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ABSTRACT
Analyzing database access logs is a key part of performance
tuning, intrusion detection, benchmark development, and
many other database administration tasks. Unfortunately,
it is common for production databases to deal with mil-
lions or even more queries each day, so these logs must be
summarized before they can be used. Designing an ap-
propriate summary encoding requires trading off between
conciseness and information content. For example: simple
workload sampling may miss rare, but high impact queries.
In this paper, we present LogR, a lossy log compression
scheme suitable use for many automated log analytics tools,
as well as for human inspection. We formalize and ana-
lyze the space/fidelity trade-off in the context of a broader
family of “pattern” and “pattern mixture” log encodings
to which LogR belongs. We show through a series of ex-
periments that LogR compressed encodings can be created
efficiently, come with provable information-theoretic bounds
on their accuracy, and outperform state-of-art log summa-
rization strategies.

1. INTRODUCTION
Automated analysis of database access logs is critical for

solving a wide range of problems, from database perfor-
mance tuning [6], to compliance validation [11] and query
recommendation [8]. For example, the Peloton self-tuning
database [36] searches for optimal configurations by repeat-
edly simulating database performance on historical queries
drawn from access logs. Unfortunately, query logs for pro-
duction databases can grow to be extremely large — A re-
cent study of queries at a major US bank for a period of
19 hours found that the bank’s systems produced nearly 17
million SQL queries and over 60 million stored procedure ex-
ecution events [27]. Tracking only a sample of these queries
is not sufficient, as rare queries can disproportionately af-
fect database performance, for example, if they are using an
otherwise unused index.

We propose LogR, a lossy compression scheme for sum-
marizing database query logs. The summarized log facili-
tates efficient (both in terms of storage and time) approxi-
mation of workload statistics. Hence applications like database
tuning optimizers and query recommendation systems that
need to repeatedly compute statistics can benefit by com-
pressing the log with LogR during a pre-processing step. As
an additional benefit, the summarized log is interpretable
and can be used for human inspection.

By adjusting a tunable parameter in LogR, a user can
choose to obtain a summary that incurs a low loss of in-
formation (high-fidelity) but is verbose, or obtain a more
compact summary (high-compression) that incurs a greater
loss of information. To manage the loss-rate, we develop a
framework for reasoning about the trade-off between space
and fidelity. While LogR does not admit closed-form so-
lutions to classical information theoretical fidelity measures
like information loss, we propose an efficiently computable fi-
delity measure called Reproduction Error. We show through
a combination of analytical and experimental evidence that
Reproduction Error is a meaningful measure of the quality
in LogR.

LogR-compressed data relies on a codebook based on
structural elements like SELECT items, FROM tables, or con-
junctive WHERE clauses [1]. This codebook provides a bi-
directional mapping from SQL queries to a bit-vector en-
coding and back again. In effect, we treat the query log as
a collection of feature-vectors, with each structural element
as one feature. The compression problem thus reduces to
one of compactly encoding a collection of feature-vectors.

We further simplify this problem by observing that a com-
mon theme in use cases like automated performance tuning
or query recommendation is the need for predominantly ag-
gregate workload statistics. Because such statistics do not
depend on the order of the query log, the compression prob-
lem further reduces to compacting a bag of feature-vectors.

LogR works by identifying groups of co-occurring struc-
tural elements that we call patterns. We define a family
of pattern encodings of access logs, which map patterns to
their frequencies in the log. For pattern encodings, we de-
fine two idealized measures of fidelity: (1) Ambiguity, which
measures how much room the encoding leaves for interpre-
tation; and (2) Deviation, which measures how reliably the
encoding approximates the original log. Neither Ambiguity
nor Deviation can be computed efficiently for pattern encod-
ings. Hence we propose a third measure called Reproduction
Error that is efficiently computable and that closely tracks
both Ambiguity and Deviation.
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In general, the size of the encoding is inversely related
with Reproduction Error: The more detailed the encoding,
the more faithfully it represents the original log. Thus, log
compression may be defined as a search over the space of
pattern based encodings to identify the one that best trades
off between these two properties. Unfortunately, searching
for such an ideal encoding from the full space can be com-
putationally expensive. To overcome this limitation, we re-
duce the search space by first clustering entries in the log
and then encoding each cluster separately, an approach that
we call pattern mixture encoding. Finally we identify a sim-
ple approach to encoding individual clusters that we call
naive mixture encodings, and show experimentally that it
produces results competitive with more powerful techniques
for log compression and summarization.

Concretely, in this paper we make the following contribu-
tions: (1) We define two families of compression for query
logs: pattern and pattern mixture, (2) We define Ambigu-
ity and Deviation, two principled measures of the quality of
any pattern or pattern mixture encoding, (3) We define a
computationally efficient measure, Reproduction Error, and
demonstrate that it is a close approximation of Ambiguity
and Deviation, (4) We propose a clustering-based approach
to efficiently search for naive mixture encodings, and show
how these encodings can be further optimized, and, (5) We
experimentally validate our approach and show that it pro-
duces more precise encodings faster than several state-of-
the-art pattern encoding algorithms.

2. PROBLEM DEFINITION
In this section, we introduce and formally define the log

compression problem. We begin by exploring several appli-
cations that need to repeatedly analyze query logs.

Index Selection. Selecting an appropriate set of indexes
requires trading off between update costs, access costs, and
limitations on available storage space. Existing strategies for
selecting a (near-)optimal set of indexes typically repeatedly
simulate database performance under different combinations
of indexes, which in turn requires repeatedly estimating the
frequency with which specific predicates appear in the work-
load. For example, if status = ? occurs in 90% of the queries
in a workload, a hash index on status is beneficial.

Materializing Views Selection. The results of joins or
highly selective selection predicates are good candidates for
materialization when they appear frequently in the work-
load. Like index selection, view selection is a non-convex
optimization problem, typically requiring exploration by re-
peated simulation, which in turn requires repeated frequency
estimation over the workload.

Online Database Monitoring. In production settings, it
is common to monitor databases for atypical usage patterns
that could indicate a serious bug or security threat. When
query logs are monitored, it is often done retrospectively,
some hours after-the-fact [27]. To support real-time moni-
toring it is necessary to quickly compute the frequency of a
particular class of query in the system’s typical workload.

In each case, the application’s interactions with the log
amount to counting queries that have specific features: se-
lection predicates, joins, or similar.

2.1 Notation

Let L be a log, or a finite collection of queries q ∈ L. We
write f ∈ q to indicate that q has some feature f , such as
a specific predicate or table in its FROM clause. We assume
(1) that the universe of features in both a log and a query
is enumerable and finite, and (2) that a query is isomorphic
to its feature set. We outline one approach to extracting
features that satisfies both assumptions below. We abuse
syntax and write q to denote both the query itself, as well
as the set of its (relevant) features.

