
Building a Knowledgebase for Incremental Schema Recovery
Poonam Kumari

University at Buffalo, SUNY
poonamku@buffalo.edu

Gourab Mitra
University at Buffalo, SUNY

gourabmi@buffalo.edu

Oliver Kennedy
University at Buffalo, SUNY
okennedy@buffalo.edu

ABSTRACT
There are few things sadder than an unlabeled (or poorly labeled)
dataset. Without names, data access becomes inordinately more
difficult or even impossible. In this paper we describe the first
steps towards building a new tool that makes it easier for users to
properly label data, and to help preserve those labels for future use.
Specifically, we outline the design of LOKI, a knowledge-base for
storing column-naming heuristics, as well as an interactive tool: the
LOKI editor for populating the knowledge-base. The LOKI editor
primes the knowledge base by learning from example data (e.g.,
from open data portals), and assists domain experts in reviewing
and refining the resulting heuristic naming schemes. We identify
specific issues arising from training and show how the LOKI editor
streamlines the process of manually repairing these issues.

KEYWORDS
Schema Design, Knowledge Base, Data Loading, ETL
ACM Reference Format:
Poonam Kumari, GourabMitra, and Oliver Kennedy. 2018. Building a Knowl-
edgebase for Incremental Schema Recovery. In Proceedings of ACM Confer-
ence (Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
It’s a story as old as time: A student gathers data, makes a graph
with the data, writes a paper about the data. Then the student
graduates and the data languishes, without so much as a wiki page
or README file documenting it. The next student to use the data
needs to spend hours, days, or even weeks reverse-engineering it.
Then they also graduate and the whole process can start over again.

This tragic cycle of data abandonment must be broken. We pro-
pose to end the suffering with Label Once, and Keep It (LOKI),
a data-ingest middleware for incremental, re-usable schema re-
covery. When a user first points LOKI at a new tabular data set,
LOKI proposes a schema for it. It then collects feedback, both
learning and also preserving schema metadata for later use. In
short, LOKIwill allow users to assemble schemas on-demand, both
(re-)discovering and incrementally refining schema definitions in
response to changing data needs. However, to accomplish this, we
first need a knowledge-base of heuristics, domain knowledge, and
dirty tricks.

In principle, we might implement such a knowledge base as a
neural network, train it on example data, and use it to suggest
schemas. However, this approach suffers from a host of limitations:
(1) Lack of generality: A neural network tuned for use with one
type of training data may need to be retuned for other scenarios.
(2) Lack of extensibility: Adding new training data or knowledge

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

RDBMS

LOKI

Data URLs

Labeling
Interface

Discovery
Interface

Heuristics Feedback

Knowledge-BaseHDFS
Spark

Figure 1: System Overview
requires retraining from scratch. (3) Lack of transparency: If the
network misclassifies a column name, it can be hard to debug and
refine the result. Instead, we opt for an interactive approach. We
present the LOKI knowledge-base, a flexible, extensible infrastruc-
ture for collecting schema-naming heuristics. We show how simple,
efficient off-the-shelf techniques can be used to quickly prime the
knowledge-base using example data. Then, we introduce an interac-
tive editor that we are designing as part of LOKI to allow domain
experts to refine the knowledge-base. In particular, we focus on our
preliminary work to streamline manual refinement of knowledge
learned from one type of example data. We show how, the editor
can be used to help experts to quickly identify and resolve errors
and ambiguity in the LOKI knowledge-base.

Concretely, the contributions of this paper include: (1) We in-
troduce LOKI in Section 2 and detail the structure of its knowl-
edge-base in Section 3. (2) We illustrate how the LOKI editor
pre-populates the knowledge-base by learning from example data
in Section 4. (3) We identify specific errors that arise in the training
process and show how the LOKI editor facilitates efficient detection
and manual repair of the error in Section 5.

2 SYSTEM DESIGN
The overall goal of LOKI is to streamline the process of develop-
ing schemas for existing unlabeled or poorly labeled data sets. As
illustrated in Figure 1, LOKI lives alongside an existing RDBMS or
Spark deployment, and takes as input tabular data in the form of
a URL or HDFS file path. LOKI provides users with two modes of
interaction: (1) A labeling interface that assists users in assigning
names to existing columns of data, and (2) A discovery interface that
helps users to search for columns representing particular concepts
of interest. Both interfaces are supported by a knowledge-base that
combines expert-provided heuristics, learned characteristics, as well
as historical feedback gathered from users about already-loaded
datasets. Once the user has labeled or discovered a sufficient set of
columns, LOKI generates appropriate data loading/initialization
code (e.g., a CREATE TABLE or Spark DataFrame initializer).

