
Data Debugging and Exploration with Vizier

Mike Brachmannβ , Carlos Bautistan, Sonia Castelon, Su Fengi , Juliana Freiren,
Boris Glavici , Oliver Kennedyβ , Heiko Müllern, Rémi Rampinn, William Spothβ ,

Ying Yango
β : University at Buffalo n: NYU i: IIT o: Oracle

{ mrb24, okennedy, wmspoth }@buffalo.edu sfeng14@hawk.iit.edu bglavic@iit.edu
{ carlos.bautista, s.castelo, juliana.freire, heiko.mueller, remi.rampin }@nyu.edu

ying.y.yang@oracle.com

ABSTRACT
We present Vizier, a multi-modal data exploration and debug-
ging tool. The system supports a wide range of operations by
seamlessly integrating Python, SQL, and automated data cu-
ration and debugging methods. Using Spark as an execution
backend, Vizier handles large datasets in multiple formats.
Ease-of-use is attained through integration of a notebook
with a spreadsheet-style interface and with visualizations
that guide and support the user in the loop. In addition, native
support for provenance and versioning enable collaboration
and uncertainty management. In this demonstration we will
illustrate the diverse features of the system using several
realistic data science tasks based on real data.
ACM Reference Format:
Mike Brachmannβ , Carlos Bautistan , Sonia Castelon , Su Fengi ,
Juliana Freiren , Boris Glavici , Oliver Kennedyβ , Heiko Müllern ,
Rémi Rampinn , William Spothβ , Ying Yango . 2019. Data Debugging
and Exploration with Vizier. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3299869.3319887

1 INTRODUCTION
The unprecedented scale at which information is being pro-
duced today has lead to wide-spread use of data-centric
methods in industry, science, government, and every-day life.
Thesemethods heavily rely on the availability of high-quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319887

data and on products derived from such data, e.g., machine
learning models and visualizations. The creation of a data
product is a complex process that involves multiple tasks
including ingest, curation, exploration, and debugging. Com-
monly users start with an initial, imperfect data pipeline, and
iteratively refine and fix this pipeline until a desired result
has been achieved. Notebook frameworks such as Jupyter
(https://jupyter.org/) have become popular tools for creating
data products. They allow users to craft documents that in-
terleave documentation, scripts, and outputs (e.g., datasets or
plots). Similarly, less tech-savvy users use spreadsheets for
the same purpose. Both paradigms (notebooks and spread-
sheets) mix code with outputs to provide immediate feedback
on the effect of a change to the code or data. For instance,
when a user edits cells in a spreadsheet all plots visualizing
the data are updated automatically or when a user runs a
python script in a notebook cell to replace missing values
and subsequently re-executes a cell creating a plot, then
the updated plot will reflect the updated data. In summary,
the interactive nature of spreadsheets and notebooks makes
them powerful tools for data product creation. Unfortunately,
existing notebook and spreadsheet software suffer from limi-
tations which severely impede users in their work with data.
Vizier (https://github.com/VizierDB), the system we present
in this demonstration, overcomes these limitations. Vizier is
a data centric, multi-modal, provenance-aware platform for
data curation, exploration, debugging, and analysis.

1.1 Requirements
Before explaining the shortcomings of the aforementioned
paradigms, we will first motivate a list of requirements for
systems that support users in developing data pipelines.
R1. Supports Iterative Construction of Pipelines: The
system should aid users in the iterative process of creating
a pipeline by making outputs of operations available and
refreshing them automatically when the pipeline is modified.
Furthermore, provenance should be made available for the
whole history of a pipeline such that users can work with

https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/3299869.3319887
https://jupyter.org/
https://github.com/VizierDB

multiple versions and can backtrack to a working version if
the pipeline has evolved into a non-productive direction.
R2. Expressiveness + Ease-of-use: The system should al-
low users to manually curate data, to process it using scripts,
and to query it. The interaction paradigm provided for that
should be both expressive enough as well as simple to use.
R3. Aids Data Debugging: Raw data is almost never di-
rectly suited for creating high-quality data products and an-
alysts and data scientists spend the majority of their time on
data discovery and curation. It is critical to support users in
these complex, time-consuming, and error-prone processes.
R4. Scalability: Many data products, even if of small size
themselves, are based on large datasets necessitating sup-
port for scalable operations. Furthermore, certain interaction
paradigms are not suited well for large datasets, e.g., it is im-
possible to manually fix errors in multi-billion row datasets.
R5. Traceability and Provenance: Consumers of data
products would want to know whether the products are
trustworthy which requires provenance to be tracked.
R6. Collaboration and Reuse: It should be possible for
multiple users to collaborate on a data pipeline and data
product. Users should be able to adapt existing pipelines to
new versions of a dataset or similar use cases.

