
Benchmarking Pocket-Scale Databases

Carl Nuessle1, Oliver Kennedy1, and Lukasz Ziarek1

1 University at Buffalo
2 {carlnues,okennedy,lziarek}@buffalo.edu

Abstract. Embedded database libraries provide developers with a com-
mon and convenient data persistence layer. They are a key component
of major mobile operating systems, and are used extensively on inter-
active devices like smartphones. Database performance affects the re-
sponse times and resource consumption of millions of smartphone apps
and billions of smartphone users. Given their wide use and impact, it
is critical that we understand how embedded databases operate in real-
istic mobile settings, and how they interact with mobile environments.
We argue that traditional database benchmarking methods produce mis-
leading results when applied to mobile devices, due to evaluating per-
formance only at saturation. To rectify this, we present PocketData,
a new benchmark for mobile device database evaluation that uses typi-
cal workloads to produce representative performance results. We explain
the performance measurement methodology behind PocketData, and
address specific challenges. We analyze the results obtained, and show
how different classes of workload interact with database performance.
Notably, our study of mobile databases at non-saturated levels uncovers
significant latency and energy variation in database workloads resulting
from CPU frequency scaling policies called governors — variation that
we show is hidden by typical benchmark measurement techniques.

Keywords: PocketData · Mobile · SQLite · Android

1 Introduction

General-purpose, embedded database libraries like SQLite and BerkeleyDB pro-
vide mobile app developers with full relational database functionality, contained
entirely within their app’s namespace. Embedded database libraries are used ex-
tensively in apps for smartphones, tablets, and other mobile computing devices,
for example as the recommended approach for persisting structured data on iOS
and Android. However, database libraries can often be a bottleneck [39], causing
sluggish app performance and unnecessary battery drain. Hence, understanding
the performance of database libraries and different database library configura-
tions is critical, not just for library developers — but for any developer looking
to optimize their app.

Unfortunately existing tools for measuring the performance of data man-
agement systems are presently targeted exclusively at server-class database sys-
tems [9, 1, 24, 12, 13], including distributed databases [21, 3] and key value stores [8,

Feature Server-DB Mobile-DB

Throughput Relevant Irrelevant
Latency Relevant Relevant

Startup Cost Irrelevant Relevant
Energy Relevant Crucial

Simult. Clients 10k+ 1
Max Workload 100k+/s 400/s

HW Sharing None or VM Shared

(a) Differences between server-class
and pocket-class database workloads

1 2 3 4 5 6

Database Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
v
e
ra

g
e
 L

a
te

n
c
y
 (
m
s)

YCSB Workload C
SQLite

Berkely DB

(b) Database performance on
YCSB workload A.

Fig. 1: Measuring mobile database performance using server-class
benchmarks produces misleading results.

2, 35]. Unsurprisingly, server-class database systems optimize for different crite-
ria than embedded database libraries like SQLite or BerkeleyDB (Figure 1a).
As a result, existing measurement tools can not be used directly to assess the
performance of embedded database libraries. In this paper, we focus on one spe-
cific impedance mismatch: Server-class database benchmarks use throughput as a
proxy for overall database performance. To determine performance, server-class
database benchmarks measure throughput at saturation: The maximum query
rate a database can sustain.

To understand why measurement at saturation is a problem, consider Fig-
ure 1b, which illustrates the results of one server-class benchmark (YCSB Work-
load C) applied to SQLite and BerkeleyDB, each using their default settings.
Each point represents another thread worth of load being offered to the database.
As more concurrent load is added, latency increases as contention overheads
compound. The result is seemingly a clear victory for BerkeleyDB. However,
this graph is not representative of actual smartphone usage. For example, our
prior study [18] found that smartphone database instances need to cope with
bursts of at most a few hundred queries, well below the throughput of a single
thread. In this regime the systems are competitive, with SQLite being the faster
of the two on some workloads.

More generally, by measuring performance at lower throughputs, results are
more affected by noise from OS and hardware optimizations, background activ-
ity, and a host of other sources, many unique to mobile platforms. Although this
noise has real implications for database performance in the wild, existing perfor-
mance measurement techniques do not accurately capture it. In this paper, we
identify several sources of measurement error that arise when measuring database
performance at low throughputs, and show how they can produce misleading re-
sults. We introduce a new mobile benchmarking toolkit called PocketData,
designed to work around these sources of error. To build PocketData, we ex-
tend the Android Operating System Platform (AOSP) [14] with new logging
capabilities, control over relevant system properties, and a benchmark-runner

app. These extended capabilities make it easier to understand the precise causes
of performance differences between systems or experimental trials. The result is
a toolkit for obtaining reliable, reproducible results when evaluating data man-
agement technologies on mobile platforms like smartphones3.

In our recent study of mobile database workloads [18], we made two key
observations: (1) mobile workloads are dominated by key-value style queries,
and (2) mobile database workloads are bursty. Following the first observation,
we build on the Yahoo Cloud Services Benchmark (YCSB) [8], a popular key-
value workload generator. To account for the latter observation, we extend the
YCSB workload generator to operate at lower throughputs. We use the result-
ing workload generator to evaluate both performance and power consumption
of SQLite on Android. One key finding of this evaluation was that for spe-
cific classes of workload, Android’s default power management heuristics cause
queries to take longer and/or consume more power. For example, we observe
that the default heuristics are often significantly worse than far simpler naive
heuristics. On nearly all workloads we tested, running the CPU at half-speed
significantly reduces power consumption, with minimal impact on performance.
Android’s heuristics introduce higher latency and increase energy consumption
due to excessive micromanagement of CPU frequencies.