2.1 Labeling and Discovery
We assume that data arrives in unlabeled tabular format. An N -
column input tableT consists of a set of rows t ∈ T . Each row is an

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Kumari et al.

indexed list of attribute values t = ⟨ t[1], . . . , t[N] ⟩ with a common
schema sch(T). The columns of T , denoted TC = {A1, . . .AN },
are the bag of values in the projection of the rows of T onto the

specified attribute: Ai
def
= {| t[i] | t ∈ T |}. We define the domain

of A, denoted dom(A) to be the set of such values (i.e., set(TA)). A
schema S for T is a list of N names, or human interpretable strings
S[1], . . . , S[N] identifying each attribute. Note that this definition
differs slightly from the classical definition of schemas; for us a
schema consists only of a name and not the attribute’s domain.

LOKI addresses two closely related schema construction prob-
lems that we term labeling and discovery queries. Both types of
queries make use of a form of best-fit heuristic matching that we
discuss in depth in Section 3. Specifically, a Labeling query derives
a schema S for a table T . If the user previously provided a names
for one of the columns, this name is used in the derived schema.
Otherwise, the best-fit heuristic matching is used. A Discovery
query addresses the dual problem: finding the attributeAi in a table
T most likely to match a given column name.

2.2 Other Implementation Concerns
In order to load data into a relational database management sys-
tem, LOKI needs a way to infer the type (e.g., Numeric, String, or
Ordinal) of columns of ingested data. For this, we adopt a simple
counting-based technique [10]: We attempt to parse each value
using an array of regular expressions, one for each registered type.
A majority vote of successful parses in a column decides the col-
umn’s type, with a threshold of 50% indicating a string column and
fewer than 100 distinct values indicating an ordinal. Admittedly,
more advanced techniques that relate columns, for example using
functional dependencies, are possible. However majority vote suf-
fices for most use cases, and as such we leave more interesting type
annotation schemes to future work.

Furthermore, LOKI needs to actually load data into the un-
derlying RDBMS. We use each platform’s native loading scheme:
DataFrameReaders on Spark, and native LOAD commands on RDBM-
Ses, with a fall-back to manual INSERT operations if necessary. As
before, more intricate loading options are possible [1, 5], but are
beyond the scope of this paper.

3 KNOWLEDGE-BASE STRUCTURE
The core component of LOKI is a knowledge-base that is used
to identify column names. The knowledge-base is broken down
into two parts, one heuristic-based, and the other feedback-based.
The latter part is used to preserve column names explicitly labeled
by the user for future use. This is simply a mapping from a table
identifier and column position to an explicit name. Hence, for the
balance of the paper we will focus on the former, more complex
heuristic-based part of the LOKI knowledge-base. Specifically, in
this sectionwe define the representational semantics of the heuristic
knowledge-base and define the evaluation semantics for labeling
and discovery queries.

3.1 Matchers and Concepts
The heuristic content of the knowledge base is best expressed as
a bipartite graph between matchers and concepts. An example is
shown in Figure 2. A matcher is any function M : T [A] → [0, 1]

Matcher Matcher Matcher Matcher

Concept Concept Concept

Figure 2: An example LOKI heuristic knowledge-base

which assigns any column of data to a [0, 1]-valued measure that
we call the matcher’s score for the column. Concepts correspond to
names. However, because the same name may be used in different
contexts, multiple concepts can use the same column name. Simi-
larly, a single concept may be identified by multiple synonymous
names, so a single concept may be associated with multiple names.
An edge between a matcher and a concept indicates candidacy: For
a given column ranked highly by a matcher, any concept linked
to the matcher by an edge is a viable name for the column. Each
matcher has a default edge, indicated in Figure 2 in bold.

Formally, a knowledge-base KB = ⟨ M,C,E ⟩, with matchers
M ∈ M, concepts C ∈ C, edge matrix E : M × C → {D,⊤,⊥}.
Specifically E(M,C) ∈ {D,⊤} indicates an edge between M and
C . The value D identifies the default edge. We require that each
matcher have exactly one default edge.