1.2 Notebooks/Spreadsheet Limitations
Given these requirements, we now explain how notebook
and spreadsheet systems fall short in several regards.
Limitations of Notebooks. Existing notebooks are opti-
mized for manipulating data through bulk, scripted transfor-
mations and organize those pipelines into cells. However, de-
pendencies among datasets and pipeline cells are not tracked.
Thus, there is no provenance tracking for the cells and no
automatic refresh for pipeline outputs when data or pipelines
are updated. This makes notebooks hard to debug and hard
to construct iteratively, especially if they contain non-trivial
dependencies among cells [5], because the user has to be
aware of all cell dependencies to decide what cells to re-
execute and in which order when the notebook is updated.
Furthermore, this hinders reproducibility because a user that
is not the creator of the notebook has to analyze the code
of all cells to understand in which order the cells have to be
run. Finally, this also leads to hard to trace bugs when the
outcome changes because cells were run in an order other
than the intended one. Data exploration and curation tasks
often benefit from manual data entry or other spreadsheet
data manipulation operations which are hard to implement
using notebook interfaces. Also, the data being manipulated

1while there exist spreadsheet widgets for Juptyer, e.g., https://github.com/
QuantStack/ipysheet they are not bound to datasets as in Vizier.
2while approaches like [2] are efficient, the paradigm of manual updates
that is fundamental to spreadsheets does not scale in terms of human effort.

Figure 1: Vizier’s multi-modal user interface combin-
ing spreadsheets, notebooks and plots.

is opaque, making manual error fixing cumbersome. Further-
more, due to the lack of dependency tracking, notebooks do
not scale well in case of complex pipelines. Since existing
notebook systems do not support collaboration and version-
ing natively, users rely on external version control systems
such as git for collaboration. Thus, the decision of when to
create a version is left to the user which can lead to versions
getting lost, e.g., a user forgot to commit a change.
Limitations of Spreadsheets. Spreadsheets are suited best
for manual data entry and updates. Thus, they can be quite ef-
fective for fixing heterogeneous errors in small datasets (one-
off-fixes). However, this type of operations does not scale to
larger datasets and is not suited for fixing large numbers of
similar errors or for detecting errors automatically. Spread-
sheets do not provide any means to structure operations into
a pipeline as well as provenance support. Hence, any data
pipeline consisting of multiple steps is hard to implement,
modify, and debug with spreadsheet software. Pipelines that
have been painstakingly created for one dataset are hard to
generalize to another dataset because all edits are manual
and specific to a particular piece of data.

2 SYSTEM OVERVIEW
Figure 2 shows the high-level architecture of the Vizier
software stack. Our demonstration will focus on Vizier’s
Web User Interface (Web-UI), a web-based frontend that
we will discuss shortly. The Web-UI (and other user-facing
interfaces) interact with Vizier through a REST API (Web-
API) with endpoints for creating, viewing, and manipulating
Vizier notebook workflows. The Web-API also provides pag-
inated access to datasets resulting from these workflows, as
well as an assortment of related metadata. The Vizier API is

https://github.com/QuantStack/ipysheet
https://github.com/QuantStack/ipysheet

Req. Spreadsheets Notebooks Vizier
R1 (+) interactive nature (-) lack of controlflow structure (-) no

build-in versioning
(+) interactive nature (+) organizes pipeline into cells (-)
dependencies among datasets and cells are hidden [5] (-)
no automatic refresh on update (±) no build-in versioning,
users commonly rely on VCS such as git

(+) interactive nature (+) automatic “regretless” versioning
(+) automatic refresh of dependent data and outputs

R2 (+)manual updates (+) simple scripting (+) plots (-) no sup-
port for workflows and more expressive scripting

(+) support for programming language and limited support
for multi-modality through custom kernels or magics (-) no
spreadsheet data manipulation 1

(+) multi-modal: programming languages (Python, Scala),
query languages (SQL), plots, spreadsheets (+) interoper-
ability through dataset API exposed to all languages

R3 (+) good support for fixing errors manually (-) no auto-
mated error detection (-) automated fixes hard to imple-
mented

(-) no convenient support for fixing errors manually (+)
powerful programming languages for fixing errors auto-
matically (-) no support for automatically flagging errors
and no interface for showing such errors

(+) good support for fixing errors manually using spread-
sheets (+) powerful programming languages for fixing er-
rors automatically (+) Lenses [6] for automatic error detec-
tion and temporary fixes (+) error reports including auto-
matically generated and manually generated annotations

R4 (-) does not scale2 (±) scales using the right extensions to access Spark (-) does
not scale to complex pipelines because of lack of automated
dependency tracking and automatic refresh

