23
24
25
26
27
28
29

39
40
41
42
43
44

Debugging Performance Issues in Mobile Data Management

Carl Nuessle Oliver Kennedy Lukasz Ziarek
University at Buffalo University at Buffalo University at Buffalo
carlnues@buffalo.edu okennedy@buffalo.edu 1ziarek@buffalo.edu

ABSTRACT

Embedded databases like SQLite are used extensively by smart-
phone apps for storing persistent state. However, if misused, em-
bedded databases can represent significant performance bottlenecks
for app developers. These can result from simple database miscon-
figurations like missing indexes or poor choice of concurrency
mode. However, mobile platforms like Android introduce a host of
new challenges for database performance tuning. In this paper, we
explore in depth one of these challenges: CPU frequency scaling,
fine-grained adjustments to CPU performance that reduce power
consumption. Android adjusts frequencies according to a heuristic
policy called the governor. In this paper, we explore the relationship
between governor and embedded database performance across a
range of workloads. Specifically, we show that certain governors,
including Android defaults, can significantly penalize some types
of workloads. In one case, the stated governor name and policy
proves to be misleading of actual performance. We also identify a
common use case where the new default governor often exhibits
worse performance than the previous system default. We outline
the findings of our study, and present a clear decision process for
debugging governor-based performance issues in mobile databases.

KEYWORDS

Mobile Platforms, Android, Database Performance

ACM Reference Format:

Carl Nuessle, Oliver Kennedy, and Lukasz Ziarek. 2018. Debugging Perfor-
mance Issues in Mobile Data Management. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 6 pages. https://doi.org/0000001.
0000001

1 INTRODUCTION

Databases are used extensively in smartphone applications (apps)
to store persistent state, with typical smartphones averaging over
two queries per second [14]. Despite their extensive use, databases
can be performance bottlenecks, leading to apps with poor respon-
siveness [20]. In some cases, performance issues result from sim-
ple database configuration issues (e.g., not enabling SQLite’s WAL
mode [18]). However, performance issues also result from the plat-
form itself. Smartphone hardware and operating systems rely heav-
ily on heuristic optimizations for managing scarce resources like
power or bandwidth. Poor choices from these heuristics can lead
to significant performance penalties for apps.

To help app developers better understand how these issues arise,
we introduce MDPERF, a performance debugger specifically target-
ing mobile data management. While MDPERF explores database
configuration parameters, it also considers the interplay between
an app’s data management needs and the heuristics governing the

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/0000001.0000001

mobile platform on which the app runs. In this paper we focus on
one specific heuristic unique to mobile platforms: the governor. A
governor is the part of the operating system that manages CPU
usage, deciding which of the competing processes will be run, how
soon, for how long, and most importantly how fast. Specifically, the
governor has fine-grained control over the CPU’s frequency, select-
ing from tens of frequencies to trade off between performance and
power consumption. The Android system has a modular governor
— The Nexus 5 and 6, for example have a choice of six available
governors, each representing a different policy [1].

This paper aims to help developers to debug governor-based
database performance issues. Specifically, we make the following
contributions: (1) We study database performance on a range of
governors and workloads representative of real-world app usage.
(2) We explore unexpected results from this study. (3) We give a
decision process for debugging governor-related data-performance
in smartphone apps.

2 STUDY DESIGN

We now discuss our governor measurement study. All tests were run
on a stock version of Android AOSP 5.1.1 system [8], instrumented
as described below, and with the governor adjusted as indicated in
each experiment. Our benchmark workloads are derived from the
result of a previous study [14] and are designed to mimic workloads
encountered on mobile devices as discussed below.

2.1 Benchmarking Environment

All tests were run on Nexus 5 devices with 2GB RAM and a quad-
core 2.3 GHz CPU (quality bin 2 [19]). Software and libraries used in
tests included SQLite 3.8.6.1 and the Android Youtube app version
13.10.59 [9]. The Youtube app is the second-most installed app on
the Android platform at a 71% share.[12]

Benchmark workloads were run in a self-contained Android
“app” that runs in two phases. The first time the app is run, it pre-
loads an initial database and then exits. On the second run, the
app replays one of several pre-generated workloads — the choice
to replay rather than to randomly reproduce was made to ensure
repeatability across different test settings.