∀M ∈ M ∃C ∈ C E(M,C) = D

∀M ∈ M,C1 ∈ C ∄C2 , C1 ∈ C E(M,C1) = E(M,C2) = D

We denote by D(M) the concept connected to M by default edge,
and by name(C) the set of (synonymous) names associated with a
concept.

3.2 Query Semantics
The LOKI knowledge-base is responsible for answering both la-
beling and discovery queries. For this paper, we adopt a simplified
model where the answers to both types of queries depend solely
on the highest score assigned to a column by a relevant matcher.
This simplification carries two immediate limitations. First, query
answering semantics do not attempt to combine inputs from mul-
tiple matchers — only the matcher with the highest score is used.
However, we do discuss in Section 5 how expert feedback can be
used to derive new matchers from existing ones. Second, this sim-
plification precludes the use of contextual information about the
table. For example, features like “the table describes medical data”
could be used to significantly improve result quality. Although we
do not address the use of context in this paper, we outline some
potential approaches while discussing future work in Section 7.
Labeling. The input to a labeling query is a set of columns TC =
{A1, . . . ,AN } and the knowledge-base ⟨ M,C,E ⟩. The goal of the
query is to identify a list of N distinct conceptsC1, . . . ,CN , one for
each attribute, that best fit data in the columns. This can be phrased
as a simple linear optimization problem that identifies N matchers
M1, . . . ,MN that maximize the sum:∑

i ∈[1,N]

Mi (Ai) subject to ∀i , j D(Mi) , D(Mj)

The concepts in the result are given by the resulting matcher’s
default edges Ci = D(Mi).

Building a Knowledgebase for Incremental Schema Recovery Conference’17, July 2017, Washington, DC, USA

Discovery. The input to a labeling query is a name ν , a set of
columns TC = {A1, . . . ,AN }, and the knowledge-base ⟨ M,C,E ⟩.
The goal of the query is to identify the position of the attribute
i ∈ [0,N] most likely to fit the column name. The set of matchers
that can be used to identify this column are given by:

candidatesν = { M | E(M,C) , ⊥ ∧ ν ∈ name(C) }

The answer to the discovery query then is given by

argmax
i ∈[0,N]

(
max

M ∈candidatesν
M(Ai)

)
3.3 Constructing a Knowledge Base
To instantiate specific match-quality functions, we merge three
sources of information: Learned Heuristics, Expert Augmentations,
and User Feedback. The first category, learned heuristics, models
the content and distribution of typical instances of columns with a
similar name. This distribution serves as a baseline match-quality
function. The second category, expert augmentations, modifies
the first, increasing or decreasing values based on expert-provided
descriptions of what should and should not appear in columns with
this name. The last category, user feedback, provides users with a
way to confirm or override automated system choices, while also
preserving these associations for future use.

4 TRAINING BY EXAMPLE
Matcher functions in LOKI come from three places: LearnedHeuris-
tics, Expert Augmentations, and User Feedback. In this Section, we
address the first of these three. Because the learned heuristics are
only the first step in an iterative process, our goal is not to develop
an exhaustively correct matching scheme. Rather, we want some-
thing that is both simple and fast. Accordingly, throughout this
section we make several simplifying assumptions.

4.1 Learning Matchers
Specific modeling techniques vary by data type, so our first step
was to assess what types exist. We sampled a collection of 62 data
sets from open data portals.

We then categorized the 458 columns in our sample into three
broad types: (1) Numeric data, or any records consisting of digits, at
most a single decimal point, and an optional exponent; (2) Enumer-
ated types, based on an arbitrary threshold of atleast 50% distinct
values in the column; and (3) Textual data, or anything else. By
far, the dominant type was numeric, so the preliminary efforts we
outline in this paper focus on modeling exclusively numeric data.

Regardless of the specific data type however, the overall learning
process is similar.

The input to the process is a collection of labeled tabular data.
Each column is split out and a type-specific modeling process is run
for each column’s data pair. The output of the modeling process is
zero or more matchers that reliably model the column. If the process
returns at least onematcher, we instantiate a new concept nodewith
the column’s name.We then add nodes for eachmatcher returned by
the modeling process and edges to the newly instantiated concept
node.

0.0 0.2 0.4 0.6 0.8 1.0
Lexicographical Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 L
ex

ic
og

ra
ph

ic
al

 D
is

ta
nc

e

Best matching columns by KL divergence
BestKLDpairs_20180325_0156.csv

Figure 3: CDF of Lexicographical Distance for the bestmatch
for each column.