(+) scalable by using Spark as a backend (+) scales to com-
plex pipelines because of versioning, automated refresh
and automated dependency tracking

R5 (-) no support for provenance (-) no support for provenance (+)workflowprovenancemaintaining all versions of a note-
book (+) flagged errors are maintained automatically (+)
sources of uncertainty are tracked by the system [6]

R6 (-) no collaboration support (±) no collaboration support, users commonly rely on ver-
sion control systems such as git for collaboration

(+) link sharing for any version of a dataset, plot, or note-
book (+) automatic update of dependent datasets and cells

Table 1: Advantages and Limitations of Notebooks and Spreadsheets wrt. the Requirements for Data-centricWork

NotebookSpreadsheet

F
ro
n
te
n
d

B
a
c
k
e
n
d

Figure 2: Overview of Vizier’s architecture

built on a backend infrastructure composed of three compo-
nents: VisTrails, Mimir, and Spark. Workflows are managed
by a fork of VisTrails [3], a workflow-based data exploration
system that has comprehensive support for both data and
workflow-evolution provenance. A unique feature of our
VisTrails fork is that all data flow between workflow steps is
through Spark dataframes. Where possible, workflow steps
are translated directly to spark operators and executed na-
tively in Spark. Mimir [6] implements Lenses, special work-
flow steps that are the main enabler of data validation and
debugging in Vizier. Mimir also implements a limited form
of fine-grained provenance management for tracking errors
(and other annotations) through workflows.

2.1 A Data-Centric Notebook
In classical “script-centric” notebooks, the fundamental unit
of information flow is a kernel: the state of an interactive
script interpreter (e.g., IPython). In a data-centric notebook
like Vizier, the fundamental unit of information flow is the
dataset, i.e., a dataframe or relational table. All cells can ac-
cess, modify, and produce datasets through language-specific
APIs. For example, a SQL cell can access datasets as tables
in the FROM clause and the result of the query can be made
available as a dataset for other cells to use. We have found
that this more data-centric abstraction takes little away from
users, as dataframes are already the lingua franca of many

data manipulation toolkits like Pandas. In exchange, Vizier
allows native interoperability between multiple languages
(presently SQL, Python, and Scala) though this abstraction,
and is able to provide the new capabilities described below.
Multi-Modal Interface. Rather than prescribing what
method to use to deal with data, Vizier combines a plethora
of well-established interfaces as shown in Figure 1. Cells in
Vizier notebooks can contain SQL code, Python or Scala code.
However, by being data-centric, Vizier also provides special-
ized cells for higher-level tasks like plotting data or repairing
specific classes of data errors semi-automatically [6]. Further-
more, each dataset can be edited through a spreadsheet-like
editor view. Changes in the spreadsheets are incorporated
as scripts into the notebooks using a spreadsheet update
language called Vizual [4] we have developed.
Provenance-Awareness. With individual values in datasets
as an atomic unit of information, Vizier is able to capture fine-
grained provenance through SQL queries using instrumen-
tation techniques [1]. For example, we can identify which
cells (potentially) contribute to one cell of a dataframe, an
extremely useful feature for data debugging. By leveraging
the provenance graph, Vizier allows cells, rows, columns,
or entire datasets to be annotated with documentation that
persists through data transformations. Annotated values are
highlighted, and Vizier can also generate a convenient listing
with all of the documentation for a dataset.

A particularly useful application of this feature are semi-
automated data cleaning operations called Lenses [6]. Vizier
supports Lenses for schema matching, key repair, type infer-
ence, missing value imputation, constraint checking, geocod-
ing, and more. Lens outputs are heuristic, so Vizier docu-
ments the choices it makes, allowing users to review and
revisit them in the future if they turn out to be problematic.

