
SchemaDrill: Interactive Semi-Structured Schema Design∗

William Spoth, Ting Xie, Oliver Kennedy
University at Buffalo, SUNY

{ wmspoth, tingxie, okennedy }@buffalo.edu

Ying Yang, Beda Hammerschmidt,
Zhen Hua-Liu, Dieter Gawlick

Oracle
{ dieter.gawlick, zhen.liu, beda.hammerschmidt,

ying.y.yang }@oracle.com

ABSTRACT

Ad-hoc data models like Json make it easy to evolve schemas and
to multiplex different data-types into a single stream. This flexibil-
ity makes Json great for generating data, but also makes it much
harder to query, ingest into a database, and index. In this paper, we
explore the first step of Json data loading: schema design. Specifi-
cally, we consider the challenge of designing schemas for existing
Json datasets as an interactive problem. We present SchemaDrill,
a roll-up/drill-down style interface for exploring collections of Json
records. SchemaDrill helps users to visualize the collection, iden-
tify relevant fragments, and map it down into one or more flat,
relational schemas. We describe and evaluate two key components
of SchemaDrill: (1) A summary schema representation that signifi-
cantly reduces the complexity of JSON schemas without a meaning-
ful reduction in information content, and (2) A collection of schema
visualizations that help users to qualitatively survey variability
amongst different schemas in the collection.
ACM Reference Format:

William Spoth, Ting Xie, Oliver Kennedy and Ying Yang, Beda Hammer-
schmidt, Zhen Hua-Liu, Dieter Gawlick. 2018. SchemaDrill: Interactive
Semi-Structured Schema Design. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Semi-structured formats like Json allow users to design schemas on-
the-fly, as data is generated. For example, adding a new attribute to
the output of a system logger does not break backwards compatibil-
ity with existing data. This flexibility facilitates the addition of new
features and enables low-overhead adaptation of data-generating
processes. However, because the data does not have a consistent
underlying schema, it can be harder (and slower) to explore than
simple tabular data. The logic of each and every query must explic-
itly account for variations in the schema like missing attributes.
Performance also suffers, as there is no one physical data represen-
tation that is ideal for all schemas.

To address these problems, a variety of techniques [3, 7, 9, 13, 16]
have arisen to generate schemas after-the-fact. The goal of these
semi-structured schema discovery (S3D) techniques is to propose
a schema for collections of Json records. A common approach to
this problem is to bind the Json records to a normalized relational
representation, or in other words, to derive a set of flat views over
the hierarchical Json data.
∗The first two authors contributed equally

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Existing automated approaches to this problem (e.g., [7, 9]) oper-
ate in a single-pass: They propose a schema and consider their job
done. Unfortunately these techniques also rely heavily on general
heuristics to select from among a set of schema design choices, as a
clear declarative specification of a domain would be tantamount to
having the schema already. To supplement domain-agnostic heuris-
tics with feedback from domain experts, we propose a new iterative
and interactive approach to S3D called SchemaDrill.

SchemaDrill provides a OLAP-style interface (with analogs to
roll-up, drill-down, and slice+dice) specialized for exploring collec-
tions of Json records. Every state of this interface corresponds to a
relational view defined over the Json data. When ready, this view
can be exported to a classical RDBMS or similar tool for simplified,
more efficient data access. In this paper, we explore several design
options for SchemaDrill, and discuss how each interacts with the
challenges of S3D.

