [25], and these operations in N3
are pointwise application of + and ·.

Definition 6. A N𝐴𝑈 -relation of arity 𝑛 is a function R : D𝐼 𝑛 →
N𝐴𝑈 with finite support {t | R(t) ≠ (0, 0, 0)}.

6.2 Extracting Selected-Guess Worlds
N𝐴𝑈 -relations permit multiple tuples with identical values in the
selected-guess world (SGW). We extract the selected-guess world
encoded by a N𝐴𝑈 -relation by grouping tuples based on their SG
values and summing up their SG multiplicities.

Definition 7. We lift operator 𝑠𝑔 from values to tuples: 𝑠𝑔 :
D𝐼

𝑛 → D𝑛 , i.e., given an AU-DB tuple t = ⟨ 𝑐1, . . . , 𝑐𝑛 ⟩, t𝑠𝑔 B
⟨ 𝑐1𝑠𝑔, . . . , 𝑐𝑛𝑠𝑔 ⟩. For a N𝐴𝑈 -relation R, R𝑠𝑔 , the SGW encoded by R,
is then defined as:

R𝑠𝑔 (𝑡) B
∑︁
t𝑠𝑔=𝑡

(R(t))𝑠𝑔

Example 3. Fig. 4a shows an instance of a N𝐴𝑈 -relation 𝑅 where
each attribute is a triple showing the lower bound, selected-guess,
and upper bound of the value. Each tuple is annotated by a triple
showing the lower multiplicity bound, selected-guess multiplicity, and
the upper multiplicity bound of the tuple. For example, the first tuple
represents a tuple ⟨ 1, 1 ⟩ that appears at least twice in every possible
world (its lower multiplicity bound is 2), appears twice in the SGW,
and appears no more than thrice in any world. Fig. 4b shows the
SGW encoded by this AU-DB which is computed by summing up
the multiplicities of tuples with identical SG values. For instance, the
first two tuples both represent tuple ⟨ 1, 1 ⟩ in the SGW and their
annotations sum up to 5 (i.e., the tuple ⟨ 1, 1 ⟩ appears five times).
Conversely, the first two tuples of 𝐷2 match different AU-DB tuples.



A B N3

[1/1/1] [1/1/1] (2,2,3)
[1/1/1] [1/1/3] (2,3,3)
[1/2/2] [3/3/3] (1,1,1)

(a) Example AU-DB instance

𝐷1
A B N

𝑡1 1 1 5
𝑡2 2 3 1

𝐷2
A B N

𝑡3 1 1 2
𝑡4 1 3 2
𝑡5 2 3 1

(b) Worlds 𝐷1 (SGW) and 𝐷2

Figure 4: Example AU-DB relation and two worlds it bounds

6.3 Encoding Bounds
We now define what it means for an AU-DB to bound an incomplete
N-relation. For that, we first define bounding of deterministic tuples
by range-annotated tuples.

Definition 8. Let t be a range-annotated tuple with schema
⟨ 𝑎1, . . . , 𝑎𝑛 ⟩ and 𝑡 be a tuple with the same schema as t. We say that
t bounds 𝑡 written as 𝑡 ⊑ t iff

∀𝑖 ∈ {1, . . . , 𝑛} : t.𝑎𝑖 ↓ ≤ 𝑡 .𝑎𝑖 ≤ t.𝑎𝑖 ↑

One AU-DB tuple may bound multiple conventional tuples and
vice versa. We define tuple matchings as a way to match the multi-
plicities of tuples of a N𝐴𝑈 -database (or relation) with that of one
possible world of an incomplete N-database (or relation). Based on
tuple matchings we then define how to bound possible worlds.

Definition 9. Let R be an 𝑛-ary AU-relation and 𝑅 an 𝑛-ary rela-
tion. A tuple matching TM for R and 𝑅 is a function (D𝐼 )𝑛 ×D𝑛 →
N. s.t.the following conditions hold:

∀t ∈ D𝐼 𝑛 : ∀𝑡 @ t : TM(t, 𝑡) = 0 ∀𝑡 ∈ D𝑛 :
∑︁

t∈D𝐼 𝑛
TM(t, 𝑡) = 𝑅(𝑡)

A tuple matching distributes the multiplicity of a tuple from 𝑅

over one or more matching tuples from R. Multiple tuples from
an AU-DB may encode the same tuple when the multidimensional
rectangles of their attribute-level range annotations overlap, as
with the first two tuples of the AU-DB in Fig. 4 and the SGW.

Definition 10. Given an n-ary AU-DB relation R and an n-ary
deterministic N-relation 𝑅 (a possible world), relation R bounds 𝑅
(denoted 𝑅 ⊏ R) iff there exists a tuple matching TM for R and 𝑅 s.t.
∀t ∈ D𝐼 𝑛 :

∑︁
𝑡 ∈D𝑛

TM(t, 𝑡) ≥ R(t)↓ and
∑︁
𝑡 ∈D𝑛

TM(t, 𝑡) ≤ R(t)↑

Having defined when a possible world is bound by a N𝐴𝑈 -
relation, we are ready to define bounding of incompleteN-relations.

Definition 11. Given an incomplete N-relation R and a N𝐴𝑈 -
relation R, we say that R bounds R, written as R ⊏ R iff

∀𝑅 ∈ R : 𝑅 ⊏ R ∃𝑅 ∈ R : 𝑅 = R𝑠𝑔

These definitions are extended to databases in the obvious way.

Example 4. Consider the AU-DB of Ex. 3 and the worlds of Fig. 4b.
The AU-DB bounds these worlds, since there exist tuple matchings that
provide a lower and an upper bound for the annotations of the tuples
of each world. For instance, denoting the tuples from this example as

t1 B ⟨ [1/1/1], [1/1/1] ⟩ t2 B ⟨ [1/1/1], [1/1/3] ⟩
t3 B ⟨ [1/2/2], [3/3/3] ⟩

Tuple matching TM1 (shown below) bounds 𝐷1.

TM1 (t1, 𝑡1) = 2 TM1 (t2, 𝑡1) = 3 TM1 (t3, 𝑡1) = 0
TM1 (t1, 𝑡2) = 0 TM1 (t2, 𝑡2) = 0 TM1 (t3, 𝑡2) = 1

6.4 Tightness of Bounds
Given an incomplete database, there are many possibleAU-DBs that
bound it of varying tightness. For instance, both t1 B ⟨ [1/15/100] ⟩
and t2 B ⟨ [13/14/15] ⟩ bound tuple ⟨ 15 ⟩, but intuitively the
bounds provided by t2 are tighter. We develop a metric for the tight-
ness of the approximation provided by an AU-DB and prove that
finding an AU-DB that maximizes tightness is intractable. Given
two AU-DBs D and D′ that both bound an incomplete N-database
D, D is a tighter bound than D′ if the set of worlds bound by D is
a subset of the set of worlds bound by D′.

Definition 12. Consider two N𝐴𝑈 -databases D and D′ over the
same schema 𝑆 . We say that D is at least as tight as D′, written as
D ⪯𝐼 D′, if for all N-databases 𝐷 with schema 𝑆 we have:

𝐷 ⊏ D → 𝐷 ⊏ D′

We say that D is strictly tighter than D′, written as D ≺𝐼 D′ if
D ⪯𝐼 D′ and there exists 𝐷 ⊏ D′ with 𝐷 ̸⊏ D. Furthermore, we call
D a maximally tight bound for an incomplete N-database D if:

D ⊏ D �D′ : D ⊏ D′ ∧ D′ ≺𝐼 D

This notion of tightness is well-defined even if the data domainD
is infinite. In general AU-DBs that are tighter bounds are preferable.
However, computing a maximally tight bound is intractable.

