Your notebook is not crumby enough, REPLace it.

Michael Brachmann®, William Spoth®, Oliver Kennedy”, Boris Glavic?,
Heiko Mueller”, Sonia Castelo”, Carlos Bautista”, Juliana Freire®

B: University at Buffalo

7: llinois Institute of Technology
{mrb24,wmspoth,okennedy}@buffalo.edu

N New York University
bglavic@iit.edu

{heiko.mueller, s.castelo, carlos.bautista, juliana.freire}@nyu.edu

ABSTRACT

Notebook and spreadsheet systems are currently the de-
facto standard for data collection, preparation, and anal-
ysis. However, these systems have been criticized for their
lack of reproducibility, versioning, and support for sharing.
We present Vizier, an open-source tool that helps analysts
to iteratively build and refine data pipelines that combines
the flexibility provided by notebooks with an easy-to-use
direct-manipulation interface of spreadsheets. These, com-
bined with advanced provenance tracking for both data and
computational steps enables reproducibility and streamlines
data exploration.

Keywords

Notebooks, Data Science, Provenance, Workflow System

1. INTRODUCTION

Notebook tools like Jupyter have emerged as a popu-
lar programming abstraction for data exploration, model-
building, and rapid prototyping. Notebooks promise re-use
and reproducibility. However, a recent study by Pimentel et.
al. [10] found only 4% of notebooks sampled from GitHub
to be reproducible, and only 24% to be directly re-usable.
These unfortunate statistics stem from Jupyter’s heritage as
a thin facade over a read-evaluate-print-loop (REPL). Many
existing notebooks, like Jupyter, are not designed as a his-
torical log — as one would want for reproducibility — but
rather as library managers for code snippets (i.e., cells). Re-
producibility and re-usability require active effort from users
to organize cells, keep cells up to date, and manage inter-cell
dependencies and cell versions (e.g., using tools like git) [7].

In this paper, we present Vizier,! a notebook-style data
exploration system designed from the ground up to encour-
age notebook reproducibility and re-use. Vizier eschews RE-
PLs in favor of a more powerful state model: A versioned
relational database and workflow. This change allows Vizier

! pip2 install vizier-webapi https://vizierdb.info

WOODSTOCK ’97 El Paso, Texas USA

ACM ISBN 123-4567-24-567/08/06. . . $15.00
DOL: 10.475,/123_4

to act as a true workflow manager [3], precluding out-of-
order execution, a common source of frustration? and non-
reproducible workflows [10]. To aid reproducibility, Vizier
maintains a full version history for each notebook. Vizier
supplements its notebook with a tightly coupled “spread-
sheet mode” that allows reproducible direct manipulation of
data. Finally, Vizier facilitates debugging by tracking poten-
tial data errors through a principled form of incompleteness
annotations that we call caveats.

Many aspects of Vizier, including parts of its user inter-
face [6, 8], provenance models [1, 3|, and caveats [11, 5],
were explored independently in prior work. In this paper,
we focus on the challenge of unifying these components into
a cohesive, notebook-style system for data exploration and
curation, and in particular on the practical implementation
of caveats and Vizier’s spreadsheet interface.

A Trail of Breadcrumbs. A common use of notebooks
is to build an incrementally assembled record of a user’s
workflow as she explores a dataset: A trail of breadcrumbs.

EXAMPLE 1. Alice the data engineer is exploring a newly
acquired dataset in a notebook. She breaks her exploration
down into discrete steps — each performing an isolated load,
transformation, summarization, or visualization task. She
iterates on each task within a single cell, revising its code as
needed before moving to a new cell for the next step. As she
encounters errors, she revises earlier steps as needed.

Such breadcrumbing can be very powerful if performed
correctly. Results produced from the notebook can be repro-
duced on new data; intermediate state resulting from earlier
cells can be re-used for different analyses; or the notebook
itself can be used as a prototype for a dashboard or data cu-
ration pipeline. However, breadcrumbing in a REPL-based
notebook also requires extreme diligence from the user. She
must manually divide tasks into independent logical chunks.
She must mentally track dependencies between cells to en-
sure that revisions to earlier steps do not break downstream
cells. She must also explicitly design around cells with side
effects like relational database updates or file writes.