1.1 Extracting Relational Entities

The first class of challenges we address involve the nuts and bolts of
mapping hierarchical Json schemas to flat relational entities. Funda-
mentally, this involves a combination of three relational operators:
Projection, Selection, and Unnesting.
Projecting Attributes. Json schema discovery can, naively, be
thought of as a form of schema normalization [5], where each
distinct path in a record is treated as its own attribute. Entities
then, are simply groups of attributes projected out of the Json data,
and the S3D problem reduces to finding such groups (e.g., by using
Functional Dependencies [7]).
Selecting Records. This naive approach fails in situations where
the collection of Json records is a mix of different entity types
that share properties. As a simple example, Twitter streams mix
three entity types: tweets, retweets, and deleted tweets. Although
each entity appears in distinct records, they share attributes in
common. Hence, entity extraction is not just normalization in the
classical sense of partitioning attributes, but rather also a matter of
partitioning records by content.
CollapsingNestedCollections. Json specifies two collection types:
Arrays andObjects. Typically the former is used for encoding nested
collections and the latter for encoding tuples with named attributes.
However, this is not a strict requirement. For example, latitude
and longitude are often encoded as a 2-element array. Conversely,
in some data sets, objects are used as way to index collections by
named keys rather than by positions. Hence, simple type analysis
can not distinguish between the two cases. This is problematic
because treating a collection as a tuple creates an explosion of at-
tributes that make classical normalization techniques incredibly
expensive.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Spoth, Xie et al.

SELECT [...] FROM Twitter
WHERE [...] AND quoted_status.hashtags.text LIKE '#foobar'

Search...

Figure 1: Prototype user interface for SchemaDrill.

1.2 Human-Scale S3D
Even in settings where Json data is comparatively well behaved,
it is common for it to have dozens, or even hundreds of attributes
per record. Similarly, individual Json records can be built from any
of the hundreds or thousands (or more) different permutations of
the full set of attributes used across the entire collection. Bringing
this information down to human scale requires simultaneously
simplifying and summarizing.
Summarization. For the purposes of entity construction, the full
set of attributes is often unnecessary. It is often possible to collapse
multiple attributes together, or express attributes as equivalent
alternatives. As an example, an address might consist of four dis-
tinct attributes city, zip code, street, and number when it could
conceptually be expressed as just one.
Visualization. In addition to simplifying the underlying problem,
it is also useful to give users a coarse “top-down” view of the schema
process. Specifically, users need to (1) be able to see patterns of
structural similarity between distinct schemas, and (2) understand
how much variation exists in the data set as-is.
Iteration. By combining straightforward summarization and data
visualization techniques, SchemaDrill helps users to quickly iden-
tify natural clusters of records and attributes that represent rela-
tional entities. SchemaDrill facilitates an iterative schema design
process to allow human experts to better evaluate whether struc-
tures in the data indicate conceptual relationships between records
or attributes, or are merely data artifacts.

1.3 Overview

Figure 1 shows the prototype interface of SchemaDrill. The pane
on the left, discussed in Section 2, shows the schema of the currently
selected JSON view, highlighting attributes and groups based on
relevance. The pane on the right, discussed in Section 3, provides a
top-down visual sketch of schemas in the currently selected JSON
data, and allows users to interactively filter out parts of it. Finally
in Section 3, we show examples of how SchemaDrill facilitates
incremental, iterative exploration and mapping of JSON schemas.

2 SUMMARIZATION

The first component of SchemaDrill, the schema pane, shows
the relational schema of the extracted view. Initially, this schema

consists of one attribute for every path in the Json collection being
summarized. Attributes may be deleted or restored, and sets of
attributes may be unified.

The core challenge behind implementing this pane is that, de-
pending on data set, the schema could consist of hundreds or thou-
sands of attributes. This can be overwhelming for users who just
wants to find account profiles appearing in a Twitter stream. To
mitigate this problem, SchemaDrill presents the schema in a sum-
marized form.

Specifically, attributes are grouped based on both correlations
and anti-correlations between them. Groups of correlated attributes,
or those that frequently co-occur in Json records are likely to be
part of a common structure. Similarly, groups of anti-correlated
attributes, or those that rarely co-occur in Json records are likely to
represent alternatives (e.g., a Street Address vs GPS coordinates).We
use correlations and anti-correlations between attributes to compact
the schema for representation. Before describing the summary itself,
we first formalize the problem.

2.1 Data Model

A Json object is an order-independent mapping from keys to values.
A key is a unique identifier of a Json object, typically a string. A
value may be atomic or complex. Atomic values in Json may be
integers, reals, strings, or booleans. A complex value is either a
nested object, or an array, an indexed list of values. For simplicity,
we model arrays as objects by treating array indexes as keys. A
Json record may be any value type, but for simplicity of exposition
we will assume that all records are objects.