Theorem 2. Let D be an incomplete N-database encoded as a C-
table [36]. Computing a maximally tight bound D for D is NP-hard.

Proof Sketch. Proven by reduction from 3-colorability [26].
We construct a C-table with one tuple and encode the 3-colorability
of the input graph 𝐺 in the local condition of the tuple, i.e., the
tuple is possible iff 𝐺 is 3-colorable. The maximally tight upper
multiplicity bound for this tuple is 1 iff graph𝐺 is 3-colorable. □

7 AU-DB QUERY SEMANTICS
We now introduce a semantics for RA+ queries over AU-DBs that
preserves bounds, i.e., if the input of a query 𝑄 bounds an incom-
pleteN-databaseD, then the output bounds𝑄 (D). AU-DBs follow
the standard K-relational semantics for all RA+ operations except
selection. The revised selection operator (described below) remains
linear in the size of its input, thus implying PTIME query evalua-
tion [10, 26]. Recall the standard semantics for evaluating selection
conditions over N-relations: The multiplicity of a tuple 𝑡 in the
result of a selection 𝜎𝜃 (𝑅) is computed by multiplying 𝑅(𝑡) with
𝜃 (𝑡). 𝜃 (𝑡) is defined as a function B → {0, 1} that returns 1 if 𝜃
evaluates to true on 𝑡 and 0 otherwise. InN𝐴𝑈 -relations, 𝑡 is a tuple
of range-annotated values. Using the range-annotated semantics
for expressions from Sec. 5, selection conditions evaluate to triples
of boolean values B3. For example, [𝐹/𝐹/𝑇 ] means that the condi-
tion may be false in some worlds, is false in the SGW, and may be
true in some worlds. To define selection semantics compatible with
N-relational query semantics, these triples must be translated to
elements of N𝐴𝑈 .



Definition 13. We define function MN : B3 → N3 as:

MN ( [𝑏1/𝑏2/𝑏3]) B (𝑘1, 𝑘2, 𝑘3) where 𝑘𝑖 B

{
1 if 𝑏𝑖 = 𝑡𝑟𝑢𝑒
0 otherwise

We use the mapping of range-annotated boolean values to N𝐴𝑈
elements to define evaluation of selection conditions.

Definition 14. Let t be a range-annotated tuple, and 𝜃 be a
boolean condition over variables representing attributes from t. Fur-
thermore, let 𝜑̃t denote the range-annotated valuation that maps each
variable to the corresponding value from t. We define 𝜃 (t) as:

𝜃 (t) BMN (J𝜃K𝜑̃t )
Example 5. Consider the example N𝐴𝑈 -relation 𝑅 shown below.

The single tuple t of this relation binds at least one tuple in every
possible world, two in the SGW, and no more than three in any world.

A B N𝐴𝑈
[1/2/3] 2 (1, 2, 3)

To evaluate query 𝑄 B 𝜎𝐴=2 (𝑅) over this relation, we first evalu-
ate the expression 𝐴 = 2 using range-annotated expression evaluation
semantics. We get [1/2/3] = [2/2/2] which evaluates to [𝐹/𝑇 /𝑇 ].
Using MN, this value is mapped to (0, 1, 1). To calculate the annota-
tion of the tuple in the result of the selection we then multiply these
values with the tuple’s annotation in 𝑅 and get:

𝑅(t) ·N𝐴𝑈 𝜃 (t) = (1, 2, 3) · (0, 1, 1) = (0, 2, 3)
Thus, the tuple may not exist in every world of the query result,
appears twice in the SGW, and occurs at most thrice.

For this query semantics to be useful, it has to preserve bounds.
Formally, a query semantics is bound preserving for a class of queries
C if for every query 𝑄 ∈ C, incomplete N-database D and N𝐴𝑈 -
database D that bounds D (D ⊏ D), we have 𝑄 (D) ⊏ 𝑄 (D).

Theorem 3. N𝐴𝑈 -relational semantics preserves bounds for RA+.

Proof Sketch. Intuitively, this is true because expressions are
evaluated using range-annotated expression semantics, which pre-
serves bounds on values, and queries are evaluated in a direct-
product semiring N𝐴𝑈 whose operations are defined point-wise.
Concretely, we use [25, Lemma 2]: addition and multiplication pre-
serve order in N (e.g., if 𝑘1 ≤ 𝑘2 and 𝑘3 ≤ 𝑘4 then 𝑘1 +𝑘3 ≤ 𝑘2 +𝑘4),
and induction over the structure of a query under the assumption
that D bounds D to prove the theorem. (full proof in [26]) □

7.1 Join Optimizations
One performance bottleneck of query evaluation over AU-DBs is
that equi-joins may degenerate into cross products if the bounds of
join attribute values are loose. For example, this happens when the
join attribute bounds of every tuple from the LHS and RHS overlap.
We now develop an optimization for joins that splits each input
relation R of the join into two parts: split𝑠𝑔 (R) and split↑(R) as
follows. If the equijoin is on attributes ⟨ 𝑎1, . . . , 𝑎𝑛 ⟩:

split𝑠𝑔 (R) (t)↓ B

{
R(t)↓ if ∀𝑖 : t.𝑎𝑖 ↓ = t.𝑎𝑖𝑠𝑔 = t.𝑎𝑖 ↑

0 otherwise

split𝑠𝑔 (R) (t)𝑠𝑔 B split𝑠𝑔 (R) (t)↑ B R(t)𝑠𝑔

split↑(R) (t)↓ B split↑(R) (t)𝑠𝑔 B 0
split↑(R) (t)↑ B R(t)↑

a
b

c

d
e

f
g

B1
B2 B3

Figure 5: An example of join compression with a compres-
sion size of 3: Tuples 𝑎 − 𝑔 are compressed into bins 𝐵1 − 𝐵3.
This operation ensures (i) that any relation 𝑅 bound by R is also
bound by both split↑(R) and split𝑠𝑔 (R) ∪ split↑(R), (ii) that the
join attributes of split𝑠𝑔 (R) are all certain, and (iii) that split𝑠𝑔 (R)𝑠𝑔 =

R𝑠𝑔 . Properties (i) and (iii) allow us to compute a bounding AU-
relation for the join R1 ⊲⊳ R2 as

(split𝑠𝑔 (R1) ⊲⊳ split𝑠𝑔 (R2)) ∪ (split↑(R1) ⊲⊳ split↑(R2))
Thanks to property (ii), the first join is a classical relational join and
can be evaluated efficiently. The latter join remains expensive, but
tuples in this join can be compressed: Based on a join compression
size 𝐶𝑇 and join attribute 𝐴, we construct 𝐶𝑇 buckets [𝑏𝑖 ↓, 𝑏𝑖 ↑]
over the domain of 𝐴 such that (i) for every tuple in t ∈ split↑(R𝑖 ),
there exists an 𝑖 such that 𝑏𝑖 ↓ ≤ t.𝐴↓ ≤ t.𝐴↑ ≤ 𝑏𝑖

↑, and (ii) the
number of tuples contained in this way by each bucket is roughly
uniform. The compressed split↑(R𝑖 ) relation has exactly𝐶𝑇 tuples
(one for each bucket) with attribute bounds that cover all tuples
assigned to the bucket, lower and selected-guess multiplicities of 0,
and an upper-bound multiplicity of the number of tuples assigned
to the bucket. For example, Fig. 5 shows the overlapping ranges of
the join attributes of seven tuples (𝑎 − 𝑔). To create a compressed
representation of size 3 (i.e., 𝐶𝑇 = 3), these tuples are partitioned
into 3 roughly-equally-sized bins (𝐵1, 𝐵2, 𝐵3), and the resulting
attribute bounds are selected as the maximum upper and lower
bounds of the component tuples. The compression size allows a
trade-off between faster query evaluation and tighter bounds. We
prove that the resulting join operation is correct in [26].