4.2 Creating Matchers for Numeric Data
We considered a range of options for modeling numeric data and
settled on an approach based on numerical distributions. In com-
parison to more complex approaches like neural networks, this ap-
proach is simple, efficient, and well understood. Simply put, given
a number of example column instances, we explore a range of
numerical distributions and select the one with the best fit. Our
preliminary implementation of LOKI explores three different dis-
tributions: Uniform, Normal, and Log-normal.

We used Kullback-Leibler (KL) divergence to measure how one
distribution diverges from from another. A KL divergence of 0
suggess that distributions could be similar, if not the same. A KL
divergence of 1 suggests that two distributions are very different. If
knowledge of a specific problem domain suggests that similarity of
data distributions could be better represented by another measure,
KL divergence can be easily swapped with for it in our system.

Lexicographical Distance indicates the difference in the column
labels of two distributions. We used two measures of Lexicographi-
cal Distance - Levenstein Distance and NGram Distance. Section 5
talks about performance of both of the measures in estimating
Lexicographical Distance on our dataset. A Lexicographical Dis-
tance value of 0 suggest that the two columns labels are exactly
the same, whereas, a value of 1 suggests that the column labels are
very different.

Learned heuristics require an assumption to build baselinematch-
quality functions. We proceed with the initial assumption that
column pairs with similar data would be labelled similarly. The
value of KL divergence of two columns is inversely proportional to
similarity of their data distributions. The value of Lexicographical
distance of two columns is inversely proportional to similarity of
their column labels. We have verified this assumption by plotting
the Cummulative Distribution Function of Lexicographical Distance
of column pairs with minimum KL Divergence in Figure 3. 80% of
column pairs with most similar data have their labels which are at
most 0.129 lexical distance apart. This indicates that even without
human intervention, columns pairs with the most similar data are
already labelled similarly.

Conference’17, July 2017, Washington, DC, USA Kumari et al.

Figure 4: Knowledge-base Editor: Showing Match Conflicts

For each distribution, we find the parameters (ℓ,h, µ,σ ,a) that
minimize the root-mean-squared (RMS) error between the theoriti-
cal and empirical distributions.

U(ℓ,h) N(µ,σ) Loдnorm(µ∗,σ∗)

Parameter estimation is performed bymaximizing a log-likelihood
function. Log-likelihood estimation is a widely used and robust tech-
nique for estimating the likelihood of a statistical distribution and
its parameters being representative of the empirical data distribu-
tion. We implemented this using the SciPy package in Python.

We then select the one distribution with the lowest overall RMS
error. The resulting match-quality function is the probability of
the column values being a representative sample drawn from this
distribution.

5 EXPERT REFINEMENT
While example data sets provide a good starting point for the LOKI
knowledge-base, we anticipate that — at least initially — the training
data will be too sparse to provide high quality matching suggestions.
To mitigate the effects of sparsity, LOKI relies on domain experts
to curate its knowledge-base, refine existing matchers and define
new matching heuristics. This is intended to be an ongoing process,
with incremental feedback from experts and users continuously
refining the knowledge-base. In this section we outline the design
of an interface that streamlines knowledge-base refinement, start-
ing from a knowledge-base trained on example data. The central
elements of this interface are (1) Visualizing the current quality of
the knowledge base; (2) Identifying problems with name/match-
quality function pairs; (3) Refining records in the knowledge base
by removing or merging existing data, or adding expert knowledge.

5.1 Refinement Interface
The initial goal of the LOKI editor is to help domain experts quickly
identify and resolve errors and redundancies in a preliminary knowlege-
base freshly trained on new example data. The entry point into the
refinement process is the LOKI editor’s match-conflict explorer
Match Conflict Explorer. This view, illustrated in Figure 4, is a
scatter plot with each point corresponding to one pair of concepts.
A point’s x- and y-coordinates express, respectively, how different
the concepts and their related matchers are. In both cases, a value of
0 indicates that the concepts (resp., the corresponding matchers) are
identical, while a value of 1 indicates that the concepts (matchers)

0.0 0.2 0.4 0.6 0.8 1.0
KL Divergence

0.5

0.6

0.7

0.8

0.9

1.0

Le
xi

co
gr

ap
hi

ca
l D

is
ta

nc
e

N_P_H2O_Loss->Ag_Erosion | Pollination_NHDPv2_WBD->Acres_Unpo

KL vs LD
BestKLDpairs_20180325_0156.csv

Reset

Figure 5: Pair view in scatter plot

are completely different. We refer to these as concept- and match-
differences. In this preliminary version of the system, we define
concept-difference to be the lowest Levenshtein distance between
any two names associated with each of the concepts. We define
match difference as the lowest difference between any twomatchers
associated with a concept, with inter-matcher differences defined
based on concept types. For pairs of numerical distributions, this
value is presently defined as the KL-Divergence between them.