Example 2.1. A fragment of Twitter Tweet encoded as Json

"tweet": {
"text": "# SIGMOD2018 in Houston this year",
"user": {

"name" : "Alice Smith", "id" : 12345,
"friends_count": 1023, . . .

},
"retweeted_status": {

"tweet": {
"user": { . . . }, "entities": { . . . },
"place": { . . . }, "extended_entities": { . . . }

}, . . .
},
"place": { . . . }, "extended_entities": { . . . },
"entities": { "hashtags": ["SIGMOD2018"], . . . },
. . .

}

Json objects are typically viewed as trees with atomic values at the
leaves, complex values as inner nodes, and edges labeled with the
keys of each child. Our goal is to identify commonalities in the
structure of this tree across multiple Json records in a collection. To
capture the structure, we define the schema S of a Json record as the
record with all leaf values replaced by a constant ⊥. A path P is a
sequence of keys P = (k0, . . . ,kN). For convenience, we will write
paths using dots to separate keys (e.g., tweet.text). We say that a
path appears in a schema (denoted P ∈ S) if it is possible to start at
the root of S and traverse edges in order. If the value reached by

SchemaDrill: Interactive Semi-Structured Schema Design Conference’17, July 2017, Washington, DC, USA

this traversal is ⊥, we say that P is a terminal path of S (denoted
P⊥S).

2.2 Paths as Attributes

Ultimately, our goal is to create a flat, relational representation
suitable for use with an entire collection of Json records. The first
step to reaching this goal is to flatten individual Json schemas into
collections of attributes. We begin with a naive translation where
each attribute corresponds to one terminal path in the schema. We
write S⊥ to denote the path set, or relational schema of Json schema
S , defined as: S⊥ = { P | P⊥S } Since keys are unique, commutative
and associative, this representation is interchangeable1 with the
tree representation. Hence, when clear from context we will abuse
syntax, using S to denote both a schema and its path set.

Example 2.2. The path set of the Json object from Example 2.1
includes the paths: (1) tweet.text (2) tweet.user.friends_count
(3) tweet.user.id (4) tweet.entities.hashtags.[0] Each terminal
appears in the set. Note in particular that single element of the
array at tweet.entities.hashtags is assigned the key [0].

Path sets make it possible to consider containment relationships
between schemas. We say that S1 is contained in S2 iff S⊥1 ⊆ S⊥2 .

2.3 Schema Collections

We now return to our main goal, summarizing the schemas of col-
lections of Json records. The starting point for this process is the
schemas themselves. Given a collection of Json records, we can ex-
tract the set of schemas { S1, . . . , SN } of records in the collection,
which we call the source schemas. One existing technique for sum-
marizing these records, used by Oracle’s JSON Data Guides [14, 15],
is to simply present the set of all paths that appear anywhere in
this collection. We call this the joint schema S:

S⊥
def
=

⋃
i
S⊥i

Observe that, by definition, each of the source schemas is contained
in the joint schema. The joint schema mirrors existing schemes for
relational access to JSON data like for example. However, the joint
schema can still be very large, with hundreds, thousands, or even
tens of thousands of columns2. To summarize them we need an
even more compact encoding for sets of schemas.
A Schema Algebra. As a basis for compacting schema sets, we
define a simple algebra. Recall that we are particularly interested
in summarizing cooccurrence and anti-cooccurence relationships
between attributes.

A := P | ∅ | A ∧ A | A ∨ A

Expressions in the algebra construct sets of schemas from individual
attributes. There are two types of leaf expressions in the algebra:
A single terminal path P represents a singleton schema (

{
{P}

}
),

while ∅ denotes a set containing no schemas
{}
. Disjunction acts

as union, merging its two input sets:

{ S1, . . . , SN } ∨ { S ′1, . . . , S
′
M }

def
= { S1, . . . , SN , S

′
1, . . . , S

′
M }

1modulo empty objects or arrays
2One dataset [1] achieved 2.4 thousand paths through nested collections of objects.