The specific contributions of this paper include: 1. We identify sources of error
in database performance measurement at low-throughputs (Section 2). 2. We
propose a database benchmarking framework called PocketData that makes
it possible to mitigate these sources of error (Section 3). 3. We present results
from an extensive benchmarking study of SQLite on mobile devices (Section 4).
We cover related work and conclude in Section 5 and Section 6, respectively.

2 The Need for Mobile Benchmarking

Understanding the performance of data management systems is critical for tun-
ing and system design. As a result, numerous benchmarks have emerged for
server-class data management systems [9, 1, 24, 12, 13, 21, 3, 8, 2, 35]. In contrast,
mobile data management [30, 28, 23] is a very different environment (Figure 1a).
Here, we focus on one key difference: mobile workloads operate significantly be-
low saturation. Measuring at saturation makes sense for typically multi-client
server-class databases, which aim to maximize throughput. However, typical mo-
bile data management happens at much lower rates [18], and on resource- and
power-constrained hardware. As a result, metrics like latency and power con-
sumption are far more important, while measuring performance at saturation
hides meaningful performance quirks that can arise in practice.

The performance impact of frequency scaling is hidden at satura-
tion. The most direct effect of measuring at below saturation is related to a
feature called frequency scaling, which allows the operating system to adjust
CPU performance in response to changing load. As load drops, lower CPU fre-
quencies can significantly extend battery life. While frequency scaling does exist

3 Available for download at http://pocketdata.info

 CPU Pinned

0ms
1ms

lognormal
 CPU Unpinned

0ms
1ms

lognormal
Query Delay Time and CPU State

0
2500
5000
7500

10000
12500
15000
17500
20000

To
ta

l L
at

en
cy

 (
m

s)

YCSB Workload C
Unscheduled Time
CPU Time

(a) Saturated v. Unsaturated

Po
wers

av
e

Use
rsp

ac
e

Pe
rfo

rm
an

ce

Int
era

cti
ve

Ond
em

an
d

CPU Governor

0

5000

10000

15000

20000

25000

To
ta

l L
at

en
cy

 (
m
s)

YCSB Workload C
CPU Saturated
CPU Unsaturated

(b) Latency by governor.
Fig. 2: Performance on for Workload C (read-only)

on server-class database hardware, battery-powered mobile devices remain per-
petually concerned with conserving energy. As such, they are far more aggressive
with frequency scaling. During periods of low load, the OS can vary CPU fre-
quencies to dozens of settings, or disable CPU cores altogether.

The particular policy heuristics to implement this adjustment are termed
governors, such as the Ondemand governor used in most Linux distributions as
well as earlier Android phones, or the Interactive governor used in more recent
Android phones. Though their specific policies differ, both governors rely on
only a single input datum: how busy the CPU is. By measuring the database
at saturation, the CPU is kept completely, continuously busy, and virtually all
governors react identically to this input: by running the CPU at maximum speed.

Figure 2a illustrates the impact of running at below saturation. To simulate
operation at lower throughputs, we injected periodic thread sleeps into YCSB [8]
Workload C. The figure shows three throughputs: At saturation (0ms delay),
constant throughput below saturation (1ms delay), and bursty throughput below
saturation (lognormal delay)4. As expected, in all cases, adding delays increased
the time spent off-core (light-red). However, time spent doing useful work on the
CPU core (dark-blue) also increases with delay. To confirm that this is a result
of frequency scaling, the figure also shows the same experiment with the CPU
pinned to its highest frequency; Here, on-core time is almost constant.

Making matters worse, the frequency scaling operation is expensive: No ac-
tivity can be scheduled for several milliseconds while the core is scaled up or
down. Hence, when the CPU is running at a low frequency, a database with a
burst of work takes a double performance hit: first from having an initially slower
CPU and second from waiting while the core scales up. Ironically, this means
that a database running on a non-saturated CPU could significantly improve
latencies by simply busy-waiting to keep the CPU pinned at a high frequency.

I/O performance is different at saturation. I/O on mobile devices is quite
distinct from I/O on server-class devices. Most notably, mobile devices use exclu-
sively flash media for persistent storage. Writes to flash-based storage are bursty,
as the flash media’s internal garbage collection identifies and reclaims overwrit-

4 Here, we follow [18], which observes lognormal delay with a 6ms mean in typical use.

ten data blocks. On write-heavy workloads, this effect is far less pronounced
below saturation, as the disk has a chance to “catch up”.

CPU frequency scaling also plays a significant role in embedded database
I/O behavior as well. Repeated idling, such as from lower loads or I/O-blocked
operations are interpreted by the OS as a lack of work to be done and a signal
to scale down cores to save power.

Governors are indistinguishable at saturation. Running benchmarks at
full saturation, as a server-class study would do, obscures a broader performance
factor. Consider Figure 2b, which shows the effect of frequency scaling on total
latency when run with different CPU governor policies. The dark (blue) bars
show database performance when the CPU is saturated; the lighter (red) bars
show performance when the CPU is unsaturated. Each cluster shows the total
latency for a workload when run under a particular CPU governor policy.