7.2 Creating AU-DBs
One advantage that AU-DBs inherit from UA-DBs is that other
models for incomplete and probabilistic databases can be translated
into this model such that the generated AU-DB bounds the input un-
certain database, albeit with reduced precision and no probabilities.
Alternatively, lenses [16, 62] can be used to directly generate AU-
DBs that encode the uncertainty introduced by curation heuristics.
We present translation schemes for tuple-independent databases,
x-DBs, and V-table in [26] and prove that they preserve bounds.

8 AGGREGATION
We now introduce a bound preserving semantics for aggregation
over N𝐴𝑈 -relations that is based on results from [9] that we re-
view below. We leave a generalization to other semirings to future
work. See [26] for a discussion of the challenges involved with that.
Importantly, our semantics has PTIME data complexity.
Aggregation Monoids. The semantics for aggregation queries
overK-relations from [9] deals with aggregation functions that are
commutative monoids ⟨ 𝑀, +𝑀 , 0𝑀 ⟩, i.e., where the values from𝑀

that are the input to aggregation are combined through an opera-
tion +𝑀 which has a neutral element 0𝑀 . Abusing notation, we will
use𝑀 to both denote the monoid and its domain. Standard aggrega-
tion functions sum, min, max, and count are monoids. avg can be
derived from sum and count. As an example, consider the monoids



for sum andmin: SUM B ⟨ R, +, 0 ⟩ andMIN B ⟨ R,min,∞ ⟩. For
𝑀 ∈ {SUM,MIN,MAX} (count uses SUM), we define a correspond-
ing monoid𝑀𝐼 using range-annotated expression semantics (Sec. 5).
Note that this gives us aggregation functions which can be applied
to range-annotated values and are bound preserving, i.e., the result
of the aggregation function bounds all possible results for any set
of values bound by the inputs. For example, min is expressed as
min(𝑣,𝑤) B if 𝑣 ≤ 𝑤 then 𝑣 else𝑤 .

Lemma 1. SUM𝐼 ,MIN𝐼 , MAX𝐼 are monoids.

Proof Sketch. Proven by unfolding of definitions to show that
the addition operations of these monoids is pointwise application
of the operation of the monoids they originated from. □

Semimodules. Aggregation over K-relations has to take the an-
notations of tuples into account for computing aggregation results.
For instance, consider an N-relation 𝑅(𝐴) with tuples ⟨ 30 ⟩ ↦→ 2
and ⟨ 40 ⟩ ↦→ 3, (i.e., respectively 2 and 3 duplicates). The sum over
𝐴 should be 30 ·2+40 ·3 = 180. More generally speaking, we need an
operation ∗𝑀 : N ×𝑀 → 𝑀 that combines the tuple multiplicities
with domain values. As observed in [9] this operation has to fulfill
the algebraic laws of semimodules. Note that ∗ is well-defined for
N and all of the monoids we consider:

𝑘 ∗SUM𝑚 = 𝑘 ·𝑚 𝑘 ∗MIN𝑚 = 𝑘 ∗MAX𝑚 =

{
𝑚 if 𝑘 ≠ 0
0 else

Unfortunately, as the following lemma shows, it is not possible
to use semimodules for aggregation over N𝐴𝑈 -relations, because
such semimodules, if they exist, cannot be bound preserving.

Lemma 2. ∗N𝐴𝑈 ,SUM, if it is well-defined, is not bound preserving.

Proof Sketch. Assume that this semimodule exists and is bound
preserving. We lead this assumption to a contradiction by deriving
two different results for the expression (1, 1, 2) ∗N𝐴𝑈 ,SUM [0/0/0]
using semimodule laws: (i) the obvious [0/0/0] and (ii) [−1/0/1] =
(1, 1, 2) ∗N𝐴𝑈 ,SUM ( [−1/−1/−1] + [1/1/1]) (full proof in [26]). □

In spite of this negative result, not everything is lost. Observe
that it not necessary for the operation that combines semiring ele-
ments (tuple annotations) with elements of the aggregation monoid
to follow semimodule laws. After all, what we care about is that
the operation is bound-preserving. Below we define operations ⊛𝑀
that are not semimodules, but are bound-preserving. To achieve
bound-preservation we can rely on the bound-preserving expres-
sion semantics we have defined in Sec. 5. For example, since ∗SUM is
multiplication, we can define ⊛SUM using multiplication for range-
annotated values. This approach of computing the bounds as the
minimum and maximum over all pair-wise combinations of value
and tuple-annotation bounds also works forMIN andMAX. In [26]
we prove that ⊛𝑀 is in fact bound preserving.

Definition 15. Consider a monoid𝑀 ∈ {SUM,MIN,MAX}. Let
[𝑚↓/𝑚/𝑚↑] be a range-annotated value from D𝐼 and (𝑘↓, 𝑘, 𝑘↑) ∈
N𝐴𝑈 . We define (𝑘↓, 𝑘, 𝑘↑) ⊛𝑀 [𝑚↓/𝑚/𝑚↑] =

[𝑚𝑖𝑛(𝑘↓ ∗𝑀 𝑚↓, 𝑘↓ ∗𝑀 𝑚↑, 𝑘↑ ∗𝑀 𝑚↓, 𝑘↑ ∗𝑀 𝑚↑),
𝑘 ∗𝑀 𝑚,

𝑚𝑎𝑥 (𝑘↓ ∗𝑀 𝑚↓, 𝑘↓ ∗𝑀 𝑚↑, 𝑘↑ ∗𝑀 𝑚↓, 𝑘↑ ∗𝑀 𝑚↑)]

8.1 Bound-Preserving Aggregation
We now define a bound preserving aggregation semantics based
on the ⊛𝑀 operations. Since AU-DBs can be used to encode an
arbitrary number of groups as a single tuple, we need to decide how
to trade conciseness of the representation for accuracy. Furthermore,
we need to ensure that the aggregation result in the SGW is encoded
by the result. There are many possible strategies for how to group
possible aggregation results. In this paper, we limit the discussion
to a default strategy that we introduce next (see [26] for a general
treatment). Afterwards, we demonstrate how to calculate group-by
attribute and aggregation result ranges for output tuples.
Grouping Strategy. Our grouping strategy takes as input an n-ary
N𝐴𝑈 -relation R and a list of group-by attributes 𝐺 and returns a
pair (G, 𝛼) where G(𝐺,R) is a set of output tuples — one for every
SG group (an input tuple’s group-by values in the SGW), and 𝛼
assigns each input tuple to one output based on its SG group-by
values. Even if the SG annotation of an input tuple is 0, we still use
its SG values to assign it to an output tuple. Only tuples that are
not possible (annotated with 0N𝐴𝑈 = (0, 0, 0)) are not considered.
Since output tuples are identified by their SG group-by values, we
will use these values to identify elements from G.