All trace data was collected using the Linux ftrace framework.
Android was instrumented at the ftrace framework level to record
I/O operations and context switches to and from the measurement
app. The benchmark app injected additional ftrace events at the
start and stop of each delay period to record per-query latency.
From these events we calculate two metrics: latency, or total time
time spent responding to a DB request, and CPU time, or time the
app spends on-core processing the request. We have confirmed that
the overhead of logging within the Android kernel is negligible,
while app-level logging added a nearly fixed 1s overhead to the
CPU time of trial, roughly 0.6ms per query.

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

146
147
148

150

160
161
162
163
164
165
166
167
168
169

170

172
173

174

Conference’17, July 2017, Washington, DC, USA

Overview. Our study is based on of 64 trials, spanning 8 workloads,
5 governor choices, and 2 load levels, as described below.

2.2 Workloads

The benchmark itself consisted of 8 workloads (A-H). In a previous
study [14], we found overwhelming evidence that smartphone apps
use SQLite like a key-value store. Hence, the first 6 workloads (A-F)
are the six canonical YCSB [5] workloads: a mix of read, write,
update, append, and scan operations implemented over a key-value
store. We supplement these workloads with 2 additional workloads:
G and H. Both use the same data set, and consist of a distribution of
database insert, upsert, and select operations proportional to typical
app behavior seen in our prior study. Select queries in the two
workloads involve, respectively, 1-dimensional (G) or 2-dimensional
(H) range scans.

A second insight from our previous study was that database
queries on smartphones, unlike those on traditional servers, are
intermittent in nature. Specifically, inter query delays follow a long-
tail distribution that we model as a lognormal distribution with
a mean of 6.67 ms. Accordingly, our benchmark app pauses by
sleeping in between operations for the appropriate amount of time.

2.3 Governors

We evaluated all 6 governor choices [1] available on the Nexus 5:
(1) Conservative, where frequency scaling happens slowly, (2) In-
teractive, where frequency scales up rapidly and down using a
timer delay, (3) Ondemand, which triggers frequency scaling based
on per-task work queues, (4) Performance, where the CPU runs
at the highest frequency modulo thermal limiting, (5) Powersave,
designed to run the CPU at the lowest frequency available, and
(6) Userspace, an option allowing apps to directly set frequencies

Frequency gradations on the Nexus 5 phone consist of 14 discrete
steps between 300 MHz and 2.265 GHz, inclusive. All governors
were run with otherwise default intra-governor settings. Ondemand
is the default governor for the Nexus 5 device that we used, while
Interactive is the default for the Nexus 6 [1]. The Userspace governor
defaults to the maximum frequency and performs identically to the
Performance governor under default conditions. We therefore omit
our results for the Userspace governor.

2.4 Non-Database Load

In contrast to their server-class counterparts, mobile databases typi-
cally share system resources with other applications. An application
executing queries on SQLite may be doing other things, or the user
may be using multiple applications simultaneously. Since governor
behavior is based on active system load, we wish to understand the
effects of load on database performance.

Specifically, we run our benchmark under two load conditions.
First, for each governor we ran the benchmark alone, where it
essentially had system resources to itself. Second, for a subset of
the governors, we ran it simultaneously with a well-known popular
app, Youtube, where it had to compete for resources. We selected
this app because it is a popular and commonly used Android app,
and because video playback and network streaming provides a
representative way to stress system resources.

C. Nuessle et al.

The Performance and Powersave choices are upper and lower
bounds for available performance, given that the CPU is essentially
pinned to the highest or lowest available frequency. The three
intermediate governors — Conservative, Interactive, and Ondemand
— represent the interesting middle ground where CPU frequency
fluctuates based on system usage, so we focus our evaluation under
load on these three governors.

2.5 Implementation Challenges

Our benchmarking system encountered some challenges. We ran
Youtube to produce a resource-limited environment in which our
benchmark could run. A deliberate policy of the Android system,
however, is periodically to kill background tasks that it determines
are consuming resources, such as our benchmark, in order to maxi-
mize user experience. Getting complete runs thus often involved
repeated trials. While we could have minimized this behavior by
running the benchmark as a system service, this would not have
mimicked the environment enjoyed by a typical app.