Disjunction models anti-correlation: The resulting schema set is
effectively a collection of schema alternatives. For example, P1 ∨
P2 indicates two alternative schemas: {P1} or {P2}. Conjunction
combines schema sets by cartesian product:

{ S1, . . . , SN }∧{ S ′1, . . . , S
′
M }

def
=

{
Si ∪ S ′j

��� i ∈ [1, N], j ∈ [1, M]

}
Conjunction models correlations: The resulting schema set man-
dates that exactly one option from the left-hand-side and one option
from the right-hand-side be present. On singleton inputs, the re-
sult is also a singleton. For example, P1 ∧ P2 is a single schema
that includes both P1 and P2. For inputs larger than one element,
the conjunction requires one choice from each input. For example,
(P1 ∨ P2) ∧ (P3 ∨ P4) is the set of all schemas consisting of one of
P1 or P2, and also one of P3 or P4.

Although we omit the proofs for conciseness, both ∧ and ∨

are commutative and associative, and ∨ distributes over ∧3. For
conciseness, we use the following syntactic conventions: (1) When
clear from context, a schema S denotes its own singleton set, and
(2) We write P1P2 to denote P1 ∧ P2.

This schema algebra gives us a range of ways to represent schema
sets. At one extreme, the set of source schemas arrives in what is
effectively disjunctive normal form (DNF). One schema may be
expressed as a conjunction of its elements, and the full set of source
schemas can be constructed by disjunction. For example, the source
schemas {P1, P2} and {P2, P3} may be represented in the algebra
as P1P2 ∨ P2P3.

At the other extreme, the joint schema is a superset of all of the
source schemas. It too can be thought of as a schema set, albeit
one that loses information about which attributes appear in which
schemas. Hence, this joint schema set may be defined as the power
set of all attributes in the joint schema.

2S =
∧
P ∈S

(P ∨ ∅)

Observe that at a minimum, each of the source schemasmust appear
in this schema set (Si ∈ 2S). However many other schemas appear
in the resulting schema set as well.

2.4 Summarizing Schema Collections

These two extreme representations (the raw source schemas and
the joint schema set) are bad, but for subtly different reasons. In
both cases, the representation is too verbose. In the former case
verboseness stems from redundancy, with significant overlap in
variables between the source schemas. Conversely in the latter case
it stems from imprecision, as the schema set encompasses schemas
that do not appear in the source schemas. Of the two, the latter is
more compact, in particular because each attribute appears no more
than once. This is a distinct representational advantage because the
joint schema can be displayed simply as a list.

We would like to preserve this only-once property. Our aim then,
is to derive an algebraic expression (1) in which each attribute ap-
pears exactly once, and (2) that is as tight a fit to the original source
schema set as possible. Ultimately, this problem reduces to polyno-
mial factorization and the discovery of read-once formulas [6], a
problem that is, in general, worse than P-time [4]. Hence, for this
paper, approximations are required. We consider two approaches
3To be precise, the structure

〈 {
{P}

}
, ∨, ∧, ∅,

{
{}
} 〉

is a semiring.

Conference’17, July 2017, Washington, DC, USA Spoth, Xie et al.

and possibly_sensitive

user.listed_count [and 63 more]

and entities.urls.display_url [and 2 more]

or entities.user_mentions.id_str [and 3 more]

or user.profile_banner_url

and entities.user_mentions.id_str [and 3 more]

and entities.hashtags.text
or retweeted_status.user.description [and 62 more]

and retweeted_status.user.profile_banner_url

and entities.hashtags.text [and retweeted_status.hashtags.text]

or retweeted_status.entities.user_mentions.id_str [and 3 more]

Figure 2: FP-Tree based schema summaries

and allow the user to select the most appropriate one for their needs.
The first is based on Frequent Pattern Trees [10] (FPTrees), a data
structure commonly used for frequent pattern mining. The second
is to limit our search to read-once conjunctions of disjunctions of
conjunctions, a form we call RCDC.
FP-Tree Summaries. An FP-Tree is a trie-like data structure that
makes it easier to identify common patterns in a query. Every
edge in the tree represents the inclusion of one feature, or in our
case one attribute. Hence, every node in the tree corresponds to
a set of paths (obtained by traversal from the root), and every
leaf corresponds to one source schema. We observe that every
node in an FP tree corresponds to a disjunction: For a node with
3 children, each subtree represents a different branch. Similarly,
every edge corresponds to a conjunction with a singleton. Although
the resulting tree may duplicate some attributes, duplications are
minimized [10].