When running Workload C queries at saturation (dark-blue bars), database
performance latency is identical across all governor choices, excepting only the
Powersave governor which deliberately runs the CPU at a lower speed. Only
when the workload is run below saturation (light-red bars) do significant dif-
ferences between the governors begin to emerge. These differences can have a
significant impact on real-world database performance and need to be addressed.

3 PocketData

Traditional database benchmarks [8, 36, 29] are designed for server-class databases,
and rank databases by either the maximum number of queries processed per sec-
ond (i.e., throughput) or equivalently the minimum time taken to process a batch
of queries. In both cases, database performance is measured at saturation, which
can produce misleading results on mobile. In this section, we first propose ad-
justing classical database benchmarks to run below saturation and then outline
the PocketData workflow and runtime.

3.1 Benchmark Overview

The initial input to PocketData is a database and query workload, such as
one generated by an existing server class benchmark. Specifically, we require
an initial database configuration (e.g., as generated by TPC-H’s dbgen util-
ity), as well as a pre-generated workload: a sequence of queries (e.g., as gener-
ated by TPC-H’s qgen utility). PocketData operates in three stages: First, a
pre-processing stage prepares the query workload for later stages. Second, the
benchmark database configuration is installed on the test device, and finally the
prepared workload is evaluated.

Inter-Query Delays. The PocketData test harness simulates performance
at levels below saturation by injecting delays in between queries. These delays
are randomly generated by PocketData’s workload preprocessor, which ex-
tends the pre-generated query workload with explicit instructions to sleep the

benchmark thread. The length and regularity of the inter-query delays is pro-
vided to as a parameter to the preprocessor. Throughout the remainder of the
paper, we consider three values for this parameter: 1. A lognormally distributed
delay, mirroring typical app behavior [18]. 2. A fixed 1ms inter-query delay, for
comparison, and 3. Zero delay, or performance at saturation.

3.2 Benchmark Harness

The second and third stages are run by the benchmark harness, whicc a driver
application and a rooted version of the standard Android platform with cus-
tomized performance parameters. The application part of the benchmark con-
nects to an embedded database through a modular driver. We developed drivers
for: 1. Android OS’s native SQLite integration, 2. BerkeleyDB through JDBC,
and 3. H2 through JDBC. As it is used almost exclusively on the two major
mobile platforms, our focus in this paper is on evaluating SQLite5.

The benchmark harness takes three parameters: A CPU governor, a database
configuration, and a workload annotated with delays. The selected governor is
enabled by the benchmark as the phone boots up. After boot, the benchmark
next initializes the database to the selected configuration, creating database files
(if needed), creating tables, and pre-loading initial data. Once the database is
initialized, the benchmark app exits and restarts.

After the benchmark app restarts it loads the pre-defined workload into mem-
ory. The choice to use a pre-defined, pre-loaded trace was made for two reasons.
First, this ensures that overheads from workload generation remain constant
across experiments; there is no cost for assembling the SQL query string rep-
resentation. Second, having the same exact sequence of queries allows for com-
pletely repeatable experiments across different experimental configurations.

Metrics Collected. Log data was collected through ftrace. We instrumented
the Android kernel, SQLite database engine, and driver application to log and
timestamp the following events: 1. I/O operations like FSync, Read, and Write;
2. Context switches to and from the app’s namespace; 3. Changes in CPU voltage
scaling; and 4. Trace start and end times.

Logging context switches allows us to track points where the app was sched-
uled on-core, track background application use, and see when cores are idling.
This is crucial, as unlike in server-class database measurement, we are intention-
ally operating the embedded database at well below saturation. The overhead of
native-code platform events (1) and kernel-level events (2-3) are minimal. Trace
start and end times, while injected from the app, are only 2 events and have
minimal total impact.

3.3 The PocketData Benchmark

We base the PocketData measurement workload on insights drawn from our
prior study [18], which found that smartphone queries typically follow key-value-
style access and update patterns. Queries or updates operate on individual rows,

5 Complete benchmark results are available at http://www.pocketdata.info/

or (rarely) the entire table. A quarter of apps observed by the study used ex-
clusively key-value-style queries. Even the median app’s workload was over 80%
key-value style queries. Accordingly, we build PocketData by adapting the
workloads from YCSB [8], an industry standard benchmark for key-value stores.
We used an initial database of 500 records, approximately the median size of
databases in our prior study [18] and a workload of 1800 operations per trial.

4 Benchmark Results

We organize this section by first discussing our application of the PocketData
benchmark to our test environment. We then overview the results obtained from
our study, and highlight areas identified for potential system performance im-
provement. Finally, we discuss measurement variance trends we observed, and
identify two sources of this variance.

Reference Platforms. Our database benchmarking results were obtained from
from two Android Nexus 6 devices, running Android OS 6.0.1, with 2GB RAM
and a Quad-core 2.3 GHz CPU (quality bin 2 for both devices). One of the
Nexus 6 devices was modified to permit energy measurements, which we collected
using a Monsoon LVPM Power Meter6. To ensure measurement consistency, we
modded the AOSP on the device to disable a feature that turns the screen on
when it is plugged in or unplugged — the screen remained off throughout the
benchmark. For one set of experiments, in order to analyze the source of variance
in database latencies, we additionally modded the SQLite engine in AOSP to
monitor time spent performing I/O operations.

4.1 Results Obtained and Analysis Method

Our key findings for the Nexus 6 are as follows:

– Below saturation, Android’s default governors keep the CPU at approxi-
mately half-speed, even on CPU-intensive workloads, reducing performance.