Additionally, when running the benchmarks tests, it was a matter
of time until the test devices themselves started exhibiting ther-
mal stress, with display flicker, touchscreen unresponsiveness, and
random app launches. Thermal problems are a known issue with
Android devices, particularly during periods of long screen usage
and during battery charging [10, 17]. Both of these factors were
present when running our app; the solution was inevitably a pro-
longed cooldown period. We observed identical patterns of both
the benchmark killing and thermal limit problems on different
but identically configured devices, to rule out a possible hardware
glitch.

3 STUDY ANALYSIS

Before we discuss results specific to governors, we outline the
general performance characteristics of queries. First, reads are uni-
versally fast, with typical latencies of around 1ms. Update perfor-
mance is bimodal, typically taking either 1ms or 10ms. Inserts are
universally expensive, taking around 10ms. Unlike the formulaic
performance of the other operations, scans are highly variable, but
typically fall in the range of 1ms to 10ms latency.

General Governor Behavior. To get a better sense of the gover-
nors and their effect on query processing times, consider the scatter
plots presented in Figure 1 and Figure 2. These two figures show the
predominantly IO-bound workload F (Figure 1), and the predomi-
nantly CPU-bound workload G (Figure 2)'. On both workloads, the
Powersave/Performance governors are stable, while the Conserva-
tive governor adapts frequencies slowly throughout the workload,
with 3 discrete steps seen in Workload F and 1 step in Workload
G. By comparison, the Interactive governor adapts frequently dur-
ing the workload leading to highly variable performance, while
the Ondemand governor fluctuates more predictably, ramping up
periodically when its utilization threshold is crossed before slowly
ramping back down.

Performance Under Load. When additional load is added to the
system, as shown in the 3 graphs in the lower left of both figures,
we see a marketed shift in performance for the governors. The most

!Similar graphs for the remaining workloads, excluded in the interest of space, may
be found at http://pocketdata.info

177
178
179
180
181
182
183

184

186
187
188
189
190
191
192
193

194

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

http://pocketdata.info

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277

279
280
281
282
283
284
285
286

288
289
290

Mobile Frequency Scaling

Conservative Governor Interactive Governor

Conference’17, July 2017, Washington, DC, USA

Ondemand Governor Performance Governor

+ SELECT + SELECT
1071 4 « UPDATE | 107* 4 « UPDATE
< . xx . e X
[sgvoccs X AN X 298¢ 2006 W e e W x B "¢
§ 102 4 "_.wﬂz
8

1077 -

.« SELECT .
UPDATE | 107" 5 B

SELECT
UPDATE

* x
%
UM XM SN X 00K SR 200 I N
o

1072 4
if "g . P‘ﬂ; ‘.

$ &1 ii:*gf‘

+
23008y

Loaded Conservative Governor Loaded Interactive Governor

Loaded Ondemand Governor Powersave Governor

+ SELECT + SELECT + SELECT + SELECT
107t 4 . « UPDATE | 10713 . UPDATE * . * UPDATE
0 x % P
> et bt s el
é . ® - . i
g gmmmesmmTsin
-
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Query Index Query Index Query Index Query Index
Figure 1: Per-Query Latencies on Workload F
Conservative Governor Interactive Governor Ondemand Governor Performance Governor
+ SELECT + SELECT + SELECT + SELECT
10713 . UPDATE 3 107"y . UPDATE | .7, ¢ | 1073 « UPDATE
° « INSERT g' - . INSERT . &, , %0 ' 2%% . « INSERT
? 1072 4 w =k 10-2 4 : 1‘ . 10-2 4 'w'mw‘a-at;ﬂy‘_-‘gx,&;‘lﬁ
Q . o R o N $ 24 e s -
] " ﬂﬂ%}t&4& o s £"s oo 3 2 ggqu%“‘. " b .
3 ?"ﬁ,.&;":_;g a&}x&,ﬁ 4 ERE ;.‘ 3 ?"a‘;’f:h;,,igi o g -’gi',.
-3 L -3] y &3 -3
10 el owx®® x %o x WKx 10 x x x *w xxg xx! 10 WX WEKEK xKae x WC M % m X
Loaded Conservative Governor Loaded Interactive Governor Loaded Ondemand Governor Powersave Governor
+ SELECT + SELECT + SELECT . . ;f
1071 4 . 1071 4 107y . 1 o 1071 4 RO R ¥
_ « UPDATE . % x UPDATE PR & « UPDATE .
° » INSERT INSERT Aol S ek, « INSERT '3
> -
j=
[0 P
® wum %+ SELECT
« UPDATE
» INSERT
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Query Index Query Index Query Index Query Index