Example 2.3. Figure 2 illustrates a schema summary based on
FP-Trees. Sequences of nodes with a single child are collapsed into
single rows of the display (e.g., user.listed_count and 63 immediate
descendents). A toggle switch allows these entities to be displayed
to the user, if desired. Every level of the tree represents a set of
alternatives. For example, possibly_sensitive never co-occurs with
user.profile_banner_url.

RCDC Summaries. Our second visualization is based on [anti-
]correlations. To construct this visualization, we begin with the
joint summary. Recall that the joint summary has the form

(P1 ∨ ∅) (P2 ∨ ∅) (P3 ∨ ∅) (P4 ∨ ∅) . . .

We create covariance matrix based on the probability of two
attributes co-occurring in the schemas of one of our input Json
records. Using this covariance matrix, hierarchical clustering [11],
and a user-controlled threshold on the covariance, we cluster the
attributes by parenthesizing. For example, if P1 is clustered with P2
and likewise P3 and P4. Because attributes within a group co-occur
frequently we can approximate this formula by pushing down the
optional ∅ disjunction and rewrite the schema as :

≈ (P1P2 ∨ ∅) (P3P4 ∨ ∅) . . .

We now repeat the process with a new covariance matrix, based on
the probability of two groups co-occurring. This time, however, we
create clusters with a very negative covariance. Hence the resulting
groups are unlikely to co-occur. Continuing the example, most
frequently are P1P2∅ and P3P4∅. Approximating and simplifying,
we get an expression in RCDC form.

≈ (P1P2 ∨ P3P4 ∨ ∅) . . .

user.listed_count [and 63 more]

entities.user_mentions.id_str [and 3 more] [or 3 more]

or user.profile_banner_url

retweeted_status.user.description [and 66 more]

possibly_sensitive []

Figure 3: RCDC based schema summaries

(a) Without segmentation. (b) With segmentation.

Figure 4: Segmentation breaks up schema representations

into manageable chunks.

As with the FP-Tree display, we use counts and an example attribute
as a summary name for the group, and a toggle button to allow
users to expand the group along either the OR or AND axes.

3 VISUALIZATION

Even within a mostly standardized collection of records like ex-
ported Twitter or Yelp data or production system logs, it is possi-
ble to find a range of schema usage patterns. Grouping by [anti-
]cooccurrence is one step towards helping users understand these
usage patterns, but is insufficient for three reasons: (1) Conceptually
distinct fragments of the schema may share attributes in common
(e.g., delete tweet records share attributes in common with tweet
records). (2) Even if they do not co-occur, certain [groups of] at-
tributes may be correlated (e.g., due to mobile phones, tweets with
photos are also often geotagged). (3) There is no general way to
differentiate Json objects and arrays being used to represent col-
lections from those being used to represent structures (e.g., twitter
stores geographical coordinates as a 2-element array). The second
part of the SchemaDrill interface addresses these issues by pre-
senting top-down visual surveys of the schema. These surveys help
users to quickly assess variations in schema usage across the col-
lection, to identify related schema structures, and to “drill down”
into finer grained relationships.

3.1 Schema Segmentation

Specifically, we want to help the user to focus on specific parts
of the joint schema; We want to allow the user to filter out, or
segment the schema based on certain required attributes that we
call subschemas. Specifically, a subschema s is a set of attributes,
where s is contained in one or more source schemas. We define
the s-segment of source schemas S1, . . . , SN to be the subset that
contain s:

segment(s)
def
= { Si | i ∈ [1,N] ∧ s ⊆ Si }

SchemaDrill: Interactive Semi-Structured Schema Design Conference’17, July 2017, Washington, DC, USA

We are specifically interested in visual representations that can help
users to identify subschemas of interest. By then focusing solely
on the segments defined by these subschemas can significantly
reduce the complexity of the schema design problem, as illustrated
in Figure 4. Figures 4a illustrates the full schema summary as a tree,
while Figure 4b shows a partial summary identified by the user
using the lasso tool we describe shortly.