Definition 16. Consider a query 𝑄 B 𝛾𝐺,𝑓 (𝐴) (R). Let t ∈ D𝐼 𝑛 .
The default grouping strategy G𝑑𝑒𝑓 B (G, 𝛼) is defined as:

G(𝐺,R) B {𝑡 .𝐺 | ∃t : t𝑠𝑔 = 𝑡 ∧ R(t) ≠ 0N𝐴𝑈 } 𝛼 (t) B t.𝐺𝑠𝑔

For instance, consider three tuples t1 B ⟨ [1/2/2] ⟩ and t2 B
⟨ [2/2/4] ⟩ and t3 B ⟨ [2/3/4] ⟩ of a relation R(𝐴). Furthermore,
assume that R(t1) = (1, 1, 1), R(t2) = (0, 0, 1), and R(t3) = (0, 0, 3).
Grouping on𝐴, the default strategy will generate two output groups
𝑔1 for SG group (2) and 𝑔2 for SG group (3). Based on their SG
group-by values, 𝛼 assigns t1 and t2 to 𝑔1 and t3 to 𝑔2.
Aggregation Semantics. We now introduce an aggregation se-
mantics based on this grouping strategy. For simplicity we define
aggregation without group-by as a special case of aggregation with
group-by (the only difference is how tuple annotations are handled).
We first define how to construct a result tuple t𝑔 for each output
group 𝑔 returned by the grouping strategy and then present how
to calculate tuple annotations. The construction of an output tuple
is divided into two steps: (i) determine range annotations for the
group-by attributes and (ii) determine range annotations for the
aggregation function result attributes. To ensure that all possible
groups that an input tuple t with 𝛼 (t) = 𝑔 belongs to are contained
in t𝑔 .𝐺 we have to merge the group-by attribute bounds of all of
these tuples. Furthermore, we use the unique SG group-by values
common to all input tuples assigned to t𝑔 (i.e., t𝑔 .𝐺𝑠𝑔 = 𝑔) as the
output’s SG group-by value.

Definition 17. Consider a result group 𝑔 ∈ G(𝐺,R) for an aggre-
gation with group-by attributes𝐺 over a N𝐴𝑈 -relation R. The bounds
for the group-by attributes values of t𝑔 are defined as shown below.
For all 𝑎 ∈ 𝐺 we define:

t𝑔 .𝑎↓ = min
t:𝛼 (t)=𝑔

t.𝑎↓ t𝑔 .𝑎𝑠𝑔 = 𝑔.𝑎 t𝑔 .𝑎↑ = max
t:𝛼 (t)=𝑔

t.𝑎↑

Note that in the definition above, min and max are the minimum
and maximum wrt. to the order over the data domain D which we



used to define range-annotated values. Reconsider the three exam-
ple tuples and two result groups from above. The group-by range an-
notation for output tuple t𝑔1 is [min(1, 2)/2/max(2, 4)] = [1/2/4].
Observe that [1/2/4] bounds every group t1 and t2 may belong
to in some possible world. To calculate bounds on the result of
an aggregation function for one group, we have to reason about
the minimum and maximum possible aggregation function result
based on the bounds of aggregation function input values, their as-
sociated row annotations, and their possible and guaranteed group
memberships. To calculate a conservative lower bound of the ag-
gregation function result for an output tuple t𝑔 , we use ⊛𝑀 to pair
the aggregation function value of each tuple t for which 𝛼 (t) = 𝑔
holds with the tuple’s annotation and then extract the lower bound
from the resulting range-annotated value. The group membership
of a contributing tuple is uncertain if either its group-by values are
uncertain or if it need not exist in all possible worlds (its certain
multiplicity is 0). We thus take the minimum of the neutral element
of the aggregation monoid and the result of ⊛𝑀 for such tuples. We
introduce an uncertain group predicate ug(𝐺,R, t) for this purpose:

ug(𝐺,R, t) B (∃𝑎 ∈ 𝐺 : t.𝑎↓ ≠ t.𝑎↑) ∨ R(t)↓ = 0

We then sum up the resulting values in the aggregation monoid.
Note that here summation is addition in𝑀 . The upper bound calcu-
lation is analogous (using the upper bound and maximum instead).
The SG result is calculated using standard N-relational semantics.
We use t⊓ t′ to denote that the range annotations of tuples t and t′
with the same schema (𝐴1, . . . , 𝐴𝑛) overlap on each attribute𝐴𝑖 , i.e.,

t ⊓ t′ B
∧

𝑖∈{1,...,𝑛}
[t.𝐴𝑖 ↓, t.𝐴𝑖 ↑] ∩ [t′.𝐴𝑖 ↓, t′.𝐴𝑖 ↑] ≠ ∅

Definition 18. Consider input R, set of group-by attributes 𝐺 ,
an output 𝑔 ∈ G(𝐺,R), and aggregation function 𝑓 (𝐴) with monoid
𝑀 . We use ð(𝑔) to denote the set of inputs with group-by attribute
bounds overlaping t𝑔 .𝐺 , i.e., belonging to a group represented by t𝑔 :

ð(𝑔) B {t | R(t) ≠ 0N𝐴𝑈 ∧ t.𝐺 ⊓ t𝑔 .𝐺}
The aggregation function result bounds for tuple t𝑔 are defined as:

t𝑔 .𝑓 (𝐴)↓ =
∑︁

t∈ð(𝑔)
lbagg(t) t𝑔 .𝑓 (𝐴)↑ =

∑︁
t∈ð(𝑔)

ubagg(t)

t𝑔 .𝑓 (𝐴)𝑠𝑔 =
∑︁

t∈ð(𝑔)
(R(t) ⊛𝑀 t.𝐴)𝑠𝑔

lbagg(t) =
{
𝑚𝑖𝑛(0𝑀 , (R(t) ⊛𝑀 t.𝐴)↓) if ug(𝐺,R, t)
(R(t) ⊛𝑀 t.𝐴)↓ otherwise

ubagg(t) =
{
𝑚𝑎𝑥 (0𝑀 , (R(t) ⊛𝑀 t.𝐴)↑) if ug(𝐺,R, t)
(R(t) ⊛𝑀 t.𝐴)↑ otherwise

Example 6. For instance, consider calculating the sum of 𝐴 group-
ing on 𝐵 for a relation 𝑅(𝐴, 𝐵), which consists of two tuples t1 B
⟨ [3/5/10], [3/3/3] ⟩ and t2 B ⟨ [−4/−3/−3], [2/3/4] ⟩ that are
both annotated with (1,2,2) (appear certainly once and may appear
twice). Consider calculating the aggregation function result bounds
for the result tuple t𝑔 for the output group 𝑔 B ⟨ 3 ⟩. The lower bound∑
t∈ð(𝑔) lbagg(t) on sum(A) is calculated (Def. 15) as:

=((1, 2, 2) · [3/5/10])↓ +𝑚𝑖𝑛(0, ((1, 2, 2) · [−4/−3/−3])↓)

=[3/10/20]↓ +𝑚𝑖𝑛(0, [−8/−6/−3]↓) = 3 +𝑚𝑖𝑛(0,−8) = −5

The aggregation result is guaranteed to be greater than or equal to
−5 since t1 certainly belongs to 𝑔 (no minimum operation), because
its group-by attribute value [3/3/3] is certain and the tuple certainly
exists ((1, 2, 1)↓ > 0). This tuple contributes 3 to the sum and t2
contributions at least −8. While it is possible that t2 does not belong
to 𝑔 this can only increase the final result (3 + 0 > 3 + −8).

We still need to calculate the multiplicity annotation for each
result tuple. For aggregation without group-by, there is always
exactly one result tuple. In this case there exists a single possible
SG output group (the empty tuple ⟨ ⟩ ) and all input tuples are
assigned to it through 𝛼 . Let t⟨ ⟩ denote this single output tuple.
Recalling that all remaining tuples have multiplicity 0, we define:

𝛾𝑓 (𝐴) (R) (t)↓ = 𝛾𝑓 (𝐴) (R) (t)𝑠𝑔 = 𝛾𝑓 (𝐴) (R) (t)↑ B
{
1 if t = t⟨ ⟩
0 otherwise

In order to calculate the upper bound on the possible multiplicity
for a result tuple of a group-by aggregation, we have to determine
the maximum number of distinct groups this output tuple could
correspond to. We compute the bound for an output t𝑔 based on G
making the worst-case assumption that (i) each input tuple t with
𝛼 (t) = 𝑔 has the maximal multiplicity possible (R(t)↑); (ii) each
tuple 𝑡 encoded by t is in a separate group; and (iii) groups produced
from two inputs t and t′ do not overlap. We can improve this
bound by partitioning the input into two sets: tuples with uncertain
group-by values and tuples with certain group membership. When
calculating the maximum number of groups for an output t𝑔 , the set
of input tuples with certain group-by values that fall into the group-
by bounds of t𝑔 only contribute the number of distinct SG group-by
values from this set to the bound. For the first set we still apply
the worst-case assumption. To determine the lower bound on the
certain annotation of a tuple we have to reason about which input
tuples certainly belong to a group. These are inputs whose group-
by attributes are certain. For such tuples we sum up their tuple
annotation lower bounds. We then need to derive the annotation of
a result tuple from relevant input tuple annotations. [9] extended
semirings with a duplicate elimination operator 𝛿N for this purpose
which is defined as 𝛿N (𝑘) = 0 if 𝑘 = 0 and 𝛿N (𝑘) = 1 otherwise.