A Notebook-Style Workflow Manager. The funda-
mental challenge is that REPL-based notebooks are stateful,
and this state is managed independently of the notebook by
the REPL. Using a REPL to manage state makes it difficult
to preserve the linear order of execution implied by the pre-
sentation of the notebook as an ordered list of cells. First,

2https://twitter.com/jakevdp/status/935178916490223616
https://multithreaded.stitchfix.com/blog/2017/07/26 /nodebook
https://github.com/jupyter /notebook/issues/3229

particularly in the presence of native code (e.g., for popular
libraries like NumPy), it is difficult to rewind a REPL to
an earlier state. Thus, if an existing cell is edited, it will
be executed on the REPL’s current state, requiring the user
to ensure that the cell is idempotent. Second, treating the
state as an opaque blob makes it difficult to automatically
invalidate and recompute dependencies of a modified cell.
Vizier addresses both problems by isolating cells. In lieu of
a REPL, cells execute in independent interpreter contexts.
Cells can still communicate by consuming and producing
datasets. This well-defined API enables efficient state snap-
shots, as well as dependency analysis across cell types.

Caveats. Vizier further leverages its structured data
model to implement caveats, a technique for tracking possi-
ble errors based on incomplete databases [5, 11].

Concretely, we make the following contributions. 1) We
outline the design of Vizier, a notebook-style workflow sys-
tem; 2) We explore the challenges of integrating spreadsheet
and notebook interfaces; and 3) We introduce caveats, a
practical implementation of uncertainty annotations [5].

2. THE VIZIER NOTEBOOK

Vizier is an interactive code notebook similar to Jupyter
or Apache Zeppelin. As in these systems, a Vizier notebook
is a sequence of cells. Each cell describes one unit of compu-
tation, for example a Python or SQL script. Once a cell is
executed, its results are displayed inline as part of the cell.

In contrast to REPL-based notebook systems (i.e., library
managers), Vizier is a workflow and data manager: A note-
book consists of a workflow specification (the cells and their
configurations) as well as multiple datasets (relational ta-
bles). Both the workflow and the data are versioned as we
will explain in more detail in Section 2.2. The cells of the
notebook are steps in a workflow that each run in an isolated
execution environment. Thus, no unforeseen interactions
between cells are possible. The datasets of a notebook are
either imported from the outside world using a load dataset
cell or are produced as output by other cell types.

Cells can consume, produce, and update datasets through
language-native APIs provided by Vizier for each cell type.
For instance, in SQL cells, datasets are accessed as regular
tables, while Python and Scala cells access datasets through
a dataframe-style API. By isolating cells and by storing
datasets in a relational database, Vizier can support many
different cell types in the same notebook including Python,
SQL, and Scala cells, as well as point-and-click cell types to
streamline common notebook tasks like data ingest, miss-
ing value imputation, or visualization. In addition, using a
relational database for state makes it possible to link other
interaction modalities to the Vizier notebook. In particular,
Vizier allows users to directly interact with notebook state
through a spreadsheet-like view. User interactions in this
view are translated back into (reproducible) notebook cells.

2.1 Data Caveats

Structured state also facilitates one of Vizier’s core fea-
tures: caveats. Similar to exception handling, caveats facil-
itate graceful, user-directed recovery from data errors.

EXAMPLE 2. Alice’s dataset includes a CSV file with an
integer column. On most rows, the column consists only of
digits "100200" and can be safely parsed. However, on some

v1l.1l
v1.2 v2.1 |

Notebook

Cell

State

Figure 1: Vizier’s layered data model consists of
Notebook, Cell, and State versions.

rows, the column contains formatting (e.g., "£100,200"),
and on others it contains data errors (e.g., "100,200").

Heuristics can often be used to recover from simple er-
rors (e.g., dropping spurious characters or returning a NULL),
allowing cell execution to proceed. Unfortunately apply-
ing heuristic repairs silently can create problems when the
heuristic is wrong. The best alternative is laborious data
unit testing, or to hard-stop the pipeline on every error. In
Vizier, heuristic recovery code is instead instrumented to
mark affected fields, rows, columns, or tables with caveats
that propagate through notebook cells. Caveated values are
then highlighted [8] and made available for review, allowing
the user to decide whether the error merits her attention.
We discuss caveats in greater depth in Section 4.