2.2 Additional Design Choices
We now discuss several additional design choices.

Notebooks are actually Workflows. In contrast to
Jupyter, each cell in a Vizier notebook corresponds to a step
in a workflow that is transparently maintained by the system
using a fork of the VisTrails workflow system [4]. This has
the important advantage that changes to a cell are automat-
ically propagated to other cells that depend on the output
of the cell. Thus, Vizier is beneficial for complex operations
that consist of multiple steps where tracking dependencies
among cells and data manually is time consuming (or infeasi-
ble), as well as for interactive data curation and exploration,
where it is typical for a user to iteratively refine and revise
intermediate operations in a workflow.
Scalability and Compatibility through Spark. Vizier re-
lies on Spark to be able to ingest data from a wide variety of
sources and for scalable operations over data of any size.
Data Validation. Vizier’s Lenses can be used for data val-
idation tasks like enforcing domain, consistency, and key
constraints. Violations are reported in the error summary for
a dataset, but will not halt the workflow since Lenses make
best-effort attempts to repair errors.
Versioning. Since notebooks and spreadsheet operations are
internally represented as a workflow based on VisTrails [3],
provenance is available for any modification to a workflow
and the full (branching) version history of the workflow
is tracked. Users can create branches just like in version
management systems like git. However, unlike git where the
creation of a new version is triggered manual, in Vizier, every
change made through any of the user interfaces result in the
creation of a new version. Versions are stored compactly
recording the changes to the workflow rather than how they
differ in terms of datasets.
Collaboration Features. Any version of a notebook,
dataset, or plot can be shared through a link produced by
Vizier. Furthermore, users can add annotations to spread-
sheet cells and these annotations are propagated through
operations, queries and lenses. Both user-defined annota-
tions and data errors flagged by lenses are available to all
users of a project.

3 DEMONSTRATION DESCRIPTION
Vizier is a fully functional system. The deployment we will
be using for the demonstration will contain several preloaded
projects, but participants will be allowed to modify these
projects and/or create new projects based on other datasets
according to their preferences. We will provide a list of links
to open data portals to make it easier for participants to
find datasets. To not overwhelm participants with too many
options initially, we will use a project for the New York cause
of death dataset (https://data.cityofnewyork.us/Health/
New-York-City-Leading-Causes-of-Death/jb7j-dtam),
shown in the accompanying video (https://vizierdb.info/

#video_tour), to demonstrate Vizier. Multiple versions of
this dataset are available through New York’s open data
portal. We will use this scenario to illustrate the problems
that can arise if the formats and semantics of columns
of a new version differ from previous versions and a
workflow designed for a previous version is applied to a new
version. This dataset is a good example, because different
versions of the dataset available through the portal do not
use the same assumptions for encoding information. For
instance, in one version genders are encoded through single
characters (M and F) while in another version which contains
additional new data where gender is encoded as strings
(male and female). We will illustrate that 1) Vizier detects
the inconsistencies between the old and the new dataset
version, 2) Vizier can pinpoint places in the data that cause
the errors, and 3) Vizier provides the necessary tools to fix
such problems in the data.

4 CONCLUSIONS
We present Vizier, a novel system for multi-modal data cura-
tion and exploration that stands out through its support for
notebooks and spreadsheets, extensive support for workflow
and fine-grained provenance, build-in data curation opera-
tions, uncertainty and annotation management features, and
its comprehensive collaboration and version control support.
Vizier is based on years of research on provenance [1, 3],
uncertain data management [6], workflow systems [3], and
data curation [6]. Vizier is an open-source system already
released at https://github.com/VizierDB. Links to additional
resources can be found here: http://www.vizierdb.info/.

ACKNOWLEDGMENTS
This work is supported in part by NSF Awards OAC-1640864
and CNS-1229185, the NYU Moore Sloan Data Science Envi-
ronment, and DARPA D3M.

REFERENCES
[1] B. S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and Q. Zeng. 2018. GProM -

A Swiss Army Knife for Your Provenance Needs. IEEE Data Eng. Bull.
41, 1 (2018), 51–62.

[2] M. Bendre, V. Venkataraman, X. Zhou, K. Chang, and A. G.
Parameswaran. 2018. Towards a Holistic Integration of Spreadsheets
with Databases: A Scalable Storage Engine for Presentational Data
Management. In ICDE.

[3] S. P. Callahan, J. Freire, E. Santos, C. Eduardo Scheidegger, Cláudio T.
Silva, and Huy T. Vo. 2006. VisTrails: visualization meets data manage-
ment. In SIGMOD.

[4] J. Freire, B. Glavic, O. Kennedy, and H. Mueller. 2016. The exception
that improves the rule. In HILDA.

[5] D. Koop and J. Patel. 2017. Dataflow Notebooks: Encoding and Tracking
Dependencies of Cells. In TaPP.

[6] Y. Yang, N. Meneghetti, R. Fehling, Z. Hua Liu, and O. Kennedy. 2015.
Lenses: An On-Demand Approach to ETL. PVLDB 8, 12 (2015), 1578–
1589.

https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/jb7j-dtam
https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/jb7j-dtam
https://vizierdb.info/#video_tour
https://vizierdb.info/#video_tour
https://github.com/VizierDB
http://www.vizierdb.info/

	Abstract
	1 Introduction
	1.1 Requirements
	1.2 Notebooks/Spreadsheet Limitations

	2 System Overview
	2.1 A Data-Centric Notebook
	2.2 Additional Design Choices

	3 Demonstration Description
	4 Conclusions
	Acknowledgments
	References