Definition 19. Let 𝑄 B 𝛾𝐺,𝑓 (𝐴) (R) and G𝑑𝑒𝑓 (R,𝐺) = (G, 𝛼).
Consider a tuple t such that ∃𝑔 ∈ G with t = t𝑔 . Then,

𝛾𝐺,𝑓 (𝐴) (R) (t)↓ B 𝛿N
©­«

∑︁
t′:𝛼 (t′)=𝑔∧¬ug(𝐺,R,t′)

R(t′)↓ª®¬
𝛾𝐺,𝑓 (𝐴) (R) (t)𝑠𝑔 B 𝛿N

©­«
∑︁

t′:𝛼 (t′)=𝑔
R(t′)𝑠𝑔ª®¬

𝛾𝐺,𝑓 (𝐴) (R) (t)↑ B
∑︁

t′:𝛼 (t′)=𝑔
R(t′)↑

For any tuple t such that ¬∃𝑔 ∈ G with t = t𝑔 , we define

𝛾𝐺,𝑓 (𝐴) (R) (t)↓ = 𝛾𝐺,𝑓 (𝐴) (R) (t)𝑠𝑔 = 𝛾𝐺,𝑓 (𝐴) (R) (t)↑ = 0

The following example illustrates the application of the aggrega-
tion semantics we have defined in this section.

Example 7. Consider the relation shown in Fig. 6 which records ad-
dresses (street, street number, number of inhabitants). Following [62],



street number #inhab N𝐴𝑈
Canal [165/165/165] [1/1/1] (1,1,2)
Canal [154/153/156] [1/2/2] (1,1,1)
State [623/623/629] [2/2/2] (2,2,3)

Monroe [3574/3550/3585] [2/3/4] (0,0,1)
(a) Input relation address

SELECT street ,

count (*) AS cnt

FROM address

GROUP BY street;

street cnt N𝐴𝑈
Canal [1/2/3] (1,1,2)
State [2/2/4] (1,1,1)

Monroe [1/1/2] (0,0,1)
(b) Aggregation with Group-by

Figure 6: Aggregation over AU-DBs
uncertain text fields are marked in red to indicate that their bound
encompasses the whole domain. Street values 𝑣 in black are certain,
i.e., 𝑣↓ = 𝑣𝑠𝑔 = 𝑣↑. We are uncertain about particular street numbers,
number of inhabitants at certain addresses, and one street name. Fur-
thermore, several tuples may represent more than one address. For the
query shown in Fig. 6b consider the second result tuple (group State).
This tuple certainly exists since the 3rd tuple in the input appears
twice in every world and its group-by value is certain. Thus, the count
for group State is at least two. The second input tuple could also belong
to this group and, thus, the count could be 4 (the upper bound). Note
also the multiplicity of the first output tuple (group Canal): [1/1/2].
In the SGW the first two input tuples belong to this group. However,
the second input tuple need not be in this group in all worlds, and
in fact may not belong to any existing group. Thus, in some possible
worlds this one AU-DB tuple may represent 2 distinct output tuples.

We are ready to state the main result of this section: our aggre-
gation semantics for AU-DBs is bound-preserving.

Theorem 4. Let 𝑄 B 𝛾𝐺,𝑓 (𝐴) (𝑅) or 𝑄 B 𝛾𝑓 (𝐴) (𝑅). N𝐴𝑈 -rel-
ational query semantics preserves bounds for 𝑄 .

Proof Sketch. The claim is proven by demonstrating that for
every possible world 𝑅 of the input incomplete N-relation R and a
tuple matching TM based on which R bounds 𝑅, we can construct
a tuple matching based on which 𝑄 (R) bounds 𝑄 (𝑅). For each
aggregation result 𝑡 in 𝑅, we show that there is a result in 𝑄 (R)
that bounds the values of 𝑡 , because our aggregation semantics
computes aggregation function results based on the minimum and
maximum contribution of each possible input tuple, and group-
by attribute bounds are generated by conservatively merging the
group-by bounds of input tuples. See [26] for the full proof. □

Our main technical result follows from Thm. 4, [26, Thm. 3]
(bound preservation for set difference) and Thm. 3:

Corollary 1. N𝐴𝑈 -semantics preserves bounds for RA𝑎𝑔𝑔 .

9 EXPERIMENTS
We compare AU-DBs (AU-DB) implemented on Postgres against
(1) Det: Deterministic SGQP; (2) Libkin: An under-approximation
of certain answers [33, 47]; (3) UA-DB: An under-approximation
of certain answers combined with SGQP [25]; (4) MayBMS: MayBMS
used to compute all possible answers3; (5) MCDB: Database sampling
3Times listed for MayBMS and MCDB include only computing possible answers and not
computing probabilities.

(10 samples) in the spirit of MCDB [37] to over-approximate certain
answers; (6) Trio: A probabilistic DB with bounds for aggrega-
tion [7]; and (7) Symb: An SMT solver (Z3) calculating aggregation
result bounds based on the symbolic representation from [9]. All
experiments are run on a 2×6 core AMDOpteron 4238 CPUs, 128GB
RAM, 4×1TB 7.2K HDs (RAID 5). We report the average of 10 runs.

9.1 Uncertain TPC-H (PDBench)
We use PDBench [11], a modified TPC-H data generator [23] that
creates an x-DB (block-independent database) with attribute-level
uncertainty by replacing random attributes with multiple randomly
selected possible alternatives. We directly run MayBMS queries (with-
out probability computations) on its native columnar data repre-
sentation. For MCDB, we approximate tuple bundles with 10 samples.
We apply Libkin on a database with labeled nulls for uncertain
attributes using the optimized rewriting from [33]. We run Det
on one randomly selected world — this world is also used as the
SGW for UA-DB and AU-DB. We construct an AU-DB instance by
annotating each cell in this world with the minimum and maximum
possible values for this cell across all worlds. For UA-DB we mark
all tuples with at least one uncertain value as uncertain.

PDBench Queries. To evaluate the overhead of our approach com-
pared to UA-DBs for queries supported by this model, we repro-
duce the experimental setup from [25], which uses the queries of
PDBench (simple SPJ queries). With a scale factor 1 (SF1) database
(∼1GB per world), we evaluate scalability relative to amount of un-
certainty. Using PDBench, we vary the percentage of uncertain cells:
2%, 5%, 10% and 30%. Each uncertain cell has up to 8 possible values
picked uniformly at random over the whole domain, resulting in
large ranges, a worst-case scenario for AU-DBs and a best-case
scenario for MayBMS. As Fig. 7a shows, our approach has constant
overhead (a factor of ∼ 5), resulting from the many possible tuples
created by joins on attributes with ranges across the entire domain.
To evaluate scalability, we use 100MB, 1GB, and 10GB datasets (SF
0.1, 1, and 10) and fix the uncertainty percentage (2%). As evident
from Fig. 7b, AU-DBs scale linearly in the SF for such queries.