2.2 Version Model

Vizier maintains a branching version history for each note-
book. A notebook version consists of cell configurations
(specifying the workflow represented by the notebook) and
a database (all dataset versions produced by executing the
cells). Every edit a user makes to a notebook triggers Vizier
to create a new notebook version, thus, preserving a full,
reproducible history of the notebook. Users can browse pre-
vious versions and create a branch in the history of a note-
book by editing a past version. Within a notebook version,
there may be multiple versions of a dataset, as it is updated
by different cells. For example, a load dataset cell imports
a dataset into a notebook and the imported dataset may be
updated by a cell to impute missing values. Internally, how-
ever, datasets, cells, and notebook versions are immutable
to simplify versioning. To avoid unnecessary data replica-
tion, objects that are stable across notebook versions can be
shared as illustrated in Figure 1.

Notebook Versions. A notebook version includes a ref-
erence to the prior version it was derived from and a com-
pact representation of the changes between this and the pre-
vious version’s cells. The notebook’s cells are encoded as
an ordered sequence of references to cell versions that may
be shared across notebook versions. Notebook versions are
identified by a randomly generated, unique branch identifier
and a monotonically increasing version number.

Cell Versions. Vizier supports many cell types, including
scripts (Python, SQL, Scala), Vizual [6] (DDL/DML oper-
ations), and point-and-click (e.g., Load Data, Plot, Repair
Key, Impute). A cell version stores the cell’s type along with
user-provided input parameters (e.g., a python script).

The object storing a cell version is also used to cache
results derived from executing the cell (unlike the version
itself, the cache is mutable). Cached results are all non-
stateful outputs from the cell: console output, or HTML-
formatted data plots. Interactions between the cell and
dataset versions are recorded in the form of read- and write-
sets: the dataset versions that the cell read from and wrote

API T

5 > 7

History == S Y
el2 |2 30

Caveats = 3| 0
S I2 1= w3

ol [7|o<

Notebook 3|3 U
a1 =~

Spreadsheet o |3 w

Figure 2: Layers of the Vizier System

to, respectively. Read and write sets are primarily used for
inferring inter-cell dependencies, but may also be used as a
back-up when fine-grained provenance is not available (Sec-
tion 4.3). Cell versions are identified by an identifier derived
from a hash of their parameters.

Dataset Versions. The datasets (relational tables) com-
prising a notebook’s state are stored as Spark dataframes.
As a cell executes, it may internally define tables explicitly
by creating a materialized instance of the dataset. Alterna-
tively, it may define a dataset declaratively, as a view over
existing tables. Datasets versions are identified by a ran-
domly generated, globally unique identifier. Users interact
with datasets using human-friendly names.

2.3 The Vizier Stack

Figure 2 summarizes the four major layers of the Vizier
stack: The User Interface, The Workflow Manager, The
Mimir Incomplete Database, and Apache Spark.

The Workflow Manager. At the heart of Vizier is a sim-
plified version of the VisTrails [3] workflow system, which is
responsible for the top two layers of the versioned notebook
model: notebook and cell versions. A REST API allows
clients like Vizier’s user interface to query state and manip-
ulate notebooks. Clients can create new notebooks; add,
update, or delete cells; or create new notebook branches.

The Workflow Manager also manages asynchronous cell
execution, scheduling tasks for execution via a lightweight
worker process (for easy setup) or a Celery distributed task
queue (for better scaling). Cells are automatically executed
when added or updated. When a cell is executed, its write
set is compared against subsequent cell’s read sets, and de-
pendent cells are also scheduled for re-execution.

The Mimir Incomplete Database. A lightweight in-
complete database [11, 5, 8] built over Apache Spark pro-
vides a REST API for managing state tables. Tables can be
created explicitly by uploading data or by providing a URL.
Tables may also be created declaratively: (1) by defining
a view through Relational Algebra or SQL, (2) Through a
spreadsheet-themed DDL/DML language called Vizual [6],
or (3) through data-cleaning operations [11] for common
tasks like imputation, schema matching, or key-repair. Note-
book workloads involve many small changes, so declarative
state tables are materialized lazily only when queried.