The match conflict explorer helps identify overlapping or er-
roneous matchers, as well as duplicate or overlapping concepts.
Specifically, the view is divided into four quadrants. The lower-
left, shown in green indicates high concept-similarity and highly
overlapping matchers (true positives). The upper-right, shown in
red indicates the low concept-similarity and low matcher similar-
ity (true negatives). The upper-left, shown in blue identifies dis-
tinct concepts with similar matchers (potential false positives). The
lower-right, shown in yellow identifies potentially similar concepts
that have different matchers (potential false negatives).
Concept Pair View. To resolve potential conflicts displayed in
the explorer, users can select regions with a simple marquee tool
or click on individual concepts (zoom is available if desired). The
selected concepts are displayed, along with their corresponding
matchers as illustrated in Figure 5.

5.2 Understanding Refinement in Practice
As experts identify errors or redundancies in the knowledge base,
they will need to rectify them accordingly. To better understand
their needs during this process, we selected 200 concept pairs at ran-
dom from the potential false-positives and potential false-negatives.
We inspected each pair of these concepts to determine a root cause
for such a matching. Then, we grouped these root causes into seven
categories. The distributions of root causes of the potential false neg-
atives and false positives are shown in Figures 6 and 7, respectively.
We now discuss each category in detail, along with an assessment
of remedial actions available for resolving them.

5.2.1 Need a better model for training by examples.
For 9 pairs in the lower right quadrant and 69 pairs in the upper left
quadrant, the best fit matchers did not adequately describe the data
distribution. The training phase categorizes data by either uniform,

Building a Knowledgebase for Incremental Schema Recovery Conference’17, July 2017, Washington, DC, USA

Figure 6: Root causes of potential false negatives.

Figure 7: Root causes of potential false positives.

(a) BIGGA_AVG (bimodal)

(b) PctPasture_slope9 (zipfian)
Figure 8: Example CDFs of poorly fitted matchers

normal or log-normal distributions. However, we encountered dis-
tributions which can be described better using other distributions
like zipfian and other power law distributions. Two examples are
shown in Figure 8, following bimodal and zipfian distributions re-
spectively, neither of which were supported by our preliminary
implementation.

Resolution: Although a more robust learning process might
address this issue (by supporting more standard distributions like
zipfian), another way to definitively address this issue is by allowing
experts to manually define custom distributions (e.g., using splines).

5.2.2 Same column name in a different context.
33 points, nearly half of the points sampled from among the poten-
tial false negatives, used the same name but in different context. For
example, among the datasets used for this case study, we had two
similar datasets in biodiversity domain. Both datasets consisted of
data about flora and fauna, but from two different regions.

Resolution: Depending on context, a domain expert may wish
to unify both concepts or keep them separate. In the former case, the
expert needs to be able to merge concept nodes in the knowledge-
base together. In the latter case, the expert needs to be able to
override the concept-difference to mark them as true negatives.

5.2.3 Column names share measuring units, nouns, or verbs.
In the case of 21 out of 79 potential false negatives, the limiting
factor was our choice of similarity measure. Common terminol-
ogy not relevant to the meaning of the concept resulted in low
lexical distances. Specific examples we encountered were: (1) Com-
monmeasuring units like FRUITHECTARES or VEGHECTARES (3 pairs)
(2) Common generic nouns like BG_Demand or MB_Demand (13 pairs)
(3) Common verbs or statistical measures like AVG, MEAN or MAX (5
pairs).

Resolution: As before, depending on context, a domain expert
may wish to unify the underlying concepts (e.g., in the case of
units like HECTARES), or not. Similarly, this means that the expert
needs to be able to merge concept nodes or override the concept
difference measure. However, in the case of this error, we can also
pre-filter many of these cases by deleting common stop-words
before computing the lexical distance (e.g., AVG).