TPC-Hqueries.Wenow evaluate actual TPC-H queries on PDBench
data. These queries contain aggregation with uncertain group-by
attributes (only supported by AU-DB and MCDB). Results are shown
in Fig. 9. For most queries, AU-DB has an overhead factor of between
3-7 over Det. This overhead is mainly due to additional columns
and scalar expressions. Compared to MCDB, AU-DB is up to 570%
faster, while producing hard bounds instead of an estimation.

Simple Aggregation. We use a simple aggregation query with
certain group-by attributes on an SF0.1 instance to compare against
a wider range of approaches, varying the number of aggregation
operators (#agg-ops). For systems that do not support subqueries
like Trio, operator outputs are materialized as tables. In this ex-
periment, Trio produces incorrect answers, as its representation
of aggregation results (bounds) is not closed under queries; We
are only interested in its performance. Fig. 8 shows the runtime of
our technique compared to Trio which is significantly slower, and
Symb (only competitive for low #agg-ops values).
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Figure 7: PDbench Queries
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Figure 8: Simple aggregation over TPC-Hdata

Queries 2%/SF0.1 2%/SF1 5%/SF1 10%/SF1 30%/SF1

Q1 AU-DB 1.607 15.636 15.746 15.811 16.021
Det 0.560 1.833 1.884 1.882 1.883
MCDB 5.152 19.107 18.938 19.063 19.279

Q3 AU-DB 0.713 7.830 8.170 8.530 7.972
Det 0.394 1.017 1.058 1.092 1.175
MCDB 4.112 11.138 11.222 10.936 11.454

Q5 AU-DB 0.846 8.877 8.803 8.839 8.925
Det 0.247 0.999 1.012 1.123 1.117
MCDB 2.599 10.152 10.981 11.527 11.909

Q7 AU-DB 0.791 7.484 7.537 7.303 7.259
Det 0.145 0.977 0.985 0.989 1.044
MCDB 1.472 10.123 10.277 10.749 10.900

Q10 AU-DB 0.745 7.377 7.283 7.715 8.012
Det 0.263 1.024 0.993 1.004 1.015
MCDB 2.691 10.743 10.937 11.826 11.697

Figure 9: TPC-H query performance (runtime in sec)

9.2 Micro-benchmarks
We use a synthetic table with 100 attributes with uniform random
values to evaluate the performance and accuracy of our approach.
Varying number of group-by attributes.We use an sum aggre-
gation with 1 to 99 group-by attributes on a table with 35k rows and
5% uncertainty. Our implementation applies an aggregate analog
of the join optimization described in Sec. 7.1: possible groups are
compressed before being joined with the output groups (see [26]).
This improves performance when there are fewer result groups.
As Fig. 10a shows, overhead over Det is up to a factor of 6 to 7.
Varyingnumber of aggregates.Using a similar query and dataset,
and 1 group-by attribute, we vary the number of aggregation func-
tions from 1 to 99. As Fig. 10b shows, the overhead of our approach
compared to Det varies between a factor of 5 to 6.
Compression Trade-off forAggregation.We evaluate the trade-
offs between tightness and compression for aggregation using sum
aggregation with group-by. Fig. 10d shows the runtime overhead
of our approach over Det when increasing the number of tuples
in the compressed pre-aggregation result. The input table has 10%
uncertainty and 10k rows. For tightness we calculate tight bounds
for the aggregation function results for each possible group (a group
that exists in at least one world). We then measure for each such
group the relative size of our approximate bounds compared to the
maximally tight bounds and report the average of this number.
Attribute Bound Size. Next, we vary the average size of attribute-
level bounds (same query as above). We generate tables with 35k
rows each and 5% uncertainty, varying the range of uncertain at-
tribute values from 0% to 100% of the attribute’s domain. We mea-
sure runtime, varying the number of tuples in the compressed result
(CT) for the pre-aggregation step. For more aggressive compression
(Fig. 10c), the runtime of our approach is only slightly affected by
the size of attribute-level bounds. We also measure how the size
of attribute ranges affects precision. We generate x-DBs with 2%,

3%, and 5% of uncertain tuples (10 alternatives per uncertain tu-
ple) varying attribute ranges from 1% to 10% of the entire value
domain. We create an AU-DB from the x-DB ([26] details how this
is achieved). Fig. 12a and 12b show the percentage of over-grouping
for AU-DB (increase in group size, because of over-estimation of
possible group-by attribute values) and relative factor of aggre-
gation result range over-estimation. The range over-estimation
grows faster than over-grouping, as it is affected by uncertainty in
aggregation function inputs as well as the over-grouping.

Join Optimizations. Next, we evaluate the impact of our join
optimization. Fig. 11a shows the runtime for a single equi-join (log-
scale) varying the size of both input relations from 5k to 20k rows
containing 3% uncertain values ranging over 2% of the value domain.
The optimized version is between ∼ 1 and ∼ 2 orders of magnitude
faster depending on the compression rate (i.e., CT). As a simple
accuracy measure, Fig. 11a shows the number of possible tuples
in the join result. Next, we join tables of 4k rows with 3% or 10%
uncertainty and vary the number of joins (1 to 4 chained equality
joins, i.e., no overlap of join attributes between joins). As shown in
Fig. 13, joins without optimization are up to 4 orders of magnitude
more expensive, because of the nested loop joins that are needed
for interval-overlap joins and resulting large result relations.

9.3 Real World Data
For this experiment, we repaired key violations for real world
datasets (references shown in Fig. 14). To repair key violations,
we group tuples by their key attributes so that each group repre-
sents all possibilities of a single tuple with the corresponding key
value. For each group, we randomly pick one tuple for the SGW
and use all tuples in the group to determine its attribute bounds as
the minimum (maximum) value within the group. Fig. 14 shows for
each dataset the percentage of tuples with uncertain values and for
all such tuples the average number of possibilities. We generated
SPJ (SPJ) and simple aggregation queries with group-by (GB) for
each of these datasets (query types are shown in Fig. 14, see [26]
for additional details). Fig. 14 shows the runtime for these queries
comparing AU-DBwith MCDB, Trio and UA-DB. AU-DB is significantly
faster than Trio and consistently outperforms MCDB. As a compari-
son point and to calculate our quality metrics, for each query we
calculated the precise set of certain and possible tuples and exact
bounds for attribute-level uncertainty in the query result. We exe-
cute those queries in each system and report the recall of certain
and possible tuples it returns versus the exact result. Note that
for possible tuple recall, we report two metrics. The first ignores
attribute-level uncertainty. Possible tuples are grouped by their key
(or group-by values for aggregation queries) and we measure the
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Figure 10: Aggregation Microbenchmarks - Performance and Accuracy
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Figure 11: Join Optimizations - Performance and Accuracy
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Figure 12: Aggregation - varying attribute range

Comp. Size 1 join 2 joins 3 joins 4 joins

4 3% 0.004 0.006 0.009 0.015
10% 0.004 0.007 0.010 0.015

16 3% 0.005 0.008 0.012 0.017
10% 0.005 0.009 0.012 0.017

64 3% 0.009 0.027 0.47 0.069
10% 0.009 0.029 0.049 0.070

256 3% 0.036 0.308 0.627 0.969
10% 0.043 0.337 0.660 1.019

No 3% 0.216 1.351 6.269 29.639
Comp. 10% 0.213 2.565 29.379 333.695

Figure 13: Join query performance (runtime in sec)
Datasets Time cert. attr. bounds pos.tup. pos.tup.
& Queries (sec) tup. min max by id by val

N
et
fl
ix

[3
]

(1
.9
%,

2.
1)