Figure 5: Coveriance Cloud for the full Yelp dataset.

Covariance Clouds. Our second visual representation, also like
schema summaries, uses correlations and anti-correlations to com-
municate subschemas of interest. To generate a covariance cloud,
we create a covariancematrix from the source schemas, using the ap-
pearance of each attribute as a variable. Based on a user-controllable
threshold, we then construct a graph from the covariance matrix
with every attribute as one node, and every covariance exceeding
the threshold as an edge. The graph is then displayed to the user as
a cloud using standard force-based layout techniques (e.g., those
used by GraphViz [8]). Cliques in the graph represent commonly
co-occurring subschemas that might form segments of interest. This
includes every conjunctive group identified in the schema summary.
However, unlike the schema summary, this visual representation
more effectively captures subschemas with attributes in common.
KNN-PCA Clouds.While the first visualizaton works on simple
schemas, we found that on more complex Json data like Twitter
streams [17], or the Yelp open dataset [18] there were too many
inter-attribute relationships, and the resulting visualizatons were
noisy. An approach we settled on is a mixture of Principle Com-
ponent Analysis (PCA) and K Nearest Neighbor clustering (KNN).
As before, we treat each source schema as a feature vector with
each attribute representing one feature. We then use PCA to plot
our source schemas in two-dimensions. The resulting visualiza-
tion illustrates relationships between source schemas, with greater
distances in the visualization representing (approximately) more
differences between the schemas. Hence, clustered groupings of
schemas represent potentially interesting sub-schemas.

A key limitation with this visualization is that for more complex
datasets the somewhat arbitrary choice of 2 dimensions can be too
low. Conversely adding more dimensions directly through PCA
makes the visualization more complicated and hard to follow. To
mitigate these limitations, we use K-Nearest Neighbors (KNN) to
colorize the PCA Cloud. In addition to using PCA, we do KNN
clustering on the schemas using a user-provided K (number of

SELECT [...] FROM Yelp

Search...

Figure 6: KNN-PCA cloud with K=6 on the Yelp dataset.

clusters). Each cluster identified by PCA is assigned a different
color. Combined, these two algorithms to provide users an initial
insight into the potential correlations that exist in their dataset.

Example 3.1. Figures 1 and 6 show an example of the resulting
view on Twitter and Yelp data. Note the much tighter clustering of
attributes in the Twitter data: each cluster represents one particular,
common type of tweet. Conversely, the Yelp schema includes a
nested collection with, for example, hourly checkins at the business.
The presence (or absence) of these terminal paths is more variable,
and the resulting PCA cloud follows more of a gradient.

3.2 Schema Exploration

Now that we have shown the user potentially interesting sub-
schemas, our next task is to help them to (1) narrow down on
actually interesting subschemas, and (2) use those schemas to drill
down to a segment of the schema data. For the first step, it is critical
that the user develop a good intuition for what the visual repre-
sentations encode. One way to accomplish this is to establish a
bi-directional mapping between SchemaDrill’s two data panes.

To map from visual survey to schema summary, we provide users
with a lasso tool. As illustrated in Figure 1, users can select regions
of the KNN-PCA Cloud and the corresponding schemas within that
region. Doing so identifies the maximal subschema contained in all
subschemas and regenerates the schema summary pane based only
on the segment containing the maximal subschema. The maximal
subschema itself is also highlighted in the schema summary pane.
On the Covariance cloud, the lasso tool behaves similarly, selecting
attributes explicitly rather than a maximal subschema.

The reverse mapping is achieved using highlighting, as illus-
trated in Figure 7. Users can select one or more attributes (or group-
ings) in the schema summary pane, and the KNN-PCA Cloud (resp.,
Covariance Cloud) is modified to highlight schemas in the corre-
sponding segment (resp., to highlight the attributes). In conjunction
with their prior knowledge of their tasks and ideal use cases, we
use this approach to perform the initial schema segmentation.