– A governor that pins the CPU to half-speed outperforms both default gov-
ernors on virtually all workloads below saturation.

– Below saturation and on a fixed workload, both of Android’s default gover-
nors also under-perform with respect to power consumption.

Using the Monsoon meter, we measured the total energy consumed by the sys-
tem, from launch to completion of the benchmark runner app while running a
single workload. To account for a spike in power consumption as the runner app
launches and exits, we count net energy use relative to a null workload that
simply launches and exits the benchmark without running any queries.

Results by Workload. The multiple workloads within the PocketData
benchmark yield finer insight into performance under different types of condi-
tions. For conciseness, we focus our discussion on a workload subset that explores

6 http://www.msoon.com/LabEquipment/

Workload Description

YCSB-A 50% write, 50% read zipfian
YCSB-B 5% write, 95% read zipfian
YCSB-C 100% read zipfian
YCSB-E 5% append, 95% scan zipfian

Fig. 3: The six YCSB and two PocketData workloads.

these differences (A, B, C, E). As shown in Figure 3 this results in a gradient
of read-heavy to write-heavy (C, B, A, respectively), as well as a more CPU-
intensive scan-heavy workload. We specifically divide our discussion into three
categories of workload: Read-heavy (B,C), Write-heavy (A), and Scan-heavy (E).

A second dimension of analysis is CPU load. As we discussed in the intro-
duction, system performance can change dramatically when the CPU operates
below saturation. Thus, we present results for two different CPU conditions:
saturated (0ms delay) and unsaturated (lognormal delay).

Next, we ran each workload under each of 5 different CPU governor policies.
3 of them are non-default choices: Performance (run at the highest possible
speed, 2.65 GHz), Fixed-50 (The customizable Userspace governor set to run at
a fixed midpoint frequency of 1.26 GHz), and Powersave (run the CPU at the
lowest possible speed, 300 MHz). The last 2 choices, Interactive and Onde-
mand, are the current and previous Android defaults as discussed in Section 2.

The 4 workloads (A, B, C, and E), 2 CPU saturation settings, and 5 gov-
ernor policies produce 40 measurement combinations. We ran each combination
3 times, and report the average and 90% confidence intervals. As we discuss
below, certain workload combinations proved much more consistent in measure-
ment than others. We observed measurement variance resulting from I/O block-
ing and the phone’s power source. To investigate this aspect further, we re-ran
several representative workloads, while measuring database file access time at
the SQLite-kernel boundary. We re-ran each of these workloads under each of 3
different power source settings, 6 additional times each.

4.2 Read Heavy Workloads

Read-heavy database workloads are particularly important, as reads account for
three-quarters of a typical database workload [18]. Energy consumption is also
a key issue on mobile. CPU governors, in turn, heavily influence the behavior of
both of these factors. We therefore focus on the performance-energy relationship
of database operations under different governor settings. Our study results show
that system default governors result in sub-optimal latencies and energy costs
for database workloads in the bulk of representative read-heavy scenarios.

Workloads are CPU-Bound but respond quickly. Latencies from read
operations are due nearly entirely to CPU time (plus explicit benchmark delays)
as a consequence of pre-caching performed by the SQLite database library. Figure
2a, for read-only workload YCSB-C, illustrates this clearly: there is virtually no
unscheduled time beyond the total time spent explicitly waiting (0s, 2s, and

12s, respectively). There was very little I/O activity under C, nearly all of it
immediately at the start of the workload as the table is pre-fetched. Because of
this pre-fetching, reads are serviced mostly from cache and there is little blocking.

Non-default governors offer better performance. Mobile platforms must
always balance performance against energy. Figures 5 and 6 show the database
latency and energy cost for each of the 5 governor choices for 2 read-heavy
loads: C is read-only; B adds 5% writes. An ideal governor would be as close to
the bottom left of the scatterplot as possible – that is, it should optimize both
database latency and energy consumption.

Uninterrupted query timing essentially means the CPU will be running at
saturation regardless of governor choice, and latencies tend to flatten. Thus,
unsurprisingly, on uninterrupted, read-only workloads (Figure 5a), both default
governors nearly match the performance governor’s latency. However, as the
vertical scale of 5a shows, running saturated read workloads with the Perfor-
mance governor also significantly saves rather than costs energy versus all other
choices. On this workload, there is no benefit to be gained by micro-managing
system performance, and so the static governor significantly outperforms the dy-
namic defaults. The saturated 95% read workload B (Figure 6a) shows similar
characteristics, albeit with an even more significant latency gap between the Per-
formance and the default governors. Here, the limited I/O is interpreted by the
system as a reduction in workload, and thus an opportunity to ramp down the
CPU. However, the overhead of micromanagement again outweighs the benefits.

Unsaturated read-heavy workloads (Figures 5b and 6b) model bursty, inter-
active usage patterns. Here, we observe a performance-energy trade-off between
the Performance and Fixed-50 governors. On both read-heavy workloads under
the performance governor, the average query is processed approximately 0.5ms
faster, while under the Fixed-50 governor power consumption is reduced by ap-
proximately a third. Notably, the Fixed-50 governor outperforms both default
governors on both workloads and on both axes: Lower energy and lower latency.