5.2.4 Accidentally Levenshtein distance.
In 4 remaining cases, the Levenshtein distance incorrectly identi-
fies two column names as similar. For example the column names
WTFL_AVG and WET_AG are conceptually distinct, despite their low
Levenshtein distances. Using NGram distance might solve this prob-
lem.

Resolution: This problem might be fixed by a more robust con-
cept distance measure, such as one that relies on an ontology like
YAGO [3]. However, any heuristic measure might still incorrectly
label two distinct concepts as similar. Once again, the domain expert
must be able to overide the concept-distance function.

5.2.5 Distinct names with similar distributions.
Out of 120 points analyzed from the upper left quadrant, 51 had
similar distributions. Certain data distributions were incredibly
common. For example, there were (unsurprisingly) a large number
of uniformly distributed integer values starting from 0 which were
Index attributes. These often had distinct names.

Resolution: As in many of the previous cases, based on context
the expert may decide that this is a true positive, or may decide that
the concepts are indeed distinct. Similarly, the concepts may need
to be merged, or not. However, this case presents one additional
challenges: it indicates matchers linked to distinct concepts that
are liable to have similarly high match qualities on the same data —
conflicting matchers. Hence, in both cases, the expert also needs to
merge the conflicting matchers.

5.2.6 True positives.
Although not the result of an actual problem, true positives indicate
the presence of duplicate concepts, and consequently conflicting
matchers. As before, both the concepts and matchers need to be
merged.

5.3 Editor Interface
In addition to the match-conflict view, the LOKI editor provides a
textual interface to search the knowledge-base for both concepts
(by name), and matchers (by matcher-specific properties like the
shape parameters of a distribution matcher). As previously noted,
selecting pairs of concepts in the match-conflict view shows the
pair of concepts and their associated matchers (as the result of a
query).

Conference’17, July 2017, Washington, DC, USA Kumari et al.

Specifically, to resolve the data issues described above, the editor
interface needs to allow experts to: (1) Manually define new data
distributions, (2)Merge Concept Nodes, (3)MergeMatchNodes, and
(4) Override concept difference by forcing concepts to be distinct
and defining stop-words

EditorCommands. In addition to directly querying the knowledge-
base, the editor provides commands for editing it:

EDIT [concept]: Allows the expert to modify the names and
matchers associated with a concept

EDIT [matcher]: Allows the expert to modify the shape param-
eters and concepts of a matcher, as well as the matcher’s default
concept.

MERGE [concept] [concept]: Combines two concepts, creating
a single concept by unioning their associated names and directing
the associated matchers of both concepts to the same node.

MERGE [matcher] OR [matcher]: Instantiates a newmatcher that
emits the highest match quality detected by either matcher. Con-
cepts linked to the two matchers are migrated to the new matcher
and the user is acked to pick one as a default for the new matcher.

REPLACE [matcher] WITH [matcher]: Deletes the formermatcher
and links the lattermatcher to all of its concepts. The lattermatcher’s
default concept is preserved.

6 RELATEDWORK
Data distributions have been used for similar purposes in other
work. For example GestureQuery [7] uses data similarity between
two attributes to select candidate attributes for an equi-join. To
maximize the join arity, the system counts the number of times
each value from one attribute appears in the other and a histogram
is constructed from the counts for all of the values.

Wrangler [6] and Potter’s wheel [9] detect data domains through
inclusion functions (e.g. regular expressions). Wrangler in partic-
ular infers the data type of a column and highlights errors based
on inconsistent data types. Wrangler also has several operators
like split and unfold that create new columns. The split operator
decomposes composite data values into component distributions.
The unfold operator reverses a table pivot, collapsing data laid out
as key-value pairs into columns. A useful application of the LOKI
knowledge-base that we hope to explore in future work is using it
to detect opportunities for applying such operators.

An orthogonal approach to modeling and matching columns is
to use ontologies, which express entities, facts, relations between
facts and properties of relations Ontologies like Yago [3] could be
used to identify semantic properties that relate columns.

A data summary called the data describer is used in [8]. The data
types, correlations and distributions of the attributes in a private
dataset are listed. Each attribute is categorized into either numerical
or non-numerical. If non-numerical attribute cannot be parsed as
datetime then it is considered to be a string.