In either case, after selecting a set of attributes or schemas, the
analyst may choose to drill down into the selected segment, regen-
erating both views for the now restricted collection of schemas.

Conference’17, July 2017, Washington, DC, USA Spoth, Xie et al.

SELECT [...] FROM Yelp
WHERE [...] like 'compliment'

Search...

Figure 7: Points containing user selected attributes are high-

lighted green.

3.3 An Iterative Approach

At any time in our exploration pipeline analysts may stop where
they are, take the knowledge they gained about their dataset, and
restart the process from the beginning. Through exploring the
Twitter dataset we found retweets and quoted tweets to have a
high correlation, with this knowledge we can then start back at
the beginning and depending on whether our task allows us to
merge these attributes, we can then choose a more appropriate K
value for KNN. In addition, attributes that have no relationship to
core attributes, such as a users profile_image_url being present, can
easily be pruned to compress our summary output. By incrementally
learning about their dataset, an analyst can converge on the views
required for their tasks.

4 RELATEDWORK

Schema Extraction. Schema extraction for Json, as well as for
other self-describing data models like XML has seen active inter-
est from a number of sources. An early effort to summarize self-
describing hierarchical data can be found in the LORE system’s
DataGuides [9]. DataGuides view schemas begin with a forest of
tree-shaped schemas and progressively merge schemas, deriving
a compact encoding of the forest as a DAG. Although initially de-
signed for XML data, similar ideas have been more recently applied
for Json data as well [13, 14]. Key challenges in this space involve
simply extracting schemas from large, multi-terabyte collections of
Json data [3], as well as managing ambiguity in the set of possible
factorizations of a schema [2, 16]. For non-hierarchical data, inter-
active tools like Wrangler [12] provide an interactive frameworks
for regularizing schemas.

Physical Layout.While schemas play a role in the interpretability
of a Json data set, they can also help improve the performance
of Json queries. One approach relies on inverted indexes [13] to
quickly identify records that make use of sparse paths in the schema.
Another approach is to normalize schema elements [7]. Although
the resulting schemamay not always be interpretable, this approach
can result in substantial space savings.

5 FUTUREWORK

One challenge that we will need to address in SchemaDrill is cop-
ing with nested collections. At the moment, the user can manually
merge collections of attributes that correspond to disjoint entites.
However, we would like to automate this process. One observation
is that a typical collection like an array has a schema with the
general structure:

(P1 ∨ P1P2 ∨ P1P2P3 ∨ . . .) = (P1 ∧ (∅ ∨ P2 ∧ (∅ ∨ P3 ∧ (. . .))))

The version of this expression on the right hand side is notable
as its closure over the semiring

〈 {
{P}

}
,∨,∧, ∅,

{
{}
} 〉

would in-
dicate that the semiring is “quasiregular” or “closed”, an algebraic
structure best associated with the Kleene star. Hence, we plan to
explore the use of the Kleene star to encode nested collections in
our algebra. A key challenge in doing so is detecting opportunities
for incorporating it into a summary, a more challenging form of
the factorization problem.

A further step to increase the capabilities of SchemaDrill is to
incorporate type information in the summarization. This adds an
extra layer of information an analyst can extract from our system,
as well as the ability to identify and correct schema errors. As a
long term goal we will provide capabilities for linking views, for
example by defining functional dependencies. The goal is to create
full entity relationship diagrams. In particular, one interesting way
to identify potential relationships that exist between entities is by
leveraging the overlap between segments.

ACKNOWLEDGMENTS

This work was supported by NSF Awards IIS-1750460, ACI-1640864,
SaTC-1409551, and by a gift from Oracle. The conclusions and
opinions in this work are solely those of the authors and do not
represent the views of the National Science Foundation or Oracle.

REFERENCES

[1] Roam Analytics. 2017. Prescription-based prediction.
https://www.kaggle.com/roamresearch/prescriptionbasedprediction. (2017).