AU-DB 0.011 100% 1 1 100% 100%
𝑄𝑛,1 Trio 0.900 100% 1 1 100% 100%
SPJ MCDB 0.049 N.A. 1 1 99.6% 98.5%

UA-DB 0.006 100% N.A. N.A. 99.1% 97.3%
AU-DB 0.082 100% 1 4 100% 100%

𝑄𝑛,2 Trio 1.700 100% 1 1 98.8% 98.0%
GB MCDB 0.118 N.A. 1 1 99.9% 97.9%

UA-DB 0.009 0% N.A. N.A. 99.3% 95.7%

C
ri
m
es

[2
]

(0
.1
%,

3.
2)

AU-DB 1.58 100% 1 1 100% 100%
𝑄𝑐,1 Trio 59.0 100% 1 1 100% 100%
SPJ MCDB 6.91 N.A. 0.6 1 99.9% 92.1%

UA-DB 0.63 100% N.A. N.A. 99.9% 87.5%
AU-DB 2.09 100% 1 1.01 100% 100%

𝑄𝑐,2 Trio 103.1 100% 1 1 100% 100%
GB MCDB 5.24 N.A. 0.99 0 100% ∼ 0%

UA-DB 0.47 0% N.A. N.A. 100% ∼ 0%

H
ea
lt
hc

ar
e
[1
]

(1
.0
%,

2.
7)

AU-DB 0.179 99.5% 1 1 100% 100%
𝑄ℎ,1 Trio 20.6 100% 1 1 100% 100%
SPJ MCDB 0.501 N.A. 0.4 1 99.9% 87.6%

UA-DB 0.042 98.2% N.A. N.A. 99.3% 65.4%
AU-DB 0.859 100% 1 45 100% 100%

𝑄ℎ,2 Trio 29.2 100% 1 1 100% 100%
GB MCDB 2.31 N.A. 0.78 1 100% ∼ 0%

UA-DB 0.235 0% N.A. N.A. 100% ∼ 0%

Figure 14: Real world data - performance and accuracy

percentage of returned groups (a group is “covered” if at least one
possible tuple from the group is returned). The second metric just
measures the percentage of all possible tuples (without grouping)

that are returned. We also measure the tightness of attribute-level
bounds for certain rows by measuring for each tuple the average
size of its attribute-level bounds relative to exact bounds. Fig. 14
shows the minimum and maximum of this metric across all certain
result tuples. Since MCDB relies on samples, it (i) may not return all
possible tuples and (ii) calculating bounds for attributes values from
the sample, we get bounds that may not cover all possible values.
Furthermore, MCDB cannot distinguish between certain and possible
tuples. For Trio the bounds on aggregation results are tight, but
Trio does not support uncertainty in group-by attributes (no result
is returned for a group with uncertain group-by values). As shown
in Fig. 14, our attribute-level bounds are close to the tight bounds
produced by Trio for most of the certain result tuples. MCDB does
not return all possible aggregation result values (the ones not cov-
ered by the samples). Furthermore, we never miss possible tuples
like both Trio and MCDB, and seldomly report a certain tuple as un-
certain, while MCDB cannot distinguish certain from possible. UA-DB
has performance close to conventional (SGQP) query processing
and outperforms all other methods. However, UA-DBs provide no
attribute level uncertainty and only contain tuples from the SGW
and, thus, miss most possible tuples. Furthermore, aggregates over
UA-DBs will not return any certain answers, as doing so requires
having a bound on all possible input tuples for the aggregate and
often additionally requires attribute-level uncertainty (the group
exists certainly in the result, but the aggregation function result
for this group is uncertain). For aggregates over UA-DBs, the range
of the attribute bounds is significantly affected by the attribute
domain and the aggregation functions used. 𝑄𝑛,2 and 𝑄𝑐,2 use max
and count, which return a relatively small over-estimation of the
actual bounds. 𝑄ℎ,2 uses sum, where the larger domain for the
attribute over which we are aggregating over, and the combined
effect of over-grouping and over-estimation of possible attribute
values results in a larger over-estimation.

10 CONCLUSIONS
We present attribute-annotated uncertain databases (AU-DBs), an
efficient scheme for approximating certain and possible answers
for full relational algebra and aggregation. Our approach stands
out in that it is (i) more general in terms of supported queries than
most past work, (ii) has guaranteed PTIME data complexity, and (iii)
compactly encodes over-approximations of incomplete databases.
In future work, we will investigate extensions of this model for
queries with ordering (top-k queries and window functions). We
will also explore how to manage non-ordinal categorical attributes.



REFERENCES
[1] https://data.medicare.gov/data/hospital-compare. Medicare Hospital Dataset.

(https://data.medicare.gov/data/hospital-compare).
[2] https://www.kaggle.com/currie32/crimes-in-chicago. Chicago Crimes Dataset.

(https://www.kaggle.com/currie32/crimes-in-chicago).
[3] https://www.kaggle.com/shivamb/netflix-shows. Netflix Dataset. (https://

www.kaggle.com/shivamb/netflix-shows).
[4] Serge Abiteboul, T.-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre

Senellart. 2010. Aggregate queries for discrete and continuous probabilistic XML.
In ICDT. 50–61.

[5] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. 1991. On the Represen-
tation and Querying of Sets of Possible Worlds. Theor. Comput. Sci. 78, 1 (1991),
158–187.

[6] Foto N. Afrati and Phokion G. Kolaitis. 2008. Answering aggregate queries in
data exchange. In PODS. 129–138.

[7] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U.
Nabar, Tomoe Sugihara, and Jennifer Widom. 2006. Trio: A System for Data,
Uncertainty, and Lineage. In VLDB.

[8] Parag Agrawal, Anish Das Sarma, Jeffrey Ullman, and Jennifer Widom. 2010.
Foundations of uncertain-data integration. PVLDB 3, 1-2 (2010), 1080–1090.

[9] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for Aggre-
gate Queries. In PODS. 153–164.

[10] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggre-
gate queries. In PODS. 153–164.

[11] L. Antova, T. Jansen, C. Koch, and D. Olteanu. 2008. Fast and Simple Relational
Processing of Uncertain Data. In ICDE.

[12] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query
Answers in Inconsistent Databases. In PODS.

[13] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan,
and Jeremy P. Spinrad. 2003. Scalar aggregation in inconsistent databases. Theor.
Comput. Sci. 296, 3 (2003), 405–434.

[14] Leopoldo E. Bertossi. 2011. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers.

[15] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2014. Sampling
from Repairs of Conditional Functional Dependency Violations. VLDBJ 23, 1
(2014), 103–128.

[16] Mike Brachmann, Carlos Bautista, Sonia Castelo, Su Feng, Juliana Freire, Boris
Glavic, Oliver Kennedy, Heiko Müller, Rémi Rampin, William Spoth, and Ying
Yang. 2019. Data Debugging and Exploration with Vizier. In SIGMOD.

[17] Douglas Burdick, Prasad M. Deshpande, T. S. Jayram, Raghu Ramakrishnan, and
Shivakumar Vaithyanathan. 2007. OLAP over uncertain and imprecise data.
VLDBJ 16, 1 (2007), 123–144.

[18] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Camilo Thorne. 2008.
Aggregate queries over ontologies. In International Workshop on Ontologies and
Information Systems for the Semantic Web (ONISW). 97–104.

[19] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. On the decidability
and complexity of query answering over inconsistent and incomplete databases.
In PODS.

[20] Arbee L. P. Chen, Jui-Shang Chiu, and Frank Shou-Cheng Tseng. 1996. Evaluating
Aggregate Operations Over Imprecise Data. IEEE Trans. Knowl. Data Eng. 8, 2
(1996), 273–284.

[21] Marco Console, Paolo Guagliardo, and Leonid Libkin. 2019. Fragments of Bag
Relational Algebra: Expressiveness and Certain Answers. In ICDT. 8:1–8:16.