Figure 2: Per-Query Latencies on Workload G

important thing to notice is that the change in the governor’s behav-
ior and the system as a whole, depends on whether the workload is
CPU-bound or not. The added load, in general, keeps the Interactive
and Ondemand governor policies tuned toward performance, keep-
ing the CPU running at higher frequencies. The counter intuitive
result is that if the workload is not CPU bound (as in Workload
F), the added load actually improves median performance, albeit
at the cost of increased variability. In the reverse case where the
workload is CPU bound (Workload G), latency times become longer
and more variable.

Performance by Workload Bottleneck. In general, the most
CPU bound workloads tended to be scan heavy (Workloads E, G, H).
The read-heavy workloads (B, C, D) are dominated by operations
with negligible cost, and spend most of their time not in database
code (sleeping or displaying video in our tests). Update-heavy work-
loads (A, F) tended to be IO-bound, leaving the CPU underutilized.
The variation in performance between best-case (Performance gov-
ernor) and worst-case (Powersave governor) is roughly one order
of magnitude, increasing from 1ms to 10ms or from 10ms to 100ms.

This effect is most pronounced for the faster operations like
selects. Slower operations, which tend to be IO-bound, are still
affected, but not to the same degree (e.g., compare Performance

and Powersave governor for workload G in Figure 2). In general,
adding system load (Youtube) causes CPU time and performance
variability to move in opposite directions. CPU time gets better
(core kept warm), but latency variation is significantly worse.

Ramp-Down vs Contention. The Ondemand and Interactive gov-
ernors adjust performance continuously. Hence, it is possible for
added load to actually decrease latencies. Concretely, higher loads
have two effects: (1) The governors are more likely to keep the CPU
running at higher frequencies, and (2) more contention from scarce
resources makes performance slower and more variable. On the
CPU-bound workloads, contention is the dominant factor, and per-
formance suffers under load. Figure 3 illustrates the performance
breakdown for YCSB’s three read/write workloads. On the IO-heavy
Workload A (Figure 3a), median performance for both Interactive
(<, ») and Ondemand (A,) governors improves under load, as
contention has a comparatively small effect. However, at roughly
the 85th percentile, performance degrades significantly. These op-
erations are exclusively updates, and their reduced performance is
most likely caused by increased bus or flash drive contention.

Android Defaults are Highly Variable. Note also the compara-
tive behavior of the Ondemand and Interactive governors (default
governors for the Nexus 5 and 6, respectively) on Workloads B

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406

Conference’17, July 2017, Washington, DC, USA

1.0 4
0.8
0.6
& —¢— Conservative Governor
o —<— Interactive Governor
0.4 —A— Ondemand Governor
—— Performance Governor
—+— Load+Conservative Governor
0.21 —»— Load+Interactive Governor
/ Load+Ondemand Governor
0.0 —8— Powersave Governor
10° 10! 102
Latency (ms)
(a) Workload A (Write-Heavy — 50/50 read/write)
1.0 4
0.8
0.6
& —— Conservative Governor
o —<— Interactive Governor
0.4 —A— Ondemand Governor
—— Performance Governor
—+— Load+Conservative Governor
0.2 1 —»— Load+Interactive Governor
Load+Ondemand Governor
0.0 1 —&— Powersave Governor
10° 10! 10?
Latency (ms)
(b) Workload B (Read-Heavy — 95/5 read/write)
1.01 f
0.8
0.6
w —— Conservative Governor
o —<— Interactive Governor
0.4 4 —A— Ondemand Governor
—— Performance Governor
—+— Load+Conservative Governor
0.2 1 —»— Load+Interactive Governor
Load+Ondemand Governor
0.0 1 —&— Powersave Governor

10° 10t 10?
Latency (ms)

(c) Workload C (Pure Read)
Figure 3: CDF of Governor Performance on Workloads A-C

and C (Figures 3b and 3c respectively) in response to added load.
The Interactive governor’s performance is significantly improved
on the read-heavy workload B, but begins to suffer from variable
performance on workload C. Conversely, Ondemand performance
is relatively unaffected by load on workload B, but improves signif-
icantly in both performance and reduced variability on Workload
C as governor-caused performance fluctuations are eliminated.