Let b denote some set of features f ∈ b, which we call
a pattern. We write these sets using vector notation: b =
(x1, . . . , xn) where n is the number of distinct features ap-
pearing in the log and xi indicates the presence (absence)
of ith feature with a 1 (resp., 0). For any two patterns b,
b′, we say that b′ is contained in b if b′ ⊆ b. Equivalently,
using vector notation b = (x1, . . . , xn), b′ = (x′1, . . . , x

′
n):

b′ ⊆ b ≡ ∀i, x′i ≤ xi
Our goal then is to be able to query logs for the number of
times a pattern b appears:

| { q | q ∈ L ∧ b ⊆ q } |

2.2 Coding Queries
For this paper, we specifically adopt the feature-extraction

conventions of a query summarization scheme by Aligon et
al. [1]. In this scheme, each feature is one of the follow-
ing three query elements: (1) a table or sub-query in the
FROM clause, (2) a column in the SELECT clause, and (3) a
conjunctive clause of the WHERE clause.

Example 1. Consider the following example query.

SELECT _id , sms_type , _time FROM Messages
WHERE status = 1 AND transport_type = 3

This query uses 6 features: 〈 sms_type, SELECT 〉, 〈 _id, SELECT 〉,
〈 _time, SELECT 〉, 〈 Messages, FROM 〉, 〈 status = 1, WHERE 〉,
and 〈 transport_type = 3, WHERE 〉

Although this scheme is simple and limited to conjunctive
queries (or queries with a conjunctive equivalent), it fulfills
both assumptions we make on feature extraction schemes.
The features of a query (and consequently a log) are enumer-
able and finite, and the feature set of the query is isomorphic
(modulo commutativity and column order) to the original
query. Furthermore, even if a query is not itself conjunc-
tive, it often has a conjunctive equivalent. We quantify this
statement with Table 1, which provides two relevant data
points from production query logs; In both cases, all logged
queries can be rewritten into equivalent queries compatible
with the Aligon scheme.

Although we do not explore more advanced feature encod-
ing schemes in detail here, we direct the interested reader
to work on query summarization [30, 2, 27]. For example, a
scheme by Makiyama et. al. [30] also captures aggregation-
related features like group-by columns, while an approach by
Kul et. al. [27] encodes partial tree-structures in the query.

2.3 Log Compression
As a lossy form of compression, LogR only approximates

the information content of a query log. We next develop
a simplified form of LogR that we call pattern-based com-
pression, and develop a framework for reasoning about the
fidelity of a LogR-compressed log. As a basis for this frame-
work, we first reframe the information content of a query log
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SELECT sms type, external ids, time, id
FROM messages

WHERE (sms type=1) ∧ (sms type=0) ∧ (status=1)

(a) Correlation-ignorant : Features are highlighted independently

SELECT sms type FROM messages WHERE sms type=1

SELECT sms type FROM messages WHERE status=1

(b) Correlation-aware: Pattern groups are highlighted together.

Figure 1: Example Encoding Visualizations

to allow us to adapt classical information-theoretical mea-
sures of information content.

2.3.1 Information Content of Logs
We define the information content of the log as a distri-

bution p(Q | L) of queries Q drawn uniformly from the log.

Example 2. Consider the following query log, which con-
sists of four conjunctive queries.

1. SELECT _id FROM Messages WHERE status = 1
2. SELECT _time FROM Messages

WHERE status = 1 AND sms_type = 1
3. SELECT _id FROM Messages WHERE status = 1
4. SELECT sms_type , _time FROM Messages

WHERE sms_type = 1

Drawing uniformly from the log, each entry will appear with
probability 1

4
= 0.25. The query q1 (= q3) occurs twice, so

the probability of drawing it is double that of the others (i.e.,
p(q1 | L) = p(q3 | L) = 2

4
= 0.5)

Treating a query as a vector of its component features,
we can define a query q = (x1, . . . , xn) to be an obser-
vation of the multivariate distribution over variables Q =
(X1, . . . , Xn) corresponding to features. The event Xi = 1
occurs if feature i appears in a query uniformly drawn from
the log.

Example 3. Continuing, the universe of features for this
query log is (1) 〈 _id, SELECT 〉, (2) 〈 _time, SELECT 〉,
(3) 〈 sms_type, SELECT 〉, (4) 〈 status = 1, WHERE 〉,
(5) 〈 sms_type = 1, WHERE 〉, and (6) 〈 Messages, FROM 〉. Ac-
cordingly, the queries can be encoded as feature vectors, with
fields counting each feature’s occurrences: q1 = 〈 1, 0, 0, 1, 0, 1 〉,
q2 = 〈 0, 1, 0, 1, 1, 1 〉, q3 = 〈 1, 0, 0, 1, 0, 1 〉, q4 = 〈 0, 1, 1, 0, 1, 1 〉

Patterns. Our target applications require us to count the
number of times features (co-)occur in a query. For example,
materialized view selection requires counting tables used to-
gether in queries. Motivated by this observation, we begin
by defining a broad class of pattern based encodings that di-
rectly encode co-occurrence probabilities. A pattern is an
arbitrary set of features b = (x1, . . . , xn) that may co-occur
together. Each pattern captures a piece of information from
the distribution p(Q | L). In particular, we are interested in
the probability of uniformly drawing a query q from the log
that contains the pattern b (i.e., q ⊇ b):

p(Q ⊇ b | L) =
∑

q∈L∧q⊇b p(q | L)

When it is clear from context, we abuse notation and write
p(·) instead of p(· | L). Recall that p(Q) can be repre-
sented as a joint distribution over variables (X1, . . . , Xn)
and probability p(Q ⊇ b) is thus equivalent to the marginal
probability or simply marginal p(X1 ≥ x1, . . . , Xn ≥ xn).

Pattern-Based Encodings. Denote by Emax : Nn →
[0, 1], the mapping from the space of all possible patterns
b ∈ Nn to their marginals. A pattern based encoding E is any
such partial mapping E ⊆ Emax. We denote the marginal of
pattern b in encoding EL by EL[b] (= p(Q ⊇ b | L)). When
it is clear from context, we abuse syntax and also use E to
denote the set of patterns it maps (i.e., domain(E)). Hence,
|E| is the number of mapped patterns, which we call the en-
coding’s Verbosity. A pattern based encoder is any algorithm
encode(L, ε) 7→ E whose input is a log L and whose output
is a set of patterns E , with Verbosity thresholded at some
integer ε. Many pattern mining algorithms [12, 31] can be
used for this purpose.

2.3.2 Communicating Information Content
A side-benefit of pattern based encodings is that they are

interpretable: patterns and their marginals can be used for
human analysis of the log. Figure 1 shows two examples.
The approach illustrated in Figure 1a uses shading to show
each feature’s frequency in the log, and communicates fre-
quently occurring constraints or attributes. This approach
might, for example, help a human to manually select in-
dexes. A second approach illustrated in Figure 1b conveys
correlations, showing the frequency of entire patterns.

3. INFORMATION LOSS
Our goal is to encode the distribution p(Q) as a set of

patterns: obtaining a less verbose encoding (i.e., with fewer
patterns), while also ensuring that the encoding captures
p(Q) without information loss. We will start by defining
information loss for pattern based encodings and generalize
the definition to probabilistic models.

3.1 Lossless Summaries
To establish a baseline for measuring information loss, we

begin with the extreme cases. At one extreme, an empty
encoding (|E| = 0) conveys no information. At the other ex-
treme, we have the encoding Emax which is the full mapping
from all patterns. Having this encoding is a sufficient con-
dition to exactly reconstruct the original distribution p(Q).