Mimir’s main role is to implement caveats. When process-
ing queries, Mimir applies a lightweight rewriting scheme [11,
5] that annotates query results to identify rows or fields
that depend on a caveat-marked data value. We discuss
this scheme and caveats in depth in Section 4.

The User Interface. Although it is possible to access the
workflow manager’s API directly, most user interactions are
mediated through a React/Javascript frontend. As shown in
Figure 3, Vizier’s notebook view displays the current version
of the notebook: a sequence of cells. The upper half of each
cell shows a script or point-and-click configuration.

1 Onbranch Default D &
[1] LOAD DATASET readings FROM
=B readings (8Brows) X
TRAN_TS JOIN_DT
0 Mon, 07 Oct 2013 08:23:19 GMT | Mon, 07 Oct 2013 00:00:00 G
1 5Sun,15Jun 2014 08:23:19 GMT | Sun, 15 Jun 2014 00:00:00 G
2 Tue, 28 Oct2014 08:23:19 GMT | Tue, 28 Oct 2014 00:00:00 GI
3 Mon, 17 Aug 2015 08:23:19 GMT Mon, 17 Aug 2015 00:00:00 ¢
4 Tue,27 Oct2015 08:23:19 GMT | Tue, 27 Oct 2015 00:00:00 GI

5 Fri, 06 Nov 201508:23:19 GMT | Fri, 06 Nov 2015 00:00:00 GN

@

Mon, 21 Mar 2016 08:23:19 GMT | Mon, 21 Mar 2016 00:00:00 ¢

7 Mon, 10 Apr 2017 08:23:19 GMT | Wed, 21 Jun 2017 00:00:00 C

[2] # Get object for dataset with given name.
= ds = vizierdb.get_dataset('readings')

v = ds.rows[0].get value("JOIN DT")

print("mXxXX: {}<br/=YYY: {}".format(v, v.year

XXX: 2013-10-07
YYY: 2013

Figure 3: The Vizier Notebook View

The bottom half of each cell is a tabbed result area. By de-
fault this shows console output, errors, and/or HTML gener-
ated by a data visualization library like Bokeh or by certain
point-and-click cells. Additional tabs allow users to view
data tables as they evolve through the notebook. These tabs
show the version of each dataset as it was immediately after
the cell was last executed. Figure 3 illustrates this: The
result area of the Load Dataset Cell displays the recently
loaded table. Results are shown in a simple grid, with fields
and rows affected by caveats highlighted in red.

In addition to its notebook, Vizier provides a spreadsheet-
like interface for each state table, allowing direct manipula-
tion of data and schemas. Finally, the user interface also
provides detail views for caveats and the notebook history.

3. THE SPREADSHEET INTERFACE

The spreadsheet displays a state table, similar to the re-
sult area table display in Figure 3. However, this grid is
interactive: The user may insert, reorder, rename, or delete
columns and rows; modify the contents of cells; or apply
simple data transformations like sorting.

3.1 Displaying Data

A classical spreadsheet offers a large grid of unstructured
cells. By contrast, Vizier’s spreadsheet view show a single
structured, relational table defined by the notebook. The
spreadsheet view is populated by querying Mimir and re-
trieving rows incrementally as they are needed for display.

Caveats. As described above, Mimir uses lightweight in-
strumentation to identify query result cells and rows affected
by caveats. Elements affected by caveats are highlighted in
the spreadsheet through red text. When a highlighted cell
is selected, an icon appears allowing users to query Mimir
to retrieve descriptive text for all caveats affecting the cell.

3.2 Spreadsheet Updates

In [6], we developed a simple language called Vizual that
models user actions on a spreadsheet. Each operation in
Vizual is implemented as a cell type in Vizier. Thus, each
modification of the spreadsheet adds the corresponding cell

to the notebook. There may be many such interactions, so
the notebook view defaults to a “collapsed” representation
that groups adjacent Vizual cells into a single script cell.