[22] Marco Console, Paolo Guagliardo, Leonid Libkin, and Etienne Toussaint. 2020.
Coping with Incomplete Data: Recent Advances. In PODS. ACM, 33–47.

[23] Transaction Processing Performance Council. [n.d.]. TPC-H specification.
http://www.tpc.org/tpch/.

[24] Wenfei Fan. 2008. Dependencies revisited for improving data quality. In PODS.
159–170.

[25] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2019. Uncertainty
Annotated Databases - A Lightweight Approach for Approximating Certain
Answers. In SIGMOD.

[26] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2021. Efficient Uncer-
tainty Tracking for Complex Queries with Attribute-Level Bounds (extended
version). (2021). arXiv:2102.11796 [cs.DB]

[27] Robert Fink, Larisa Han, and Dan Olteanu. 2012. Aggregation in Probabilistic
Databases via Knowledge Compilation. PVLDB 5, 5 (2012), 490–501.

[28] Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approximation in
probabilistic databases. VLDBJ 22, 6 (2013), 823–848.

[29] A. Fuxman, E. Fazli, and R.J. Miller. 2005. Conquer: Efficient management of
inconsistent databases. In SIGMOD. 155–166.

[30] Ariel D Fuxman and Renée J Miller. 2005. First-order query rewriting for incon-
sistent databases. In ICDT.

[31] Floris Geerts, Fabian Pijcke, and Jef Wijsen. 2017. First-order under-
approximations of consistent query answers. International Journal of Approximate
Reasoning 83 (2017), 337–355.

[32] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semir-
ings. In PODS.

[33] Paolo Guagliardo and Leonid Libkin. 2016. Making SQL Queries Correct on
Incomplete Databases: A Feasibility Study. In PODS.

[34] Paolo Guagliardo and Leonid Libkin. 2017. Correctness of SQL Queries on
Databases with Nulls. SIGMOD Record 46, 3 (2017), 5–16.

[35] Alon Halevy, Anand Rajaraman, and Joann Ordille. 2006. Data integration: the
teenage years. In VLDB. 9–16.

[36] Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-
tional Databases. J. ACM 31, 4 (1984), 761–791.

[37] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine,
and Peter J Haas. 2008. MCDB: a monte carlo approach to managing uncertain
data. In SIGMOD.

[38] T. S. Jayram, Satyen Kale, and Erik Vee. 2007. Efficient aggregation algorithms
for probabilistic data. In SODA. 346–355.

[39] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer
Widom. 2006. Declarative Support for Sensor Data Cleaning. In PERVASIVE.
83–100.

[40] O. Kennedy and C. Koch. 2010. PIP: A database system for great and small
expectations. In ICDE. 157–168.

[41] Phokion G. Kolaitis and Enela Pema. 2012. A dichotomy in the complexity of
consistent query answering for queries with two atoms. Inf. Process. Lett. 112, 3
(2012), 77–85.

[42] Paraschos Koutris and Jef Wijsen. 2018. Consistent Query Answering for Primary
Keys and Conjunctive Queries with Negated Atoms. In PODS.

[43] Poonam Kumari, Said Achmiz, and Oliver Kennedy. 2016. Communicating Data
Quality in On-Demand Curation. In QDB.

[44] Willis Lang, Rimma V. Nehme, Eric Robinson, and Jeffrey F. Naughton. 2014.
Partial results in database systems. In SIGMOD. 1275–1286.

[45] Jens Lechtenbörger, Hua Shu, and Gottfried Vossen. 2002. Aggregate Queries
Over Conditional Tables. J. Intell. Inf. Syst. 19, 3 (2002), 343–362.

[46] Xi Liang, Zechao Shang, Sanjay Krishnan, Aaron J. Elmore, and Michael J.
Franklin. 2020. Fast and Reliable Missing Data Contingency Analysis with
Predicate-Constraints. In SIGMOD. 285–295.

[47] Leonid Libkin. 2016. SQL’s Three-Valued Logic and Certain Answers. TODS 41,
1 (2016), 1:1–1:28.

[48] Witold Lipski. 1979. On Semantic Issues Connected with Incomplete Information
Databases. TODS 4, 3 (1979), 262–296.

[49] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. 2011. Making Aggrega-
tion Work in Uncertain and Probabilistic Databases. IEEE Trans. Knowl. Data
Eng. 23, 8 (2011), 1261–1273.

[50] Dan Olteanu, Lampros Papageorgiou, and Sebastiaan J van Schaik. 2013. Pigora:
An Integration System for Probabilistic Data. In ICDE. 1324–1327.

[51] Alexander J. Ratner, Stephen H. Bach, Henry R. Ehrenberg, and Christopher
Ré. 2017. Snorkel: Fast Training Set Generation for Information Extraction. In
SIGMOD. 1683–1686.

[52] Raymond Reiter. 1986. A sound and sometimes complete query evaluation
algorithm for relational databases with null values. J. ACM 33, 2 (1986), 349–370.

[53] Christopher Ré and Dan Suciu. 2009. The trichotomy of HAVING queries on a
probabilistic database. VLDBJ 18, 5 (2009), 1091–1116.

[54] Sunita Sarawagi et al. 2008. Information extraction. Foundations and Trends® in
Databases 1, 3 (2008), 261–377.

[55] Yannis Sismanis, Ling Wang, Ariel Fuxman, Peter J. Haas, and Berthold Reinwald.
2009. Resolution-Aware Query Answering for Business Intelligence. In ICDE.
976–987.

[56] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. 2008. Proba-
bilistic top-k and ranking-aggregate queries. TODS 33, 3 (2008), 13:1–13:54.

[57] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic
databases. Synthesis Lectures on Data Management 3, 2 (2011), 1–180.

[58] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey F. Naughton, and
Val Tannen. 2017. m-tables: Representing Missing Data. In ICDT.

[59] Jef Wijsen. 2010. On the first-order expressibility of computing certain answers
to conjunctive queries over uncertain databases. In PODS.

[60] Jef Wijsen. 2012. Certain conjunctive query answering in first-order logic. TODS
37, 2 (2012), 9:1–9:35.

[61] Mohan Yang, Haixun Wang, Haiquan Chen, and Wei-Shinn Ku. 2011. Querying
uncertain data with aggregate constraints. In SIGMOD. 817–828.

[62] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An On-demand Approach to ETL. PVLDB 8, 12 (2015),
1578–1589.

https://data.medicare.gov/data/hospital-compare
https://data.medicare.gov/data/hospital-compare
https://www.kaggle.com/currie32/crimes-in-chicago
https://www.kaggle.com/currie32/crimes-in-chicago
https://www.kaggle.com/shivamb/netflix-shows
https://www.kaggle.com/shivamb/netflix-shows
https://www.kaggle.com/shivamb/netflix-shows
https://arxiv.org/abs/2102.11796

	Abstract
	1 Introduction
	2 Related Work
	3 Notation and Background
	3.1 K-Relations
	3.2 Incomplete K-Relations
	3.3 UA-Databases

	4 Overview
	5 Scalar Expressions
	5.1 Incomplete Expression Evaluation
	5.2 Range-Annotated Domains

	6 AU-DBs
	6.1 NAU-relations
	6.2 Extracting Selected-Guess Worlds
	6.3 Encoding Bounds
	6.4 Tightness of Bounds

	7 AU-DB Query Semantics
	7.1 Join Optimizations
	7.2 Creating AU-DBs

	8 Aggregation
	8.1 Bound-Preserving Aggregation

	9 Experiments
	9.1 Uncertain TPC-H (PDBench)
	9.2 Micro-benchmarks
	9.3 Real World Data

	10 Conclusions
	References