Proposition 1. For any query q = (x1, . . . , xn) ∈ Nn,
the probability of drawing exactly q at random from the log
(i.e., p(X1 = x1, . . . , Xn = xn)) is computable, given Emax.

3.2 Lossy Summaries
Although lossless, Emax is also verbose. Hence, we will

focus on lossy encodings that can be less verbose. A lossy
encoding E ⊂ Emax may not be able to precisely identify
the distribution p(Q), but can still be used to approximate
the distribution. We characterize the information content of
a lossy encoding E by defining a space (denoted by ΩE) of
distributions ρ ∈ ΩE allowed by an encoding E . This space is
defined by constraints as follows: First, we have the general
properties of probability distributions:

∀q ∈ Nn : ρ(q) ≥ 0
∑

q∈Nn ρ(q) = 1

Each pattern b in the encoding E constraints the marginal
probability over its component features:

∀b ∈ domain(E) : E [b] =
∑

q⊇b
ρ(q)

Note that the dual constraints 1 − E [b] =
∑

q6⊇b ρ(q) are

redundant under constraint
∑

q∈Nn ρ(q) = 1.
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The resulting space ΩE is the set of all query logs, or
equivalently the set of all possible distributions of queries,
that obey these constraints. From the outside observer’s
perspective, the distribution ρ ∈ ΩE that the encoding con-
veys is ambiguous: We model this ambiguity with a ran-
dom variable PE with support ΩE . The true distribution
p(Q) derived from the query log must appear in ΩE , denoted
p(Q) ≡ ρ∗ ∈ ΩE (i.e., p(PE = ρ∗) > 0). Of the remaining
distributions ρ admitted by ΩE , it is possible that some are
more likely than others. For example, a query containing a
column (e.g., status) is only valid if it also references a table
that contains the column (e.g., Messages). This prior knowl-
edge may be modeled as a prior on the distribution of PE
or by an additional constraint. However, for the purposes of
this paper, we take the uninformed prior by assuming that
PE is uniformly distributed over ΩE :

p(PE = ρ) =

{
1
|ΩE |

if ρ ∈ ΩE

0 otherwise

Naive Encodings. One specific family of lossy encodings
that treats each feature as being independent (e.g., as in
Figure 1a) is of particular interest to us. We call this family
naive encodings, and return to it throughout the rest of the
paper. A naive encoding is composed of all patterns that
have exactly one feature and a non-zero marginal.

{ b = (0, . . . , 0, xi, 0, . . . , 0) | i ∈ [1, n], xi = 1 }

3.3 Idealized Information Loss Measures
Based on the space of distributions constrained by the

encoding, the information loss of a encoding can be consid-
ered from two related, but subtly distinct perspectives: (1)
Ambiguity measures how much room the encoding leaves
for interpretation, (2) Deviation measures how reliably the
encoding approximates the target distribution p(Q).

Ambiguity. We define the Ambiguity I(E) of an encoding
as the entropy of the random variable PE . The higher the
entropy, the less precisely E identifies any specific distribu-
tion.

I(E) =
∑
ρ

p(PE = ρ) log (p(PE = ρ))

Deviation. The deviation from any permitted distribu-
tion ρ to the true distribution ρ∗ can be measured by the
Kullback-Leibler (K-L) divergence [28] (denote asDKL(ρ∗||ρ)).
We define Deviation d(E) of a encoding as the expectation
of the K-L divergence over all permitted ρ ∈ ΩE :

d(E) = EPE [DKL(ρ∗||PE)] =
∑
ρ∈ΩE

p(PE = ρ) · DKL(ρ∗||ρ)

Limitations. There are two limitations to these idealized
measures in practice. First, K-L divergence is not defined
from any probability measure ρ∗ that is not absolutely con-
tinuous with respect to a second (denoted ρ∗ � ρ). Second,
neither Deviation nor Ambiguity has a closed-form formula.

4. PRACTICAL LOSS MEASURE
Computing either Ambiguity or Deviation requires enu-

merating the entire space of possible distributions, or an
approximation. One approach to estimating either measure
is to repeatedly sample from, rather than enumerate the

space. However accurate measures require a large number
of samples, rendering this approach similarly infeasible. In
this section, we propose a faster approach to assessing the
fidelity of a pattern encoding. We select a single represen-
tative distribution ρE from the space ΩE , and use ρE to
approximate both Ambiguity and Deviation.

4.1 Reproduction Error
Maximum Entropy Distribution. Inspired by the prin-
ciple of maximum entropy [21], we select a single distin-
guished representative distribution ρE from the space ΩE :

ρE = arg min
ρ∈ΩE

−H(ρ) where H(ρ) =
∑
q∈Nn

−ρ(q) log ρ(q)

Maximizing an objective function belonging to the expo-
nential family (entropy in our case) under a mixture of lin-
ear equalities/inequality constraints is a convex optimization
problem [5] which guarantees a unique solution and can be
efficiently solved [10], using the cvx toolkit [17, 33], and/or
subdividing the problem by grouping variables of q ∈ Nn
into equivalence classes. For naive encodings specifically,
we can assume independence across word occurrences Xi.
Under this assumption, ρE has a closed-form solution:

ρE(q) =
∏
i

p(Xi = xi) where q = (x1, . . . , xn) (1)

Reproduction Error. Using the representative distribu-
tion ρE , we define Reproduction Error e(E) as the entropy
difference between the representative and true distributions:

e(E) = H(ρE)−H(ρ∗) where ρE = arg min
ρ∈ΩE

−H(ρ)

Relationship to K-L Divergence. Reproduction Error
is closely related to the K-L divergence from the represen-
tative distribution ρE to the true distribution ρ∗.

DKL(ρ∗||ρE) = H(ρ∗, ρE)−H(ρ∗)

where H(ρ∗, ρE) =
∑
q

−ρ∗(q) log ρE(q)

H(ρ∗, ρE) is called the cross-entropy. Replacing cross-entropy
by entropy H(ρE), the formula becomes the same as Repro-
duction Error. Though cross entropy is different from en-
tropy in general, e.g., it is only defined when ρ∗ � ρE , they
are closely correlated. However, for the specific case of naive
encodings the two are equivalent.

Lemma 1. For any naive encoding E, H(ρ∗, ρE) = H(ρE)

Proof. With q = (x1, . . . , xn) and applying Equation 1:∑
q∈L
−ρ∗(q) log ρE(q) = −

∑
q

p(q) ·
∑
i

log p(Xi = xi)

= −
∑
i,k

log p(Xi = k) ·
∑

q | xi=k
p(q)

= −
∑
i,k

log p(Xi = k) · p(Xi = k)

=
∑
i

H(Xi)

The variables in a naive encoding are independent, so:∑
iH(Xi) = H(ρ̄E), and we have the lemma.