Keeping the CPU hot can reduce energy costs. We observe that both
default governors perform better on saturated workloads. When such saturation
is possible, it can be advantageous, not just from a latency but also an energy
standpoint, to keep the CPU busy. This makes batching read queries especially
important, as doing so can significantly reduce power consumption. Alterna-
tively, it may be possible for apps to reduce power consumption by busy-waiting
the CPU during I/O operations when such operations are short and infrequent.

Frequency scaling has a non-monotone effect on energy consump-
tion. On the read-only workload C (Figure 7a), energy cost is minimized with
the CPU running at half (Fixed-50), rather than minimum speed (Powersave).
Energy consumption scales super-linearly with frequency and there is an un-
avoidable fixed energy cost to simply keeping the core powered on (although
recall that we keep the screen off during tests). Thus, the benefit of slowing the
processor down is outweighed by the cost of keeping the core powered up longer.

0 1 2 3 4 5 6
Time since first query (s)

0.0

0.5

1.0

1.5

2.0

2.5

SQ
Li

te
 C

PU
 F

re
q

(G
H

z)

YCSB Workload C (1ms delay)

Fig. 4: Benchmark App Thread’s
CPU Frequency.

Threads are very sensitive to
governor performance differences.
When running read-heavy workloads,
unless the CPU is already at satu-
ration, the CPU often runs well be-
low maximum speed under the Inter-
active governor. Figure 4 shows that,
with the addition of 1ms pauses, the
CPU frequency is largely stuck near
500 MHz, well below the 2.65 GHz
maximum (the minimum is 300 MHz).
As the core is running at a lower
frequency when a query arrives, the
query takes a performance hit. As the
query finishes the Interactive governor ramps up the CPU unnecessarily, wast-
ing energy. This same effect appears in Figure 2b, which shows higher latencies
for intermittent queries (light-red bars on graph) with either default governor
(Interactive or Ondemand) than when the CPU is saturated (Performance).

4.3 Write Heavy Workloads

Write-heavy workloads on the Android platform have higher latencies than their
read-heavy counterparts, and latencies of the fixed-speed (non-default) governors
scale inversely with energy consumption.

Non-default governors again improve performance. Figure 7 shows the
latency/energy metrics for Workload A, which is 50% write operations. Look-
ing at the results for the saturated workload (Figure 7a), we observe that the
Fixed-50 governor significantly outperforms all other governors. The Powersave
governor in this case has the lowest energy cost, but also has the worst per-
formance. However, we note that, for write-heavy threads running on saturated
CPUs (which is the case when a series of write operations arrive consecutively),
the system defaults again under-perform significantly.

Write-heavy operations that occur intermittently exhibit a similar latency-
energy metric to that of intermittent read-heavy threads. As before, Figure 7b
shows the tradeoff: Performance and Powersave offer the opposing extremes of
latency and energy, while the Fixed-50 governor compromises between extremes.

4.4 Scan Heavy Workloads

Scan-heavy workloads involve longer-running, CPU-bound queries, which keep
the CPU loaded for longer intervals. As a result, we see less variation between
saturated and unsaturated workloads.

Table Scans are CPU-Intensive. In workload E, reads are scan operations.
The increase in latency for workload E is mostly due to sharply higher CPU
time, with marginally greater non-scheduled non-benchmark delay time. This

0 1000 2000 3000 4000 5000 6000 7000 8000

Workload Latency (ms)

40

60

80

100

120

140

160

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload C -- Saturated CPU

Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 7420.37 70.56 0.95 105.74 30.36 28.71
Fixed-50 1881.71 42.89 2.28 70.53 15.51 21.99

Performance 1026.28 34.70 3.38 101.26 14.39 14.21
Interactive 1071.52 5.70 0.53 135.47 14.68 10.83
Ondemand 1044.73 9.08 0.87 105.63 14.00 13.25

(a) Uninterrupted query arrivals

13000 14000 15000 16000 17000 18000 19000 20000 21000

Workload Latency (ms)

160

180

200

220

240

260

280

300

320

340

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload C -- Unsaturated CPU

Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 20746.12 83.19 0.40 236.23 55.15 23.34
Fixed-50 14475.99 76.37 0.53 199.18 35.49 17.82

Performance 13531.38 34.55 0.26 317.89 16.84 5.30
Interactive 20552.94 29.13 0.14 274.67 54.59 19.87
Ondemand 16261.75 75.97 0.47 265.77 35.43 13.33

(b) Intermittent query arrivals

Fig. 5: Workload C: Latency performance and energy costs.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Workload Latency (ms)

120

140

160

180

200

220

240

260

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload B -- Saturated CPU

Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 9050.50 59.73 0.66 188.66 25.13 13.32
Fixed-50 2881.91 26.50 0.92 165.69 38.30 23.12

Performance 1499.00 43.99 2.93 167.59 25.17 15.02
Interactive 2058.75 237.60 11.54 232.62 14.47 6.22
Ondemand 2075.51 236.12 11.38 201.27 13.22 6.57

(a) Uninterrupted query arrivals.

14000 15000 16000 17000 18000 19000 20000 21000 22000 23000

Workload Latency (ms)

200

250

300

350

400

450

500

550

600

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload B -- Unsaturated CPU
Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 22501.64 157.16 0.70 279.47 56.54 20.23
Fixed-50 15636.47 33.89 0.22 304.26 45.42 14.93

Performance 14473.82 43.26 0.30 505.56 85.59 16.93
Interactive 21574.05 152.85 0.71 335.25 7.54 2.25
Ondemand 17087.27 230.54 1.35 502.52 58.80 11.70

(b) Intermittent query arrivals.