Data describer takes in a CSV file and infers the data types and
domains. The attribute datatypes are parsed as numerical, datetime
or string. We are inferring the datatypes as well. When run in cor-
related attribute mode, data describer provides corelation between
attributes. We could use this functionality in LOKI.

PADS [4] helps users to understand the layout and meaning of
data by designing syntactic descriptions of the data. Based on the
syntax, accumulators track the number of good values, the number
of bad values, and the distribution of legal values. This technique
could be used in LOKI to help capture expert knowledge.

There is an increasing number of datasets inwhichwell-structured
attributes (with or without a name) can be identified, each con-
taining a set of values called a domain. There is lack of schema
description in most of the datasets. LSH Ensemble is used in [11]
to find domains that maximally contain a query dataset, which can
help to find datasets that best augment a given set of data.

7 FUTUREWORK
We plan several extensions as future work focussed on building and
refining a knowledge-base for storing column-naming heuristics.

Use of contextual information. Contextual information such as
units, data domains, and links between concepts and ontologies
could be used to augment the LOKI knowledge-base. For example,
we could use a network of semantic relations such as BabelNet
strengthen data models for training the knowledge-base as well as
providing curation recommendations to experts. [2]

Recommendation of columns for query.Concepts in the knowledge-
base could be used to recommend columns that could be in a query
based on the columns that are already present.

Smarter Matchers. We plan to develop matchers which regoc-
ognize a wider spectrum of data. For example, regular expression
matchers could be used to detect geolocation data. Matchers which
can identify synonymous labels could help experts in the curation
process.

Other applications of context. Once discovered, contextual in-
formation like units or data domains can be used in other ways.
For example, if a column is identified as having a particular type
of unit (e.g., ‘meters’), this knowledge could be used to warn users
trying to merge it with an incompatible unit (e.g., ‘inches’).

ACKNOWLEDGMENTS
This work was supported by NSF Awards IIS-1750460, ACI-1640864
and by a gift from Oracle. The conclusions and opinions in this
work are solely those of the authors and do not represent the views
of the National Science Foundation or Oracle.

REFERENCES
[1] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia

Ailamaki. 2012. NoDB: efficient query execution on raw data files. In SIGMOD
Conference. ACM, 241–252.

[2] Babelscape. 2018. BabelNet semantic knowledge base. (2018). http://babelnet.org
[3] MS Fabian, K Gjergji, WEIKUM Gerhard, et al. 2007. Yago: A core of semantic

knowledge unifying wordnet and wikipedia. In 16th International World Wide
Web Conference, WWW. 697–706.

[4] Kathleen Fisher and Robert Gruber. 2005. PADS: a domain-specific language for
processing ad hoc data. In ACM Sigplan Notices, Vol. 40. ACM, 295–304.

[5] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In CIDR. www.cidrdb.org, 68–78.

[6] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3363–
3372.

[7] Arnab Nandi, Lilong Jiang, and Michael Mandel. 2013. Gestural query specifica-
tion. Proceedings of the VLDB Endowment 7, 4 (2013), 289–300.

http://babelnet.org

Building a Knowledgebase for Incremental Schema Recovery Conference’17, July 2017, Washington, DC, USA

[8] Haoyue Ping, Julia Stoyanovich, and Bill Howe. 2017. DataSynthesizer: Privacy-
preserving synthetic datasets. In Proceedings of the 29th International Conference
on Scientific and Statistical Database Management. ACM, 42.

[9] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-
tive data cleaning system. In VLDB, Vol. 1. 381–390.

[10] Ying Yang, Niccolo Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An On-Demand Approach to ETL. Proc. VLDB Endow. 8,
12 (2015).

[11] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. 2016. LSH
ensemble: Internet-scale domain search. Proceedings of the VLDB Endowment 9,
12 (2016), 1185–1196.

	Abstract
	1 Introduction
	2 System Design
	2.1 Labeling and Discovery
	2.2 Other Implementation Concerns

	3 Knowledge-Base Structure
	3.1 Matchers and Concepts
	3.2 Query Semantics
	3.3 Constructing a Knowledge Base

	4 Training By Example
	4.1 Learning Matchers
	4.2 Creating Matchers for Numeric Data

	5 Expert Refinement
	5.1 Refinement Interface
	5.2 Understanding Refinement in Practice
	5.3 Editor Interface

	6 Related Work
	7 Future Work
	Acknowledgments
	References