While we do not provide a similar proof for more general
encodings, we show it experimentally in Section 7.3.
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4.2 Practical vs Idealized Information Loss
In this section we prove that Reproduction Error closely

parallels Ambiguity. We define a partial order lattice over
encodings and show that for any pair of encodings on which
the partial order is defined, a like relationship is implied for
both Reproduction Error and Ambiguity. We supplement
the proofs given in this section with an empirical analysis
relating Reproduction Error to Deviation in Section 7.3.

Containment. We define a partial order over encodings
≤Ω based on containment of their induced spaces ΩE :

E1 ≤Ω E2 ≡ ΩE1 ⊆ ΩE2

That is, one encoding (i.e., E1) precedes another (i.e., E2)
when all distributions admitted by the former encoding are
also admitted by the latter.

Containment Captures Reproduction Error. We first
prove that the total order given by Reproduction Error is a
superset of the partial order ≤Ω.

Lemma 2. For any two encodings E1, E2 with induced spaces
ΩE1 ,ΩE2 and maximum entropy distributions ρE1 , ρE2 it holds
that E1 ≤Ω E2 → e(E1) ≤ e(E2).

Proof. Firstly ΩE2 ⊇ ΩE1 → ρE1 ∈ ΩE2 . Since ρE2 has
the maximum entropy among all distributions ρ ∈ ΩE2 , we
have H(ρE1) ≤ H(ρE2) ≡ e(E1) ≤ e(E2).

Containment Captures Ambiguity. Next, we show
that the partial order based on containment implies a like
relationship between Ambiguities of pairs of encodings.

Lemma 3. Given encodings E1, E2 with uninformed prior
on PE1 ,PE2 , it holds that E1 ≤Ω E2 → I(E1) ≤ I(E2).

Proof. Given an uninformed prior: I(E) = log |ΩE |. Hence
E1 ≤Ω E2 → |ΩE1 | ≤ |ΩE2 | → I(E1) ≤ I(E2)

5. PATTERN MIXTURE ENCODINGS
Thus far we have defined the problem of log compression,

treating the query log as a single joint distribution p(Q)
that captures the frequency of feature occurrence and/or
co-occurrence. Patterns capture positive information about
correlations. However in cases like logs of mixed workloads,
there are also many cases of anti-correlation between fea-
tures. For example, consider a log that includes queries
drawn from two workloads with disjoint feature sets. Pat-
terns with features from both workloads never actually oc-
cur in the log. However, unless explicitly defined otherwise,
many such patterns will have non-zero marginals. Consis-
tently excluding anti-correlations, in general, requires adding
many patterns to the encoding.

In this section, we explore an alternative to capturing cor-
relation and anti-correlation with a single set of patterns.
Instead, we propose a generalization of pattern encodings
where the log is modeled not as a single probability distribu-
tion, but rather as a mixture of several simpler distributions.
The resulting encoding is likewise a mixture: Each compo-
nent of the mixture of distributions is stored independently.
Hence, we refer to it as a pattern mixture encoding, and it
forms the basis of LogR compression.

To start, we explore a simplified form of the problem,
where we only mix naive pattern encodings. We refer to
the resulting scheme as naive mixture encodings, and give
examples of the encoding, as well as potential visualizations

in Section 5.1. Using naive mixture encodings as an ex-
ample, we generalize Reproduction Error and Verbosity for
pattern mixture encodings in Section 5.2. With generalized
encoding evaluation measures, we then evaluate several en-
coding strategies based on different clustering methods for
creating naive mixture encodings. Finally, in Section 6.4, we
discuss strategies for refining naive mixture encodings into
more precise, general mixture encodings.

5.1 Example: Naive Mixture Encodings
Consider a toy query log with only 3 conjunctive queries.

1. SELECT id FROM Messages WHERE status = 1

2. SELECT id FROM Messages

3. SELECT sms_type FROM Messages

The vocabulary of this log consists of 4 features: 〈 id, SELECT 〉,
〈 sms_type, SELECT 〉, 〈 Messages, FROM 〉, and 〈 status = 1, WHERE 〉.
Re-encoding the three queries as vectors, we get:

1. 〈 1, 0, 1, 1 〉 2. 〈 1, 0, 1, 0 〉 3. 〈 0, 1, 1, 0 〉

A naive encoding of this log can be expressed as:〈
2

3
,

1

3
, 1,

1

3

〉
This encoding captures that all queries in the log pertain to
the Messages table, but obscures the relationship between
the remaining features. For example, this encoding obscures
the anti-correlation between id and sms_type. Similarly, the
encoding hides the association between status = 1 and id.
Such relationships are critical for evaluating the effectiveness
of views or indexes.

Example 4. The maximal entropy distribution for a naive
encoding assumes that features are independent. Assuming
independence, the probability of query 1 from the log is:

p(id) · p(¬sms type) · p(Messages) · p(status=1) =
4

27
≈ 0.148

This is a significant difference from true probability of this
query (i.e., 1

3
). Conversely queries not in the log, such as

the following, would be assumed to have non-zero probability.

SELECT sms_type FROM Messages WHERE status = 1

p(¬id) · p(sms type) · p(Messages) · p(status=1) =
1

27
≈ 0.037

To achieve a more faithful representation of the original
log, we could partition it into two components, with the
corresponding encoding parameters:

Partition 1 (L1) Partition 2 (L2)

(1, 0, 1, 1) (1, 0, 1, 0) (0, 1, 1, 0)
↓ ↓ ↓〈

1, 0, 1, 1
2

〉
〈 0, 1, 1, 0 〉

The resulting encoding only has one non-integral proba-
bility: p(status = 1 | L1) = 0.5. Although there are now
two encodings, the encodings are not ambiguous. The fea-
ture status = 1 appears in exactly half of the log entries,
and is indeed independent of the other features. All other
attributes in each encoding appear in all queries in their
respective partitions. Furthermore, the maximum entropy
distribution induced by each encoding is exactly the distri-
bution of queries in the compressed log. Hence, the Repro-
duction Error is zero for both of the two encodings.
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5.2 Generalized Encoding Fidelity
We next generalize our definitions of Reproduction Error

and Verbosity from pattern to pattern mixture encodings.
Suppose query log L has been partitioned into K clusters
with Li, Si, ρSi

and ρ∗i (where i ∈ [1,K]) representing the
log of queries, encoding, maximum entropy distribution and
true distribution (respectively) for ith cluster. First, ob-
serve that the distribution for the whole log (i.e., ρ∗) is the
sum of distributions for each partition (i.e., ρ∗i ) weighted by

proportion of queries (i.e., |Li|
|L| ) in the partition.

ρ∗(q) =
∑

i=1,...,K

wi · ρ∗i (q) where wi =
|Li|
|L|

Generalized Reproduction Error. Similarly, the max-
imum entropy distribution ρS for the whole log can be ob-
tained as

ρS(q) =
∑

i=1,...,K

wi ∗ ρSi
(q)

We define the Generalized Reproduction Error of a pattern
mixture encoding similarly, as the weighted sum of the errors
for each partition:

H(ρS)−H(ρ∗) =
∑
i

wi ·H(ρSi
)−

∑
i

wi ·H(ρ∗i ) =
∑
i

wi · e(Si)

As in the base case, a pattern mixture encoding with low
generalized Reproduction Error indicates a high-fidelity rep-
resentation of the original log. A process can infer the prob-
ability of any query p(Q = q | L) drawn from the original
distribution, simply by inferring its probability drawn from
each cluster i (i.e., p(Q = q | Li)) and taking a weighted
average over all inferences. When it is clear from context,
we refer to generalized Reproduction Error simply as Error
in the rest of this paper.