[2] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2017.
Counting types for massive JSON datasets. In DBPL. ACM, 9:1–9:12.

[3] Mohamed Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo, Giorgio Ghelli,
and Carlo Sartiani. 2017. Schema Inference for Massive JSON Datasets. In EDBT.
OpenProceedings.org, 222–233.

[4] Peter Bürgisser. 2001. The Complexity of Factors of Multivariate Polynomials. In
FOCS. IEEE Computer Society, 378–385.

[5] E. F. Codd. 1979. Extending the Database Relational Model to Capture More
Meaning. ACM Trans. Database Syst. 4, 4 (dec, 1979), 397–434. https://doi.org/
10.1145/320107.320109

[6] Nilesh Dalvi and Dan Suciu. 2013. The Dichotomy of Probabilistic Inference for
Unions of Conjunctive Queries. J. ACM 59, 6, Article 30 (jan, 2013), 87 pages.
https://doi.org/10.1145/2395116.2395119

[7] Michael DiScala and Daniel J. Abadi. 2016. Automatic Generation of Normalized
Relational Schemas from Nested Key-Value Data. In SIGMOD Conference. ACM,
295–310.

[8] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
GordonWoodhull. 2001. Graphviz - Open Source Graph Drawing Tools. In Graph
Drawing. 483–484.

[9] Roy Goldman and Jennifer Widom. 1997. DataGuides: Enabling Query Formula-
tion and Optimization in SemistructuredDatabases. In VLDB. Morgan Kaufmann,
436–445.

[10] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. In SIGMOD Conference. ACM, 1–12.

[11] Stephen C. Johnson. 1967. Hierarchical clustering schemes. Psychometrika 32, 3
(01 Sep 1967), 241–254. https://doi.org/10.1007/BF02289588

[12] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2011.
Wrangler: interactive visual specification of data transformation scripts. In CHI,

https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/2395116.2395119
https://doi.org/10.1007/BF02289588

SchemaDrill: Interactive Semi-Structured Schema Design Conference’17, July 2017, Washington, DC, USA

Desney S. Tan, Saleema Amershi, Bo Begole, Wendy A. Kellogg, and Manas
Tungare (Eds.). 3363–3372. https://doi.org/10.1145/1978942.1979444

[13] Zhen Hua Liu and Dieter Gawlick. 2015. Management of Flexible Schema Data in
RDBMSs - Opportunities and Limitations for NoSQL -. In CIDR. www.cidrdb.org.

[14] Zhen Hua Liu, Beda Christoph Hammerschmidt, Doug McMahon, Ying Liu, and
Hui Joe Chang. 2016. Closing the functional and Performance Gap between SQL
and NoSQL. In SIGMOD Conference. ACM, 227–238.

[15] Oracle. 2017. Database JSON Developer’s Guide: JSON Data Guide.
https://docs.oracle.com/cloud/latest/db122/ADJSN/json-dataguide.htm. (2017).

[16] William Spoth, Bahareh Sadat Arab, Eric S. Chan, Dieter Gawlick, Adel Ghoneimy,
Boris Glavic, Beda Hammerschmidt, Oliver Kennedy, Seokki Lee, Zhen Hua Liu,
Xing Niu, and Ying Yang. 2017. Adaptive Schema Databases. In CIDR.

[17] Twitter. [n. d.]. Decahose stream. https://developer.twitter.com/en/docs/tweets/sample-
realtime/api-reference/decahose. ([n. d.]).

[18] Inc. Yelp. 2018. Yelp Open Dataset: An all-purpose dataset for learning.
https://www.yelp.com/dataset. (2018).

https://doi.org/10.1145/1978942.1979444

	Abstract
	1 Introduction
	1.1 Extracting Relational Entities
	1.2 Human-Scale S3D
	1.3 Overview

	2 Summarization
	2.1 Data Model
	2.2 Paths as Attributes
	2.3 Schema Collections
	2.4 Summarizing Schema Collections

	3 Visualization
	3.1 Schema Segmentation
	3.2 Schema Exploration
	3.3 An Iterative Approach

	4 Related Work
	5 Future Work
	Acknowledgments
	References