Conservative is Surprisingly Fast. Conservative, which as a pol-
icy is indented to keep CPU frequencies low, is consistently second

C. Nuessle et al.

B Block Time
-~ | =3 Delay Time
E 100000 EEm CPU Time
)
'
g 80000+ - .
-
= L
g 60000
&~
—, 40000t
]
°
= 20000t
e L P
@ @ Qb & @
X X > X @ Q’ x QO N &
@é@ o’bbé"’&\@@ & gd bg& \9@@&0 0&&9 &
00& Vg <$ ‘.\@‘ & & Qe’é ©
IS ©
(a) Workload A
. B Block Time
- L [Delay Time
E 80000 - EEm CPU Time
)
'
© 60000+
g
P}
g 40000
&~
—
8
© 20000}
1 |
0 (4 (4 > @]
& @ & x e & x> & &
?)é&’ ,§>xf§$ Q)&"’é o&&4 b@‘éb ob&q& && 4@%
& \,0%054 & VE V¥ &S
@) 000 & Q R
(b) Runtime on Workload E
B Block Time
~ 80000L l [= Delay Time
E [EEm CPU Time
o
'
© 60000+
g
-
5 40000
&~
—
8
© 20000}
) &J&ﬂ
0 @ 4 > @]
) ey O O A
é’y bx '&Q) ’bc"o fzybx‘@\& z&(b @bx'bob {&&\ e@(b
¢ FL & (FF F S S
F VLS & & & &<
@) 000 AN Q R

(c) Runtime on Workload H
Figure 4: Per-Governor Runtimes for Workloads A, E, and H

fastest. It is possible that this is an artifact of the trial duration, and
that decayed performance could appear in multi-hour trials.

Overall Throughput. Figure 4 shows performance for workloads
A, E, and H. Blue bars indicate time spent running queries (CPU
Time), while the stacked Yellow and Red bars show time spent

407
408
409
410
an
412
413
414
415
416
27
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447

461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

Mobile Frequency Scaling

sleeping in between queries (Delay Time) or blocked on IO (Block
Time), respectively. The Powersave governor is clearly slower, but
especially bad on (CPU-intensive) scan-heavy workloads. Most
notably, throughputs plummet under load. Specifically, the time
that the benchmark app spends off-core, including both block time
and delay time, is substantially worse. Worst-case latencies get
worse under load for Interactive and Ondemand. Workload A is
especially bad for interactive.

4 IS MY GOVERNOR WORKING?

As databases are commonly used by smartphone apps, their per-
formance is often crucial to user experience. In many cases, the
problem can be traced back to an inappropriate choice of governor.
Another governor, with a different set of policies, could furnish
better performance. Figuring out whether this is the case, however,
is not straightforward. One governor is not necessarily better than
another in all areas (with the obvious exception of Performance,
which is by design an upper bound). Much more typically, better
performance in one respect is counterbalanced by worse perfor-
mance in another. Hence, we want to help developers answer the
question of whether the governor is responsible for their app’s
performance issues Specifically, what should a developer look for,
and how should they interpret their findings? We now present a
decision process, summarized in Figure 5, which provides 3 sets
of color-coded gradients of expected performance for each of 3
metrics: throughput (Figure 5a), median latency (Figure 5b), and
95th percentile latency (Figure 5c¢). In general, Blue means not a
problem, Yellow indicates a potential problem, and Red indicates
a serious limitation. The top 5 rows in each graph represent data-
base performance metrics of each of the 5 governor choices under
study when run on an otherwise unloaded system. Workloads are
clustered by category: Write-Heavy (A, F) on the left, Read-Heavy
(B, C, D) in the middle, and Scan-Heavy (E, G, H).

4.1 Governor Choice

The first metric the app developer should identify is what gover-
nor is already being used. Developers seeking absolute maximal
or minimal database performance have likely already selected ei-
ther the Performance or Powersave governor respectively. As the
corresponding horizontal rows in the decision graphs show, these
two choices unsurprisingly furnish upper and lower bounds to
performance under all 3 metrics with an unloaded system.

For most developers, things will not be so simple: other governor
choices offer trade-offs among different performance metrics. The
Android system defaults on the Nexus platforms are the Ondemand
and Interactive governors; one of these two choices will be the
likely starting point for analysis.