Generalized Verbosity. Verbosity can be generalized to
mixture encodings in two ways. First we could measure the
Total Verbosity (

∑
i |Si|), or the total size of the encoded

representation. This approach is ideal for our target ap-
plications, where our aim is to reduce the representational
size of the query log. As an alternative, we could express
the complexity of the encoding by computing the Average
Verbosity (

∑
i wi · |Si|), which measures the expected size

of each cluster. The latter measure is specifically useful in
cases where LogR encodings are presented for human con-
sumption, as lower average verbosity encodings are simpler.

6. PATTERN MIXTURE COMPRESSION
We are now ready to describe the LogR compression

scheme. Broadly, LogR attempts to identify a pattern mix-
ture encoding that optimizes for some target trade-off be-
tween Total Verbosity and Error. A naive — though im-
practical — approach to finding such an encoding would be
to search the entire space of possible pattern mixture en-
codings. Instead, LogR approximates the same outcome
by identifying the naive pattern mixture encoding that is
closest to optimal for the desired trade-off. As we show ex-
perimentally, the naive mixture summary produced by the
first stage is competitive with more complicated, slower tech-
niques for summarizing query logs. We also explore a hypo-
thetical second stage, where LogR refines the naive mixture
encoding to further reduce error. The outcome of this hypo-
thetical stage has a slightly lower Error and Verbosity, but
does not admit efficient computation of database statistics.

6.1 Constructing Naive Mixture Encodings
LogR compression searches for a naive mixture summary

that best optimizes for a requested tradeoff between Total
Verbosity and Error. As a way to make this search efficient,
we observe that a log (or log partition) uniquely determines
its naive mixture encoding. Thus the problem of search-
ing for a naive mixture encoding reduces to the problem of
searching for the corresponding log partitioning.

We further observe that the Error of a naive mixture en-
coding is proportional to the diversity of the queries in the
log being encoded; The more uniform the log (or partition),
the lower the corresponding error. Hence, the partitioning
problem further reduces to the problem of clustering queries
in the log by feature overlap.

To identify a suitable clustering scheme, we next eval-
uate four commonly used partitioning/clustering methods:
(1) KMeans [20] with Euclidean distance (i.e., l2-norm) and
Spectral Clustering [24] with (2) Manhattan (i.e., l1-norm),
(3) Minkowski (i.e., lp-norm) with p = 4, and (4) Hamming

( Count(x6=y)
Count(x 6=y)+Count(x=y)

) distances1. Specifically, we evalu-

ate these four strategies with respect to their ability to create
naive mixture encodings with low Error and low Verbosity.

Experiment Setup. Spectral and KMeans clustering al-
gorithms are implemented by sklearn [37] in Python. We
gradually increaseK (i.e., the number of clusters) configured
for selected clustering algorithm that simulates the process
of continuously sub-clustering the log, tolerating higher To-
tal Verbosity for lower Error. To compare clustering meth-
ods fairly, we reduce randomness in clustering (e.g., random
initialization in KMeans) by running each of them 10 times
for each K and averaging Error of resulting encodings. We
used two datasets: “US Bank” and “PocketData.” We de-
scribe both datsets in detail in Section 7.1 and the data
preparation process in Section 7.2. All results for our clus-
tering experiments are shown in Figure 2.

6.1.1 Clustering
In this section, we show that (1) Clustering is an effec-

tive way to consistently reduce Error, and that (2) Classical
clustering methods differ in at least one of Error, Verbosity,
and/or runtime.

Adding more clusters reduces Error. Figure 2a com-
pares the relationship between the number of clusters (x-
axis) and Error (y-axis), showing the varying rates of con-
vergence to zero Error for each clustering method. We ob-
serve that adding more clusters consistently reduces Error
for both data sets, regardless of clustering method and dis-
tance measures. We note that the US Bank dataset is signif-
icantly more diverse than the PocketData dataset, with re-
spect to the total number of features (See Table 1) and that
more than 30 clusters may be required for reaching near-zero
Error. In general, Manhattan distance is not competitive as
others for both datasets and Hamming distance converges
faster than other methods on PocketData. Minkowski dis-
tance shows faster convergence rate than Hamming within
14 clusters on US bank dataset. However, it is also the only
one that shows consistently increasing trend on Error when
the number of clusters exceeds 22 for both datasets. This

1We also evaluated Spectral Clustering with Euclidean,
Chebyshev and Canberra distances; These did not perform
better and we omit them in the interest of conciseness.
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is because lp-norm is more aggressive in distinguishing be-
tween vectors as p grows (i.e., l4 vs l2) and since US bank
dataset is more diverse, Minkowski helps by separating the
highly mixed workloads aggressively. But it begin to break
down when the data is already well-organized (e.g., being
partitioned into more than 22 clusters).

Adding more clusters increases Total Verbosity. Fig-
ure 2b compares the relationship between the number of
clusters (x-axis) and Total Verbosity (y-axis). We observe
that Total Verbosity increases with the number of clusters.
This is because when a partition is split, features common
to both partitions each increase the Total Verbosity by 1.

Hierarchical Clustering. Classical clustering methods
produce non-monotonic cluster assignments. That is, Er-
ror/Total Verbosity can actually grow/shrink with more clus-
ters, as seen in Figure 2a and 2b. Notably, a class of clus-
tering approaches called hierarchical clustering [22] does cre-
ate monotonic assignments, and can offer more flexible con-
trol on deciding which cluster to further explore, by sub-
clustering and constructing naive encodings with lower Re-
production Error on sub-clusters.

Error v. Average Verbosity. We observe from Fig-
ure 2c that Average Verbosity (x-axis) positively correlates
with Error (y-axis). By comparing Figure 2a with 2c, we
also observe that the clustering method that achieves lower
Error also has lower Average Verbosity. Recall that Average
Verbosity is the weighted sum of the number of distinct fea-
tures in each cluster for naive mixture encodings. Misplacing
queries with less overlap in features (i.e., less similar) into
the same cluster increases its number of distinct features,
and Average Verbosity measures the weighted average de-
gree of such misplacement over all clusters.

Running Time Comparison. The total running time
(y-axis) in Figure 2d is measured in seconds and includes
both distance matrix computation time (if any) and cluster-
ing running time. Since the total running time of KMeans is
significantly lower than that of Spectral Clustering, we loga-
rithmically scaled Y-axis. In addition, the figure shows that
Hamming distance is also the winner among other distances
with respect to running time.

Take-Aways. Under Spectral Clustering, Hamming dis-
tance helps to construct naive mixture encodings faster and
of lower Error than other distance measures. Additionally,
in cases where it may be necessary to dynamically vary the
accuracy (e.g., log visualizations), KMeans or its variants
(e.g., KMedoids [35]) with customized distance measures
(e.g., Hamming) are more effective, since KMeans is orders
of magnitude faster than Spectral Clustering.