We needed to address two mismatches between spread-
sheets and Vizier’s relational state model. First, columns
in a database table are strongly typed, while spreadsheets
are typed on a per-cell basis. To match the typical spread-
sheet experience, column types are escalated to match newly
entered values — string if nothing else matches. Second,
empty cells in a spreadsheet can indicate either an empty cell
or the empty string. Vizier leaves empty strings unaltered
in string columns, and treats them as NULL otherwise.

3.3 Reenactment

Through the spreadsheet interface, users can create, re-
name, reorder, or delete rows and columns, or alter data
— the standard array of DDL and DML operations. These
operations can not be applied in-place without sacrificing
versioning. In lieu of copying data, Vizier builds on a tech-
nique called reenactment [9, 2], which translates sequences
of DDL operations into equivalent queries.

ExamMpPLE 3. Consider a table EMP and the statements:

UPDATE EMP SET pay=pay*1.1 WHERE type = 1;
INSERT INTO EMP(name, pay, type)
VALUES (’Bob’, 100000, 2);

The version of the table after these operations are applied
can be equivalently obtained by evaluating the following query
over the initial EMP table.

SELECT name, type,
(CASE type WHEN 1 THEN 1.1*pay
ELSE pay END) AS pay
FROM EMP UNION ALL
SELECT ’Bob’ AS name, 100000 AS pay, 2 AS type;

Vizier translates Vizual operations into an equivalent query,
resulting in each table version being defined (declaratively)
as a view. Due to limited space, we refer the interested
reader to [9] for an introduction to reenactment, with a fur-
ther discussion of its applicability to spreadsheets in [6].
Vizual [6] also includes DDL operations like column re-
naming, reordering, and creation. We implemented these
through a similar view-based approach, adopting transfor-
mations from the Prism Workbench [4]. For example, col-
umn creation is analogous to projecting the full schema of
the table plus an additional column initialized with NULL.

3.4 Update Targets

Identifying update targets for Vizual operations presented
a challenge. In SQL DDL, update operations specify target
rows by a predicate, making the user’s intent explicit. By
contrast, spreadsheet users specify target rows by pointing
at them. When the source data changes — for example
when a new cell is added earlier in the notebook — the
user’s update must be re-applied to the new data. Thus, we
need row identifiers that are stable through such changes.

Vizier builds on the row identity model of GProM [1].
Derived rows, such as those produced by declaratively spec-
ified table updates, are identified as follows: (1) Rows in the
output of a projection or selection use the identifier of the
source row that produced them, (2) Rows in the output of
a UNION ALL are identified by the identifier of the source row
and an identifier marking which side of the union the row

came from.®> (3) Rows in the output of a cross product or
join are identified by combining identifiers from the source
rows that produced them, and (4) Rows in the output of an
aggregate are identified by the group-by attribute.

We considered three approaches to identifying rows in ex-
plicitly declared state tables: order-, hash-, and key-based.
None of these approaches is ideal: If rows are identified
by position, changes to the source data (e.g., uploading a
new version) may change row identities. Worse, identifiers
are re-used, potentially re-targeting spreadsheet operations
in unintended ways. Using hashing preserves row identity
through re-ordering, but risks collisions on duplicate data,
and is sensitive to changes in column values. Using keys ad-
dresses both concerns, but requires users to manually specify
a key column, assuming one exists in the first place. Our pro-
totype implementation combines the first two approaches:
deriving identifiers from both sequence and hash code. Such
row-identifiers are stable under appends, but not re-used.

3.5 Interactive Update Performance

After every user interaction, the spreadsheet view must
be refreshed. With reenactment, this requires adding a new
cell, executing it (running a query), and retrieving the re-
sults. For updates to cell values in particular, we have found
significant pushback from users to lag while the system re-
freshes the view. To make value updates “feel” instanta-
neous, refreshes are handled asynchronously; While refresh-
ing, placeholders selected client-side stand in for updated
values. Leveraging the caveat metaphor, such values are
highlighted in red until the refresh completes.

4. MANAGING CAVEATS

Analytics tools often encounter data errors like un-parseable
integers or CSV files with uneven column counts. Existing
systems take one of three approaches to handling such er-
rors: (1) The error stops the workflow, discarding work done
or leaving the system in an ambiguous state; (2) The error
is silently dropped as the system heuristically recovers, im-
peding debugging efforts; or (3) The system heuristically
recovers and logs the event to a log file that no one looks at.