4.2 Overall System Load

Given the likely selection of one of the mid-level governors, the
second factor that developers to evaluate is the overall system load.
Different types of apps can expect to be run under different system
conditions. An interactive game, for example, can reasonably expect
to enjoy uninterrupted complete foreground usage for several min-
utes. Others apps will have to contend with going out of focus or
shunted into the background while other tasks consume resources.

Conference’17, July 2017, Washington, DC, USA

For each of the 3 mid-level governors (Interactive, Ondemand,
and Conservative), the 3 performance evaluation graphs each pro-
vide 2 alternative paths. Developers whose apps run on relatively
unloaded systems should continue to reference the appropriate
governor rows from the top of the decision graphs. If instead the
app runs on a resource-loaded system, they should consult the 3
appropriately labeled lower rows. Considering the system load level
on which an app’s database runs is crucial, as the popular mid-level
governors can offer conflicting performance trade-offs.

Decision Step Summary: Using the appropriate governor choice
/ system load level combination, select the appropriate row of the
performance analysis graphs.

4.3 App Database Operation Mixture

The third metric developers should identify is the nature of database
operations their apps request. The vertical columns of the graphs
in Figure 5 represent the performance of workloads containing
different combinations of operations. The last two columns in each
graph, G and H, represent custom workloads designed to reflect the
actual workload mixes we encountered in our previous study [14].
App developers lacking further specific information about their
apps’ usage patterns should focus on the data in these two columns.
Apps known to be read-heavy in operation, however, should look
at the information in columns B-C-D most closely (representing
read-heavy workloads). Similarly, write-heavy apps should look at
A and F, and scan-heavy ones at E.

Decision Step Summary: Use the type of database operation
mixture to determine which column(s) of each of the 3 performance
analysis graphs to consult.

4.4 Database Performance Metrics

The final item developers need to consider is what measures are
relevant for their apps. Each of the three performance graphs illus-
trate expected performance for three key measures: throughput,
median latency, and 95th percentile latency. Using the rows and
columns obtained in previous steps, developers can now obtain a
customized set of performance expectations: Use cases falling into
red or yellow regions may wish to consider workarounds like the
use of futures for query responses to mitigate latency issues.

Decision Step Summary: The color gradient of the 3 boxes
identified in previous steps indicates expected database perfor-
mance bands in 3 key areas.

5 RELATED WORK

There have a been a number of performance studies focusing on
mobile platforms and governors for managing their runtime perfor-
mance characteristics [3, 4, 6, 7, 15]. Most of these studies focus on
managing the performance and energy tradeoff and none look at the
effect of the governor on embedded database performance. A few
make the argument that for more effective over all system utiliza-
tion considerations of the whole program stack must be made [13]
and instead of managing applications individually, system wide ser-
vices should be created for more wholistic management [11]. More
recently, there has been interest in specialized studies focusing on
performance and energy consumption of specific subsystems, like

579

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

Conference’17, July 2017, Washington, DC, USA

Workload A
Workload F
Workload B
Workload C
Workload D
Workload E
Workload G
Workload H
Workload A

Operations per Second

[e—

10 20 30 40 50 60 5

(a) Expected throughput

Workload F

Workload B

Performance
Conservative
Interactive
Ondemand
Powersave

Loaded Conservative
Loaded Interactive
Loaded Ondemand

[eee——

C. Nuessle et al.

Workload C
Workload D
Workload E
Workload G
Workload H
Workload A
Workload F
Workload B
Workload C
Workload D
Workload E
Workload G
Workload H

Milliseconds Milliseconds
15 20 25 30 20 40 60 80 100 120

10

(b) Expected median latency

(c) Expected 95%ile latency

Figure 5: Performance metrics of governors under varying database workloads and system conditions.

mobile web [2]. These studies do not, however, document the com-
peting performance metric tradeoffs between governors. Nor do
they explore the effect of system load on performance rankings of
governor choices. We view our study and performance debugging
methodology for embedded databases on mobile devices to be a
first step at understanding the performance effect of the mobile
platform on mobile databases and PocketData [14].

ACKNOWLEDGMENTS

This work was supported by NSF Award CNS-1629791 and relies on
data gathered from PHONELAB [16]. The conclusions and opinions
in this work are solely those of the authors and do not represent
the views of the National Science Foundation.