6.2 Approximating Log Statistics
Recall that our primary goal is estimating statistics about

the log. In particular, we are interested in counting the
number of occurrences (i.e., marginal) of a particular pattern
b in the log:

Γb(L) = | { q | q ∈ L ∧ b ⊆ q } |

Recall that a naive encoding EL of the log carries only pat-
terns with only single feature present. In the absence of
a prior over the space of encodings allowed by EL — that
is, assuming a uniform distribution over log distributions
allowed by this encoding — the expected log distribution

is the maximal entropy distribution ρEL introduced in Sec-
tion 4.1. Hence, the expectation of Γb(L) is computed by
multiplying the probability of the feature occurring by the
size of the log: |L| · ρEL, or:

E[ Γb(L) | EL ] = |L| ·

 ∏
f∈E where f⊆b

E [f ]


This process trivially generalizes to naive pattern mixture

encodings by mixing distributions. Specifically, given a set
of partitions L1 ∪ . . . ∪ LK = L, the expected counts for
each individual partition Li may be computed based on the
partition’s encoding Ei

E[ Γb(Li) | E1, . . . , EK ] =
∑

i∈[1,K]

E[ Γb(Li) | Ei ]

6.3 Pattern Synthesis & Marginal Estimation
In this section, we empirically verify the effectiveness of

naive mixture encoding in approximating log statistics from
two related perspectives. The first perspective focuses on
synthesis error. It measures whether patterns synthesized
by naive mixture encoding actually exist in the log. From
the second perspective, we would like to further investigate
marginal deviation. It measures whether naive mixture en-
coding gives correct marginal values to patterns that one
may query for. Specifically, synthesis error is measured as
1 − M

N
where N is the total number of randomly synthe-

sized patterns and M is the number of synthesized patterns
with positive marginals in the log. Marginal deviation is

measured as |ESTM−TM|
TM

where TM is true marginal of a
pattern and ESTM is the one estimated by naive mixture
encoding.

We then set up experiments and empirically show that
both synthesis error and marginal deviation consistently de-
creases with lower Reproduction Error. Unless explicitly
specified, we adopt the same experiment settings as Sec-
tion 6.1.1 and experiment results are shown in Figure 3.

Figure 3a shows synthesis error (y-axis) versus Reproduc-
tion Error (x-axis). The figure is generated by randomly
synthesizing N = 10000 patterns from each partition of the
log. Different values of N are tested and they show similar
result. Similar to Section 6.1.1, we gradually increase the
number of clusters to reduce Reproduction Error. Synthe-
sis error is then measured on each partition and the final
synthesis error is the average over all partitions weighted by
proportion of queries in the partition.

Figure 3b shows marginal deviation (y-axis) versus Re-
production Error (x-axis). It is not possible to enumerate
all patterns that exist in the data. As an alternative, we
treat each distinct query in the log as a pattern and measure
marginal deviation only on distinct queries. This is because
we observe that marginal deviation tends to be smaller if
it is measured on a pattern that is contained in the other
one. Hence marginal deviation measured on an query is the
upper bound of those measured on all possible patterns that
this query contains. To measure marginal deviation for each
partition, we enumerate all of its distinct queries and take
an equally weighted average2. The final marginal deviation
for the whole log is an weighted average similar to that of
synthesis error.

2Both frequent and infrequent patterns are treated equally.
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(a) Error v. Number of Clusters (Left: PocketData, Right: US Bank)

(b) Total Verbosity v. Number of Clusters (Left: PocketData, Right: US Bank); We offset Y-axis by Verbosity of
the naive encoding without clustering (i.e., the total number of distinct features in the log) to show the change.

(c) Error v. Expectation of Verbosity (Left: PocketData, Right: US Bank)

(d) Running Time v. Number of Clusters (Left: PocketData, Right: US Bank)

Figure 2: Distance Measure Comparison
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(a) Synthesis Error v. Reproduction Error
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(b) Marginal Deviation v. Reproduction Error

Figure 3: Effectiveness of Naive Mixture Encoding

6.4 Naive Encoding Refinement
Naive mixture encodings can already achieve close to near-

zero Error (Figure 2a), have low Verbosity, and admit effi-
ciently computable log statistics Γb(L). Although doing so

makes estimating statistics more computationally expensive,
as a thought experiment, we next consider how much of an
improvement we could achieve in the Error/Verbosity trade-
off by exploring a hypothetical second stage that enriches
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naive mixture encodings by adding non-naive patterns.

Feature-Correlation Refinement. The first challenge
we need to address is that our closed-form formula for Re-
production Error only works for naive summaries. Hence,
we first consider the simpler problem of identifying the in-
dividual pattern that most reduces the Reproduction Error
of a naive summary.

Recall that for the Reproduction Error of a naive encod-
ing has the closed-form representation by assuming indepen-
dence among features (i.e., ρS(Q = q) =

∏
i p(Xi = xi)).

Similarly, under naive encodings we have a closed-form esti-
mation of marginals p(Q ⊇ b) (i.e., ρS(Q ⊇ b) =

∏
i p(Xi ≥

xi)). We define the feature-correlation of pattern b as the
log-difference from its actual marginal to the estimation, ac-
cording to naive encoding.

WC(b, S) = log (p(Q ⊇ b))− log (ρS(Q ⊇ b))

Intuitively, patterns with higher feature correlations create
higher Errors, which in turn makes them ideal candidates for
addition to the compressed log encoding. For two patterns
with the same feature-correlation, the one that occurs more
frequently will have the greatest impact on Error [19]. As
a result, we compute an overall score for ranking patterns
involving feature-correlation:

corr rank(b) = p(Q ⊇ b) ·WC(b, S)

We show in Section 7.3 that corr rank closely correlates
with Reproduction Error. That is, a higher corr rank value
indicates that a pattern produces a greater Reproduction
Error reduction if introduced into the naive encoding.

Pattern Diversification. This greedy approach only al-
lows us to add a single pattern to each cluster. In general,
we would like to identify a set of patterns to add to each
cluster. We cannot sum up corr rank of each pattern in
the set to estimate its Reproduction Error, because partial
information content carried by patterns may overlap. To
counter such overlap, or equivalently to diversify patterns,
inevitably we will need to search through the space of com-
binatorially large number of candidate pattern sets. The
search process can be time-consuming even using heuristics.
In other words, the potential Reproduction Error reduction
by plugging-in state-of-the-art pattern mining algorithms
may come with burden on computation efficiency. We ex-
perimentally analyze cases where naive mixture encodings
are kept intact, refined or replaced by patterns mined from
them in Section 7.4.

7. EXPERIMENTS
In this section, we design experiments to empirically (1) val-

idate that Reproduction Error correlates with Deviation and
(2) evaluate the effectiveness of LogR compression.

7.1 Data Sets
We use two specific datasets in the experiment: (1) SQL

query logs of the Google+ Android app extracted from the
PocketData public dataset [25] and (2) SQL query logs that
capture all query activity on the majority of databases at a
major US bank over a period of approximately 19 hours. A
summary of these two datasets is given in Table 1.