Fig. 6: Workload B: Latency performance and energy costs.

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

Workload Latency (ms)

200

400

600

800

1000

1200

1400

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload A -- Saturated CPU
Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 19623.81 746.31 3.80 505.00 55.21 10.93
Fixed-50 6976.35 1985.89 28.47 476.50 87.50 18.36

Performance 7264.69 2769.70 38.13 1014.37 346.41 34.15
Interactive 7447.07 1146.02 15.39 791.25 189.75 23.98
Ondemand 7135.57 2281.21 31.97 623.73 146.73 23.52

(a) Uninterrupted query arrivals.

20000 22000 24000 26000 28000 30000 32000 34000

Workload Latency (ms)

400

600

800

1000

1200

1400

1600

1800

2000

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload A -- Unsaturated CPU
Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 33503.64 148.43 0.44 641.33 55.67 8.68
Fixed-50 22496.20 2416.73 10.74 801.56 163.59 20.41

Performance 22143.90 631.65 2.85 1635.42 205.02 12.54
Interactive 29456.82 101.43 0.34 917.39 89.12 9.71
Ondemand 22966.05 1491.80 6.50 988.84 127.23 12.87

(b) Intermittent query arrivals.

Fig. 7: Workload A: Latency performance and energy costs.

0 10000 20000 30000 40000 50000 60000

Workload Latency (ms)

600

650

700

750

800

850

900

950

1000

1050

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload E -- Saturated CPU
Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 51067.97 193.85 0.38 674.52 12.96 1.92
Fixed-50 13582.61 125.16 0.92 656.67 46.93 7.15

Performance 7669.62 63.34 0.83 937.61 64.22 6.85
Interactive 7926.37 350.87 4.43 921.25 41.28 4.48
Ondemand 8281.21 74.40 0.90 871.84 15.98 1.83

(a) Uninterrupted query arrivals.

20000 30000 40000 50000 60000 70000

Workload Latency (ms)

700

800

900

1000

1100

1200

1300

N
e
t

E
n

e
rg

y
 C

o
s
t

(µ
A
h)

Workload E -- Unsaturated CPU
Powersave
Fixed-50
Performance
Interactive
Ondemand

Governor Latency LatErr LatErr% Energy EnErr EnErr%

Powersave 64920.82 187.59 0.29 842.86 102.94 12.21
Fixed-50 26494.90 238.82 0.90 845.44 92.60 10.95

Performance 20516.58 111.90 0.55 1210.57 68.30 5.64
Interactive 33449.11 299.14 0.89 898.96 57.73 6.42
Ondemand 26748.52 33.52 0.13 1237.04 42.63 3.45

(b) Intermittent query arrivals.

Fig. 8: Workload E: Latency performance and energy costs.

penalty is due to additional actual computation rather than frequency scaling:
Unlike with previous workloads, CPU time for E remains relatively unaffected
by increased benchmark delay settings. For E, DB usages involving significant
scans can still be serviced largely from cache, but they incur computation costs.

Non-default governors often improve performance. Workload E, com-
prised of 95% table scans, is shown in Figure 8. When database operations arrive
uninterrupted, Figure 8a shows that the default Interactive governor offers the
best latency. As in the simpler read-heavy workloads, the Fixed-50 governor
(and not the Powersave governor) offers the lowest energy cost, with only a
slight latency penalty.

Unsaturated scan-heavy threads generally follow the latency-energy trade-off
pattern of previous workloads as well. Figure 8b shows that, as before, Perfor-
mance and Powersave offer opposing extremes of latency and energy metrics.
However, both are only negligibly better than the Fixed-50 governor, which also
outperforms the default governors on both metrics.

4.5 Sources of Measurement Variance Load Reads Writes Syncs
A 4073 4986 2234
B 3675 572 244
C 3625 0 0
E 3719 1037 464

Fig. 9: Number of SQLite
I/O Operations

Energy usage measurements showed a signif-
icant, though constant variation (reflected in
the vertical error bars in graphs 5-8) across
all test configurations. This is unsurprising,
as overall energy usage is low, rendering mea-
surement susceptible to noise from small vari-
ations in background system behavior. Note
that the noise level stays constant, even as overall load increases as in workload
E. Conversely, latency variance (horizontal error bars) is almost always low. On
loads B, C and E, for both saturated and unsaturated CPUs, all had relatively

small margins: 11% at most. However, measurement error for workload A, and
particularly for a saturated CPU, was anomalously high: from 15%-38% for all
CPU policies except Powersave.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Workload run #
0

2000

4000

6000

8000

10000

12000

14000

To
ta

l L
at

en
cy

 (
m

s)

Workload A (Saturated CPU)
I/O time
Non-I/O time

Fig. 10: Effect of I/O operations on
workload latency variance

Workload A is write-heavy
and involves a relatively large
number of I/O operations com-
pared to other loads (see Fig-
ure 9). To confirm that fluctua-
tion in I/O time was indeed the
source of the large latency error
measurement for A, we instru-
mented SQLite to measure the
time spent blocked on read, write,
and fsync operations. We re-ran
A with a saturated CPU 20 addi-
tional times. Figure 10 compares,
for workload A under the default Interactive governor, the latencies of these
runs. Total latency varies significantly, exhibiting a bimodal distribution, with
one mode around 6s and a second mode at 11s. Looking deeper, the latency of
each run is composed of I/O time (dark blue) and non-I/O time (light orange).
While non-I/O time for each of the runs is quite consistent, I/O time also varies
bimodally. Likely, this is due to flash storage overhead having to prepare for
block erases and writes. The saturated CPUs particularly expose this: unsatu-
rated CPUs allow flash erasure to take place during quiescent periods, rather
than forcing the benchmark to block. Workloads B, C and E exhibit much less
latency variance, as they lack significant write activity and do not need to erase
flash. Workload A is dominated by write costs and thus suffers increased vari-
ance.