REFERENCES

[1] Dominik Brodowski. 2018. (2018). https://android.googlesource.com/kernel/
msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt

[2] Yi Cao, Javad Nejati, Muhammad Wajahat, Aruna Balasubramanian, and Anshul
Gandhi. 2017. Deconstructing the Energy Consumption of the Mobile Page Load.
PMACS 1, 1, Article 6 (June 2017), 25 pages. https://doi.org/10.1145/3084443

[3] Aaron Carroll and Gernot Heiser. 2010. An Analysis of Power Consumption in a
Smartphone. In USENIXATC. 21-21.

[4] Xiang Chen, Yiran Chen, Mian Dong, and Charlie Zhang. 2014. Demystifying
Energy Usage in Smartphones. In Proceedings of the 51st Annual Design Au-
tomation Conference (DAC ’14). ACM, New York, NY, USA, Article 70, 5 pages.
https://doi.org/10.1145/2593069.2596676

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of

the 1st ACM symposium on Cloud computing. ACM, 143-154.

Benedikt Dietrich and Samarjit Chakraborty. 2013. Power Management Using

Game State Detection on Android Smartphones. In MobiSys. 493-494.

[7] Begum Egilmez, Gokhan Memik, Seda Ogrenci-Memik, and Oguz Ergin. 2015.

User-specific Skin Temperature-aware DVFS for Smartphones. In DATE. 1217-

1220.

Google. 2018. Android Open Source Project. https://source.android.com/. (2018).

Google. 2018. Youtube App. (2018). https://youtube.en.uptodown.com/android/

[10] Gtricks. 2018. (2018). https://www.gtricks.com/android/

android-phone-overheating- cool-down-android-phone/

[11] Ahmed Hussein, Mathias Payer, Antony Hosking, and Christopher A. Vick. 2015.

Impact of GC Design on Power and Performance for Android. In SYSTOR. Article

=

8

==

[12]
(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

13, 12 pages.

Business Insider. 2018. (2018). http://www.businessinsider.com/
most-used-smartphone-apps-2017-8#2-youtube-9

Melanie Kambadur and Martha A. Kim. 2014. An Experimental Survey of Energy
Management Across the Stack. In OOPSLA. 329-344.

Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek. 2015. Pocket
data: The need for TPC-MOBILE. In Technology Conference on Performance Eval-
uation and Benchmarking. Springer, 8-25.

Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and
Luca Benini. 2014. A Linux-governor Based Dynamic Reliability Manager for
Android Mobile Devices. In DATE. Article 104, 4 pages.

Anandatirtha Nandugudi, Anudipa Maiti, Taeyeon Ki, Muhammed Fatih Bu-
lut, Murat Demirbas, Tevfik Kosar, Chunming Qiao, Steven Y. Ko, and Geof-
frey Challen. 2013. PhoneLab: A Large Programmable Smartphone Testbed. In
SENSEMINE@SenSys. ACM, 4:1-4:6.

pcnexus. 2018, (2018). https://www.gtricks.com/android/
android-phone-overheating-cool-down-android-phone/

SQLite. 2017. Write-Ahead Logging. https://www.sqlite.org/draft/wal.html.
(2017).

Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hempstead, and Ge-
offrey Challen. 2017. Separated By Birth: Hidden Differences Between Seemingly-
Identical Smartphone CPUs. In HotMobile. ACM, 103-108.

Shenggian Yang, Dacong Yan, and Atanas Rountev. 2013. Testing for Poor
Responsiveness in Android Applications. In MOBS. 1-6.

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/3084443
https://doi.org/10.1145/2593069.2596676
https://youtube.en.uptodown.com/android/
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/
http://www.businessinsider.com/most-used-smartphone-apps-2017-8#2-youtube-9
http://www.businessinsider.com/most-used-smartphone-apps-2017-8#2-youtube-9
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/

	Abstract
	1 Introduction
	2 Study Design
	2.1 Benchmarking Environment
	2.2 Workloads
	2.3 Governors
	2.4 Non-Database Load
	2.5 Implementation Challenges

	3 Study Analysis
	4 Is My Governor Working?
	4.1 Governor Choice
	4.2 Overall System Load
	4.3 App Database Operation Mixture
	4.4 Database Performance Metrics

	5 Related Work
	Acknowledgments
	References