As described in Section 2.1, Vizier takes a fourth ap-
proach: annotating affected fields, rows, columns, and tables
with a caveat. Caveats include a human-readable descrip-
tion of the problem, and are propagated through queries to
any dependent elements derived from them. Propagation
follows a simple rule: Is it possible to change the derived
value by changing the caveatted value? If so, the caveat
propagates to the derived value. Caveats were originally in-
troduced as uncertain values in [11]. We later formalized
propagation of row caveats in [5] and proposed a minimal-
overhead rewrite-based implementation. Here, we focus on
the practical challenges of realizing caveats in Vizier.

4.1 Applying Data Caveats

Caveats in Vizier are implemented by Mimir, a simple
query rewriting frontend over Spark’s dataframes. Mimir
provides a new function: caveat(id, value, message) to an-
notate data. The function takes a value to annotate, and
a message describing the caveat. A unique identifier (e.g.,
derived from the row id) is used for book-keeping purposes,

3To preserve associativity and commutativity during opti-
mization, union-handedness is recorded during parsing.

and omitted from examples for conciseness. Rows are anno-
tated when the caveat appears in a WHERE clause®. We now
highlight several examples of how Vizier instruments several
operators to capture heuristically recoverable errors.

Instrumenting String Parsing. Many file formats lack
type information (e.g., CSV), or have minimal type systems
(e.g., JSON). Thus extracting native representations from
strings is common, as in the following:

SELECT CAST(pay as int) AS pay, FROM EMP;

Vizier rewrites CAST to emit a NULL annotated with a caveat
when a string can not be safely parsed:

CASE WHEN CAST(pay as int) IS NULL
THEN caveat(NULL, pay & ’ is not an int’)
ELSE CAST(pay as int) END

If the cast fails, it is replaced by a null value caveatted with a
message indicating that the invalid string could not be cast.

Instrumenting CSV Parsing. CSV files are subject
to data errors like un-escaped commas or newlines, blank
lines, or comment lines. Purely rewrite-based annotations
are not possible, as no dataframe exists during CSV parsing.
Instead, Vizier adopts an instrumented version of Spark’s
CSV parser that emits an additional field that is NULL on lines
that successfully parse and contains error-related metadata
otherwise. Caveats are applied in a post-processing step.

SELECT * FROM EMP_raw WHERE
CASE WHEN _error_msg IS NOT NULL
THEN caveat (true, _error_msg) ELSE true END;

This use of the WHERE clause seems un-intuitive at first, but is
a deliberate decision rooted in caveats’ origin in incomplete
databases. Due to the parse error, we are not certain that
the row is valid; Here caveat(true, ...) captures that the
choice to include the row (i.e., WHERE true) is in question.

4.2 Implementing Data Caveats

The power of caveats arises from being propagated through
queries, allowing users to avoid costly data repairs to irrel-
evant data. In this section, we overview Vizier’s lightweight
strategy for propagating caveats through a Vizier notebook.

EXAMPLE 4. Pay for a small number of employees in Al-
ice’s dataset includes foreign currency markers (e.g., £). Al-
ice’s analytics tool silently converts these numbers to NULL.
Alice begins exploring with a query:

SELECT dept, avg(pay) FROM EMP GROUP BY dept;

The result that Alice gets is incorrect. Vizier however, caveats
the average pay of departments with remote employees, help-
ing Alice to discover and repair the error.

To avoid the overheads of propagating annotated data di-
rectly, Vizier simulates propagation in three stages: Pres-
ence, Static, and Detail. Each stage provides a progressively
more detailed picture of the caveats affecting a query result.

Presence. The first stage identifies affected fields or rows.
Queries are rewritten recursively through a scheme detailed
in [5] to add boolean-valued attributes that indicate that a
column, or the entire row depends on a caveatted value.

4We leave a discussion of how Vizier implements column and
table caveats to future work

ExXAMPLE 5. Consider Alice’s query over EMP, instrumented
as above to cast pay to an integer and assuming no other
caveat-instrumented operations.