The PocketData-Google+ query log. The dataset con-
sists of SQL logs that capture all database activities of 11
Android phones. We selected Google+ application for our

Table 1: Summary of Data sets

Statistics PocketData US bank

# Queries 629582 1244243

# Distinct queries 605 188184

# Distinct queries (w/o const) 605 1712

# Distinct conjunctive queries 135 1494

# Distinct re-writable queries 605 1712

Max query multiplicity 48651 208742

# Distinct features 863 144708

# Distinct features (w/o const) 863 5290

Average features per query 14.78 16.56

study since it is one of the few applications where all users
created a workload. This dataset can be characterized as a
stable workload of exclusively machine-generated queries.

The US bank query log. These logs are anonymized
by replacing all constants with hash values generated by
SHA-256, and manually vetted for safety. Of the nearly
73 million database operations captured, 58 million are not
directly queries, but rather invocations of stored procedures
and 13 million not able to be parsed by standard SQL parser.
Among the rest of the 2.3 million parsed SQL queries, since
we are focusing on conjunctive queries, we base our analysis
on the 1.25 million valid SELECT queries. This dataset can
be characterized as a diverse workload of both machine- and
human-generated queries.

7.2 Common Experiment Settings
Experiments were performed on operating system macOS

Sierra with 2.8 GHz Intel Core i7 CPU, 16 GB 1600 MHz
DDR3 memory and a SSD.

Constant Removal. A number of queries in US Bank
differ only in hard-coded constant values. Table 1 shows
the total number of queries, as well as the number of dis-
tinct queries if we ignore constants. By comparison, queries
in PocketData all use JDBC parameters. For these experi-
ments, we ignore constant values in queries.

Query Regularization. We apply query rewrite rules
(similar to [7]) to regularize queries into equivalent conjunc-
tive forms, where possible. Table 1 shows that 135

605
and 1494

1712
of distinct queries are in conjunctive form for PocketData
and US bank respectively. After regularization, all queries
in both data sets can be either simplified into conjunctive
queries or re-written into a UNION of conjunctive queries com-
patible with the Aligon et. al.’s feature scheme [1].

Convex Optimization Solving. All convex optimization
problems involved in measuring Reproduction Error and De-
viation are solved by the successive approximation heuris-
tic implemented by Matlab CVX package [17] with Sedumi
solver.

7.3 Validating Reproduction Error
In this section, we validate that Reproduction Error is the

practical alternative for Deviation. In addition, we also offer
measurements on its correlation with Deviation, as well as
two other related measures. As it is impractical to enumer-
ate all possible encodings, we choose a subset of encodings
for both PocketData and US bank datases. Specifically, we
first select a subset of features having a marginal within
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(f) Error captures KL-divergence (PocketData)
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Figure 4: Validating The Reproduction Error Metric

[0.01, 0.99] and use these features to construct patterns. We
then enumerate combinations of K (up to 3) patterns as our
chosen encodings.

Containment Captures Deviation. Here we empiri-
cally verify that containment (Section 4.2) captures Devi-
ation (i.e., E1 ≤Ω E2 → d(E1) ≤ d(E2)) to complete the
chain of reasoning that Reproduction Error captures Devi-
ation. Figures 4a and 4b show all pairs of encodings where
E2 ⊃ E1. The y-axis shows the difference in Deviation val-
ues (i.e., d(E2)− d(E1)). Deviation d(S) is approximated by
drawing 1,000,000 samples from the space of possible pat-
terns. For clarity, we bin pairs of encodings by the degree of
overlap between the encodings, measured by the Deviation
of the set-difference between the two encodings d(E2 \ E1);
Higher d(E2 \ E1) implies less overlap. Values of y-axis fall
within each bin are visualized by Matlab boxplot (i.e., the
blue box indicates the range within standard deviation and
red/black crosses are outliers). Intuitively, all points above
zero on the y-axis (i.e., d(E2)−d(E1) > 0) are pairs of encod-
ings where Deviation order agrees with containment order.
This is the case for virtually all encoding pairs.

Additive Separability of Deviation. We also observe
from Figures 4a and 4b that agreement between Deviation
and containment order is correlated with overlap; More sim-
ilar encodings are more likely to have agreement. Combined
with Proposition 2, this first shows that, for similar encod-
ings Reproduction Error is likely to be a reliable indicator
of Deviation. This also suggests that Deviation is additively

separable: The information loss (measured in d(E2)−d(E1))
by excluding encoding E2 \E1 from E2 closely correlates with
the quality (i.e., d(E2 \ E1)) of encoding E2 \ E1 itself:

E2 ⊃ E1 → d(E2)−d(E1) < 0 and d(E2 \E1) ≈ d(E2)−d(E1)

Error Correlates With Deviation. As a supplement,
Figures 4c and 4d empirically confirm that that Reproduc-
tion Error (x-axis) indeed closely correlates with Deviation
(y-axis). Mirroring our findings above, correlation between
them is tighter at lower Reproduction Error.

Error Correlates With KL-Divergence. Figures 4e
and 4f show the relationship between Reproduction Error
(x-axis) and KL-Divergence between the true distribution
ρ∗ and the space representative distribution ρS (y-axis), as
discussed in Section 4.1. The two are tightly correlated.

Error and Feature-Correlation. Figure 4g and 4h show
the relationship between Reproduction Error (y-axis) and
the feature-correlation score corr rank (x-axis), as defined
in Section 6.4. Values of y-axis are computed from the naive
encoding extended by a single pattern b containing multi-
ples features (up to 3). One can observe that Reproduction
Error of extended naive encodings almost linearly correlates
with corr rank(b). In addition, one can also observe that
corr rank becomes higher when the pattern b encodes more
correlated features.

7.4 Feature-Correlation Refinement
In this section, we design experiments serving two pur-

poses: (1) Evaluating the potential reduction in Error from
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(a) Naive Mixture v. Naive Mixture+LaserLight or MTV

(b) Naive Mixture v. LaserLight or MTV alone

(c) Running Time Comparison

Figure 5: Naive Mixture Encodings (US bank)

refining naive mixture encodings through state-of-the-art
pattern based summarizers, and (2) Evaluating whether we
can replace naive mixture encodings by the encodings cre-
ated from summarizers that we have plugged-in.

Experiment Setup. To serve both purposes, we construct
pattern mixture encodings under three different configura-
tions: (1) Naive mixture encodings; (2) Naive mixture en-
codings refined/plugged-in by pattern based encodings and
(3) The pattern mixture encoding that summarizes each
cluster using only pattern based summarizers (i.e., replacing
the naive mixture encoding). We first choose KMeans with
Euclidean distance from which naive mixture encodings are
constructed. We then choose two state-of-the-art pattern
based summarizers to generate pattern based encodings: (1)
Laserlight [12] algorithm, which aims at summarizing multi-
dimensional data D = (X1, . . . , Xn) augmented with an ad-
ditional binary attribute A; (2) MTV [31] algorithm, which
aims at mining maximally informative patterns as encodings
from multi-dimensional data of binary attributes.