5 Related Work

Lightweight DBMSes. MySQL [40] got its start as a lightweight DBMS, while
libraries like SQLite [30] and BerkeleyDB [28] both provide server-less database
functionality within an application’s memory space. TinyDB [23] is a lightweight
DBMS intended for use in distributed IoT settings. In addition to aiming for a
low memory footprint, it allows queries to be scheduled for distributed execution
over a cluster of wireless sensor motes. While these approaches target application
developers, other efforts like GestureDB [26] target users of mobile devices and
optimize for different types of interaction modalities.

Benchmarking. A range of benchmarks do exist for server-class databases [36,
29, 4] and other data management platforms [8, 15, 20]. However, as we point out
throughout this paper, assumptions typically made by these benchmarks pro-
duce invalid results when evaluating pocket-scale data management systems.
There is however overlap on some non-traditional metrics like energy use in data

management platforms [27, 33, 32, 31]. Notably, configuration parameters opti-
mized for these benchmarks typically involve significant changes to the hardware
itself. Through features like frequency scaling on the CPU and RAM, mobile de-
vices are capable of far more fine-grained reconfiguration on the fly, significantly
changing the evaluation landscape.

Conversely, A number of other benchmarks target embedded devices. An-
droStep [22] evaluates phone performance in general terms of CPU and energy
usage. Energy is also a common specific area of study – Wilke et al. compare con-
sumption by applications [38]. AndroBench [19] studies the performance of file
systems, but uses SQLite as a representative workload for benchmarking filesys-
tem performance. While these benchmarks use SQLite as a load generator, it is
the filesystem being evaluated and not the database itself.

Profiling Studies. One profiling study by Wang and Rountev [37] explored
sources of perceived latency in mobile interfaces. They found databases to be a
common limiting factor. A study by Prasad et al. [34] looked at hardware per-
formance profiles relative to CPU quality ratings assigned by the chip manufac-
turer. They found a wide distribution of thermal profiles and CPU performance
for devices ostensibly marketed as being identical. Our previous study [18] used
a user-study to explore characteristics of mobile database workloads, and forms
the basis for PocketData as described in this paper.

There have a been a number of performance studies focusing on mobile plat-
forms and governors for managing their runtime performance characteristics [6,
25, 10, 11, 7]. Most of these studies focus on managing the performance and en-
ergy tradeoff and none look at the effect of the governor on embedded database
performance. A few make the argument that for more effective over all sys-
tem utilization considerations of the whole program stack must be made [17]
and instead of managing applications individually, system wide services should
be created for more wholistic management [16]. More recently, there has been
interest in specialized studies focusing on performance and energy consump-
tion of specific subsystems, like mobile web [5]. These studies do not, however,
document the competing performance metric tradeoffs between governors. Nor
do they explore the effect of system load on performance rankings of gover-
nor choices. We view our study and performance debugging methodology for
embedded databases on mobile devices to be a first step at understanding the
performance effect of the mobile platform on mobile databases.

6 Conclusions

The mobile platform presents unique characteristics for database benchmarking.
The systems themselves are resource-limited, and the typical workloads differ
markedly from those experienced by traditional server-class databases. Further-
more, mobile systems are structured differently, with power management and
flash memory I/O contributing a significant amount of noise to measurement
efforts. Measurement systems that fail to account for these differences will miss
critical performance information. While we focused our study on SQLite, the

system default database, we designed our benchmark to be database-agnostic,
and results from PocketData on other configurations can be found on our
website http://pocketdata.info.

For a given database and workload, different governors yield different database
performance and energy consumption metrics. A non-default governor selection
can often improve markedly on either latency or energy performance – some-
times in both simultaneously. While the database is aware of the information
necessary to make this choice, the kernel is typically not, suggesting opportu-
nities for future improvement. In future work, we will explore how the kernel
can be adapted to solicit this information and then incorporate it into a wiser
governor selection.

References

1. Ahmed, M., Uddin, M.M., Azad, M.S., Haseeb, S.: Mysql performance analysis on
a limited resource server: Fedora vs. ubuntu linux. In: SpringSim (2010)

2. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. SIGMETRICS Perform. Eval. Rev. 40(1), 53–64
(Jun 2012)

3. Baumgärtel, P., Endler, G., Lenz, R.: A benchmark for multidimensional statistical
data. In: ADBIS (2013)

4. Bitton, D., DeWitt, D.J., Turbyfill, C.: Benchmarking database systems A system-
atic approach. In: VLDB. pp. 8–19. Morgan Kaufmann (1983)

5. Cao, Y., Nejati, J., Wajahat, M., Balasubramanian, A., Gandhi, A.: Deconstructing
the energy consumption of the mobile page load. PMACS 1(1), 6:1–6:25 (Jun 2017)

6. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
USENIXATC. pp. 21–21 (2010)

7. Chen, X., Chen, Y., Dong, M., Zhang, C.: Demystifying energy usage in smart-
phones. In: DAC (2014)

8. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SOCC (2010)

9. Curino, C.A., Difallah, D.E., Pavlo, A., Cudre-Mauroux, P.: Benchmarking olt-
p/web databases in the cloud: The oltp-bench framework. In: CloudDB (2012)

10. Dietrich, B., Chakraborty, S.: Power management using game state detection on
android smartphones. In: MobiSys. pp. 493–494 (2013)

11. Egilmez, B., Memik, G., Ogrenci-Memik, S., Ergin, O.: User-specific skin
temperature-aware dvfs for smartphones. In: DATE. pp. 1217–1220 (2015)

12. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,
M.D., Boncz, P.: The ldbc social network benchmark: Interactive workload. In:
SIGMOD (2015)

13. Frank, M., Poess, M., Rabl, T.: Efficient update data generation for dbms bench-
marks. In: ICPE (2012)

14. Google: Android open source project. https://source.android.com/ (2018)
15. Gupta, A., Davis, K.C., Grommon-Litton, J.: Performance comparison of property

map and bitmap indexing. In: DOLAP. pp. 65–71. ACM (2002)
16. Hussein, A., Payer, M., Hosking, A., Vick, C.A.: Impact of gc design on power and

performance for android. In: SYSTOR. pp. 13:1–13:12 (2015)
17. Kambadur, M., Kim, M.A.: An experimental survey of energy management across

the stack. In: OOPSLA. pp. 329–344 (2014)

18. Kennedy, O., Ajay, J.A., Challen, G., Ziarek, L.: Pocket Data: The need for TPC-
MOBILE. In: TPC-TC (2015)

19. Kim, J., Kim, J.: Androbench: Benchmarking the storage performance of android-
based mobile devices. In: ICFCE. Advances in Intelligent and Soft Computing,
vol. 133, pp. 667–674. Springer (2011)

20. Klein, J., Gorton, I., Ernst, N.A., Donohoe, P., Pham, K., Matser, C.: Performance
evaluation of nosql databases: A case study. In: PABS@ICPE. pp. 5–10. ACM
(2015)

21. Kuhlenkamp, J., Klems, M., Röss, O.: Benchmarking scalability and elasticity of
distributed database systems. pVLDB 7(12), 1219–1230 (Aug 2014)

22. Lee, K.: Mobile benchmark tool (mobibench)
23. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An acquisi-

tional query processing system for sensor networks. ACM TODS 30(1), 122–173
(Mar 2005)

24. Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J., Kanemasa, Y., Pu, C.: Em-
pirical analysis of database server scalability using an n-tier benchmark with read-
intensive workload. In: SAC (2010)

25. Mercati, P., Bartolini, A., Paterna, F., Rosing, T.S., Benini, L.: A linux-governor
based dynamic reliability manager for android mobile devices. In: DATE. pp.
104:1–104:4 (2014)

26. Nandi, A., Jiang, L., Mandel, M.: Gestural query specification. PVLDB 7(4), 289–
300 (2013)

27. Niemann, R.: Towards the prediction of the performance and energy efficiency of
distributed data management systems. In: ICPE Companion. pp. 23–28 (2016)

28. Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley DB. In: USENIX Annual Technical
Conference, FREENIX Track. pp. 183–191. USENIX (1999)

29. O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark (ssb) (2007)
30. Owens, M., Allen, G.: SQLite. Springer (2010)
31. Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers:

a power consumption analysis of TPC-C results. PVLDB 1(2), 1229–1240 (2008)
32. Poess, M., Nambiar, R.O., Vaid, K.: Optimizing benchmark configurations for en-

ergy efficiency. In: ICPE. pp. 217–226. ACM (2011)
33. Poess, M., Nambiar, R.O., Vaid, K., Stephens, J.M., Huppler, K., Haines, E.: En-

ergy benchmarks: a detailed analysis. In: e-Energy. pp. 131–140. ACM (2010)
34. Srinivasa, G.P., Begum, R., Haseley, S., Hempstead, M., Challen, G.: Separated by

birth: Hidden differences between seemingly-identical smartphone cpus. In: Hot-
Mobile. pp. 103–108. ACM (2017)

35. Tomás, G., Zeller, P., Balegas, V., Akkoorath, D., Bieniusa, A., Leitão, J.a.,
Preguiça, N.: Fmke: A real-world benchmark for key-value data stores. In: PaPoC
(2017)

36. Transaction Processing Performance Council: TPC-H, TPC-C, and TPC-DS spec-
ifications. http://www.tpc.org/

37. Wang, Y., Rountev, A.: Profiling the responsiveness of android applications via
automated resource amplification. In: MOBILESoft. pp. 48–58. ACM (2016)

38. Wilke, C., Piechnick, C., Richly, S., Püschel, G., Götz, S., Aßmann, U.: Comparing
mobile applications’ energy consumption. In: SAC. pp. 1177–1179. ACM (2013)

39. Yang, S., Yan, D., Rountev, A.: Testing for poor responsiveness in Android appli-
cations. In: Workshop on Engineering Mobile-Enabled Systems. pp. 1–6 (2013)

40. Yarger, R.J., Reese, G., King, T.: MySQL and mSQL - databases for moderate-
sized organizations and websites. O’Reilly (1999)