WITH EMP AS (/* cast pay as above */)
SELECT dept, avg(pay) FROM EMP GROUP BY dept;

This query would be instrumented and optimized into:
WITH EMP AS (
SELECT CAST(pay as int) AS pay, dept, ...,
(CAST(pay as int) IS NULL
AND _caveat_pay) AS _caveat_pay
FROM EMP_uncast)
SELECT dept, avg(pay),
exists(_caveat_pay) AS _caveat_avg
FROM EMP GROUP BY dept;

A new _caveat_pay column is introduced, marking rows af-
fected by caveats. Caveat columns guaranteed to be false are
optimized out, as is the caveat function itself.

Propagating caveats is analogous to a probabilistic database
query (i.e., #P [5]). Thus, Vizier adopts a conservative ap-
proximation: All rows or cells that depend on a caveatted
value are guaranteed to be marked. It is theoretically possi-
ble, although rare in practice [5] for the algorithm to unnec-
essarily mark cells or rows. As we show in our experimental
results, caveat propagation also has minimal computational
overhead relative to native query processing.

Static. The initial phase simply determines which fields
and rows are affected by caveats. At this point, the user
can request more detailed information through the Vizier
user interface. In the spreadsheet view, clicking on a field or
row-header opens up a pop-up listing caveats on the field or
row. Vizier also provides a dedicated view to list caveats on
any state table and its rows, fields, or columns. As before, we
adopt a conservative approximation — it is possible, though
rare, for a caveat to be displayed in this list unnecessarily.

For both caveat detail views, the first step is to stati-
cally analyze the query. This analysis produces a CaveatSet
query, which computes the id and message parameters for
every relevant call to the caveat function.

EXAMPLE 6. Alice asks for caveats affecting the Billing
department’s average pay. The caveat function is used ex-
actly once, so we obtain a single CaveatSet:

SELECT pay&’ is not an int’ AS message,

ROWID AS id
FROM EMP_uncast WHERE dept = ’billing’

To generate the CaveatSets of a query the query is first
refined through selection and projection to produce the spe-
cific field(s) or row(s) being analyzed. Selection pushdown
and dead-column elimination are used to push filters as close
to the query leaves as possible. For each selection, projec-
tion, or aggregation in which a caveats appears, we construct
a query to compute parameters for every call to caveat.

Detail. Unioned together, the CaveatSets for a query com-
pute the full list of caveats affecting the target. Even in sim-
ple data pipelines with small datasets, there many be thou-
sands of potential caveats and dealing with these caveats can
easily overwhelm the user. Thus, exposing caveats at the
right level of abstraction in the right context is paramount.
When a CaveatSet contains more than three caveats, we se-
lect one representative example by LIMITing the query and
present it alongside a count (DISTINCT id) of the results.

4.3 Coarse-Grained Cells

Propagating caveats through queries is sufficient for the
declaratively specified tables created by SQL cells, most
point-and-click cells, and the Spreadsheet-generated Vizual
cells. However, certain cell types like Python cells rely on
explicit tables for which fine-grained provenance is not avail-
able. In such cases, we take a conservative approach and rely
on the cached read-sets for the cell. When the cell writes to a
table, we register a coarse-grained dependency from each of
the tables the cell has read from to the table being updated.

5. EXPERIMENTS

In this section, we evaluate Vizier’s incremental caveat
construction process. Concretely, we evaluate whether: (1)
instrumenting workloads to detect the presence of caveats on
result fields or rows adds minimal overhead, and (2) incre-
mentally constructed caveats can be sufficiently responsive.

All experiments were performed on a 12-core 2.50GHz In-
tel(R) Xeon(R) E5-2640 with 198GB RAM, running Ubuntu
16, OpenJDK 1.8.0_22, Scala 2.11.11, and Spark 2.4. To
minimize noise from the HTTP stack, we report timing num-
bers as seen by Mimir with a warm cache. All datasets were
loaded through Vizier and cached locally in Parquet format.