The experiment results are shown in Figure 5 which con-
tains 3 sub-figures. All sub-figures share the same x-axis,
i.e., the number of clusters. Figure 5a evaluates the possible
change in Error (y-axis) by plugging-in MTV and Laserlight.
Figure 5b compares the Error (y-axis) between the naive
mixture encoding and the pattern mixture encoding ob-
tained from only using patterns from MTV and Laserlight.
Figure 5c compares the running time (y-axis) between con-
structing naive mixture encodings and applying pattern based
summarizers. We only show the results for US bank data
set as results for PocketData give similar observations.

7.4.1 Replacing Naive Mixture Encodings
Figure 5b and 5c show that replacing naive mixture encod-

ings by pattern based encodings is not recommended from
two perspectives.

Error Perspective. We observe from Figure 5b that Er-
rors of naive mixture encodings are orders of magnitude
lower than Errors of summarizing each cluster using only
patterns generated from Laserlight or MTV. Note that the
curve of MTV overlaps with that of Laserlight. In other
words, a naive mixture encoding is the basic building block
of a more general pattern mixture encoding.

Computation Efficiency Perspective. Furthermore, as
one can observe from Figure 5c, that the running time of
constructing naive mixture encodings is significantly lower
than that of Laserlight and MTV.

7.4.2 Refining Naive Mixture Encodings
The experiment result is shown in Figure 5a. Note that we

offset y-axis to show the change in Error. We observe from
the figure that reduction on Error contributed by plugging-
in pattern based summarizers is small for both algorithms.
This is due to (1) restriction on feature vector dimension
and (2) pattern diversification failure.

Vector Dimension Restriction. Unrestrictedly high di-
mensional feature vectors can cause problems in storing and
analyzing them. Thus in real life implementations, there is
restriction on vector dimensions, e.g. Laserlight is imple-
mented in PostgresSQL 9.1 which has a threshold of 1000
features/columns for a table. Dimension reduction meth-
ods based on matrix decomposition, e.g. PCA, transform
integer-valued feature vectors into a real-valued space where
patterns cannot be defined. Instead, practically we simply
prune and keep top 1000 features according to variation of
their values. This pruning process inevitably reduces the
effectiveness of Laserlight.
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Figure 6: Distinct Patterns v. Number of Patterns
Pattern Diversification Failure. Recall in Section 6.4
that pattern diversification can be time-consuming. As a
result, both algorithms implement heuristics that sacrifice
the capability of pattern diversification to some extent. In
other words, increase in the total number of patterns mined
from Laserlight and MTV may not lead to commensurate
increase in the number of distinct patterns (i.e., pattern du-
plication implies failure in pattern diversification). Specifi-
cally, we run MTV and Laserlight on each cluster (30 clus-
ters in total) and vary the number of patterns configured for
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mining from 12 to 107. We collect the number of distinct
patterns that they have mined as well as the running time
under each configuration. The experiment result is shown
in Figure 6 where y-axis is the number of distinct patterns
and x-axis is the total number of patterns mined through
Laserlight and MTV. We observe that Laserlight and MTV
fail to extensively explore hidden feature-correlation in our
chosen datasets.
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Figure 7: Running Time v. Number of Patterns

Time Restriction. Computation efficiency will also in-
fluence effectiveness of pattern based summarizers when it
takes too long to mine a potentially large set of informative
patterns under from the data. The experiment result for
running time analysis is shown in Figure 7. We observe that
Laserlight shows a close-to-linear growth rate. For MTV the
running time spikes at 17 patterns and remains oscillating
between high levels afterwards.

8. RELATED WORK
An extensively studied problem Text Summarization is

closely-related. Its objective is condensing the source text,
which is a collection/sequence of sentences into a shorter ver-
sion preserving its information content and overall meaning.
Methods achieving such objective can be classified into two
categories [18]: (1) abstractive and (2) extractive.

An extractive summarization is simply ranking and ex-
tracting representative or relevant records from the source
log. Different extractive methods only differ in the mea-
sure of relevance. The simplest measure would be Term
frequency-inverse document frequency (TF-IDF) [15]. More
sophisticated measures include but not limited to Lexical
Chain based [3], graph-based lexical centrality [13], latent
semantic analysis based [16], machine learning based [32],
hidden markov model based [9], neural network based [23],
query based [38], mathematical regression based [14] and
fuzzy-logic based [29].

A survey on extractive methods [18] pointed out two of
their problems: (1) Not all text in extracted records are
relevant, resulting in unnecessary verbosity and (2) Rele-
vant information tends to either overlap or spread among
records, resulting in unexpectedly large amount of records
extracted to achieve reasonable coverage on information con-
tent. These problems can be solved by extracting only pat-
terns or fragments commonly shared by records, e.g frequent
pattern mining [19]. Frequency is not the only measure of

relevance for patterns. Mampaey et al. [31] study the prob-
lem of summarizing multi-dimensional vectors where all at-
tributes are binary. The summary is represented as a set
of most informative patterns which maximize the Bayesian
Information Criterion (BIC) score. Gebaly et al. [12] aim
at summarizing multi-dimensional categorical-valued vec-
tors augmented by a binary attribute. The relevance of
pattern depends on whether it can explains the valuation
of the augmented attribute.

However, there is still controversy on summary evalua-
tion for extractive methods. Evaluation measures such as
ROGUE [40] and BLEU [34] are human-involved. Since hu-
man can only participate as reference summarizers in data
sets limited in size and number, it is controversial that the
performance of a summarizer evaluated on existing limited
data sets will generalize to unseen real life data sets.

An abstractive summarization attempts to go beyond ex-
traction and builds up probabilistic generative models. The
goal is to search for relevant topics [4] or abstracts [26] rep-
resented by latent variables in the model inferred from the
data in the log. A probabilistic model is usually called gener-
ative as it is able produce a world of possible logs where the
log representing the actual data has the maximum likelihood
to be produced (i.e. Maximum Likelihood Estimate). Typ-
ical models used for summarization are probabilistic topic
models [4, 39] and noisy-channel model [26].

Abstractive summarization using probabilistic models has
its own problems. Firstly, goodness of fit on data (i.e.,
likelihood) is model-dependent and cannot be used to com-
pare different models. As a result, the general practice of
evaluating probabilistic models is also using human as ref-
erence summarizers (see [26, 39]). Hence similar contro-
versy in summary evaluation still exists. In addition, as [18]
pointed out, the world of logs that any model can produce
(i.e., model capacity) is limited. There may exist logs that
exceeds model capacity. Finally, unlike understanding ex-
tracted records or shared patterns, it may require a steep
learning curve for an human observer to consume and uti-
lize information conveyed by probabilistic models.

9. CONCLUSION
In this paper, we introduced the problem of log compres-

sion and defined a family of pattern based log encodings.
We precisely characterized the information content of logs
and offered three principled and one practical measures of
encoding quality: Verbosity, Ambiguity, Deviation and Re-
production Error. To reduce the search space of pattern
based encodings, we introduced the idea of partitioning logs
into separate components, which induces the family of pat-
tern mixture as well as its simplified form: naive mixture
encodings. Finally, we experimentally showed that naive
mixture encodings are more informative and can be con-
structed more efficiently than encodings constructed from
state-of-the-art pattern based summarization techniques.
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