Dataset | Rows | Cols | Caveats | CaveatSets
Shootings | 2.9K ‘ 43 ‘ 121 ‘ 51

Graffiti 985K 15 47 28

Figure 4: Datasets Evaluated

We base our experiments on the experiments of [5], using
the two real world datasets summarized in Figure 4. For
each dataset, we enable four caveat-generating operators:
header detection, type inference, error-aware CSV parser,
and missing value repair. We then pose a single 2-column
group-by aggregate query mirroring the non-aggregate query
used by [5]. We measure the time taken to run the query
both with and without instrumentation, the time taken for
static analysis, and for CaveatSet expansion.

Figures 5 and 6 ® show a timeline of the query and caveat
generation process. Raw (uninstrumented) query execution
time is shown for comparison. Instrumentation for caveat
tracking is minimal, adding at worst 30% to an already fast-
running query. Through parallel execution, the majority of
caveats are rendered in seconds. We note the high over-
head of queries in Spark, and are exploring a hybrid dis-
tributed+local engine to accelerate small interactive queries.

I
—
m B Query (Raw)

B Query (Instrumented)
W Static Analysis

— CaveatSet Expansion

Time (s)

Figure 5: Materializing caveats for Shootings

6. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss the design and implementation of
Vizier, a novel system for data curation and exploration with

®Plots generated with Vizier using Bokeh.

—_— B Query (Raw)

B Query (Instrumented)
B Static Analysis

— CaveatSet Expansion

Time (s)
Figure 6: Materializing caveats for Graffiti

a combination of a spreadsheet and a notebook interface. In
contrast to other library-manager style notebook systems
(i.e., wrappers around REPLSs), Vizier is a versioned work-
flow manager notebook system. Vizier supports iterative
notebook construction through automated data-dependency
tracking and debugging through the automated detection
and propagation of caveats. In future work, we will inves-
tigate propagation of caveats for new cell types, e.g., dis-
playing caveats in plots, and explore trade-offs between per-
formance overhead and accuracy when propagating caveats
through cells with turing-complete languages. Furthermore,
we plan to develop caching and incremental maintenance
techniques for datasets in Vizier workflows to speed-up re-
execution of cells in response to an update to a notebook.
Finally, to support very large datasets, we will investigate
how to Vizier can natively incorporate sampling.

7[. REFERENCES

1] B. S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and
Q. Zeng. Gprom - A swiss army knife for your provenance
needs. IEEE Data Eng. Bull., 41(1):51-62, 2018.

[2] B. S. Arab, D. Gawlick, V. Krishnaswamy,

V. Radhakrishnan, and B. Glavic. Using reenactment to

retroactively capture provenance for transactions. IEEE

Trans. Knowl. Data Eng., 30(3):599-612, 2018.

L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo,

P. Crossno, C. T. Silva, and J. Freire. Vistrails: Enabling

interactive multiple-view visualizations. In IEEE

Visualization, pages 135-142, 2005.

[4] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: The prism workbench.
PVLDB, 1(1):761-772, 2008.

[5] S. Feng, A. Huber, B. Glavic, and O. Kennedy. Uncertainty
annotated databases - a lightweight approach for
approximating certain answers. In SIGMOD, 2019.

[6] J. Freire, B. Glavic, O. Kennedy, and H. Mueller. The
exception that improves the rule. In HILDA, 2016.

[7] D. Koop and J. Patel. Dataflow notebooks: Encoding and
tracking dependencies of cells. In Proceedings of the 9th
USENIX Conference on Theory and Practice of
Provenance, TaPP’17, pages 17-17, Berkeley, CA, USA,
2017. USENIX Association.

(8] P. Kumari, S. Achmiz, and O. Kennedy. Communicating
data quality in on-demand curation. In @QDB, 2016.

[9] X. Niu, B. S. Arab, S. Lee, S. Feng, X. Zou, D. Gawlick,
V. Krishnaswamy, Z. H. Liu, and B. Glavic. Debugging
transactions and tracking their provenance with
reenactment. PVLDB, 10(12):1857-1860, 2017.

[10] J. a. F. Pimentel, L. Murta, V. Braganholo, and J. Freire.
A large-scale study about quality and reproducibility of
jupyter notebooks. In MSR, 2019.

[11] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and
O. Kennedy. Lenses: An on-demand approach to etl.
PVLDB, 8(12), 2015.

<«

