
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Debugging Performance Issues in Mobile Data Management
Carl Nuessle

University at Buffalo

carlnues@buffalo.edu

Oliver Kennedy

University at Buffalo

okennedy@buffalo.edu

Lukasz Ziarek

University at Buffalo

lziarek@buffalo.edu

ABSTRACT
Embedded databases like SQLite are used extensively by smart-

phone apps for storing persistent state. However, if misused, em-

bedded databases can represent significant performance bottlenecks

for app developers. These can result from simple database miscon-

figurations like missing indexes or poor choice of concurrency

mode. However, mobile platforms like Android introduce a host of

new challenges for database performance tuning. In this paper, we

explore in depth one of these challenges: CPU frequency scaling,

fine-grained adjustments to CPU performance that reduce power

consumption. Android adjusts frequencies according to a heuristic

policy called the governor. In this paper, we explore the relationship

between governor and embedded database performance across a

range of workloads. Specifically, we show that certain governors,

including Android defaults, can significantly penalize some types

of workloads. In one case, the stated governor name and policy

proves to be misleading of actual performance. We also identify a

common use case where the new default governor often exhibits

worse performance than the previous system default. We outline

the findings of our study, and present a clear decision process for

debugging governor-based performance issues in mobile databases.

KEYWORDS
Mobile Platforms, Android, Database Performance

ACM Reference Format:
Carl Nuessle, Oliver Kennedy, and Lukasz Ziarek. 2018. Debugging Perfor-

mance Issues inMobile DataManagement. In Proceedings of ACMConference
(Conference’17). ACM, New York, NY, USA, 6 pages. https://doi.org/0000001.

0000001

1 INTRODUCTION
Databases are used extensively in smartphone applications (apps)

to store persistent state, with typical smartphones averaging over

two queries per second [14]. Despite their extensive use, databases

can be performance bottlenecks, leading to apps with poor respon-

siveness [20]. In some cases, performance issues result from sim-

ple database configuration issues (e.g., not enabling SQLite’s WAL

mode [18]). However, performance issues also result from the plat-

form itself. Smartphone hardware and operating systems rely heav-

ily on heuristic optimizations for managing scarce resources like

power or bandwidth. Poor choices from these heuristics can lead

to significant performance penalties for apps.

To help app developers better understand how these issues arise,

we introduce MDPerf, a performance debugger specifically target-

ing mobile data management. While MDPerf explores database

configuration parameters, it also considers the interplay between

an app’s data management needs and the heuristics governing the

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/0000001.0000001

mobile platform on which the app runs. In this paper we focus on

one specific heuristic unique to mobile platforms: the governor. A

governor is the part of the operating system that manages CPU

usage, deciding which of the competing processes will be run, how

soon, for how long, and most importantly how fast. Specifically, the

governor has fine-grained control over the CPU’s frequency, select-

ing from tens of frequencies to trade off between performance and

power consumption. The Android system has a modular governor

— The Nexus 5 and 6, for example have a choice of six available

governors, each representing a different policy [1].

This paper aims to help developers to debug governor-based

database performance issues. Specifically, we make the following

contributions: (1) We study database performance on a range of

governors and workloads representative of real-world app usage.

(2) We explore unexpected results from this study. (3) We give a

decision process for debugging governor-related data-performance

in smartphone apps.

2 STUDY DESIGN
Wenow discuss our governormeasurement study. All tests were run

on a stock version of Android AOSP 5.1.1 system [8], instrumented

as described below, and with the governor adjusted as indicated in

each experiment. Our benchmark workloads are derived from the

result of a previous study [14] and are designed to mimic workloads

encountered on mobile devices as discussed below.

2.1 Benchmarking Environment
All tests were run on Nexus 5 devices with 2GB RAM and a quad-

core 2.3 GHz CPU (quality bin 2 [19]). Software and libraries used in

tests included SQLite 3.8.6.1 and the Android Youtube app version

13.10.59 [9]. The Youtube app is the second-most installed app on

the Android platform at a 71% share.[12]

Benchmark workloads were run in a self-contained Android

“app” that runs in two phases. The first time the app is run, it pre-

loads an initial database and then exits. On the second run, the

app replays one of several pre-generated workloads — the choice

to replay rather than to randomly reproduce was made to ensure

repeatability across different test settings.

All trace data was collected using the Linux ftrace framework.

Android was instrumented at the ftrace framework level to record

I/O operations and context switches to and from the measurement

app. The benchmark app injected additional ftrace events at the

start and stop of each delay period to record per-query latency.

From these events we calculate two metrics: latency, or total time

time spent responding to a DB request, and CPU time, or time the

app spends on-core processing the request. We have confirmed that

the overhead of logging within the Android kernel is negligible,

while app-level logging added a nearly fixed 1s overhead to the

CPU time of trial, roughly 0.6ms per query.

1

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA C. Nuessle et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Overview.Our study is based on of 64 trials, spanning 8 workloads,
5 governor choices, and 2 load levels, as described below.

2.2 Workloads
The benchmark itself consisted of 8 workloads (A-H). In a previous

study [14], we found overwhelming evidence that smartphone apps

use SQLite like a key-value store. Hence, the first 6 workloads (A-F)

are the six canonical YCSB [5] workloads: a mix of read, write,

update, append, and scan operations implemented over a key-value

store. We supplement these workloads with 2 additional workloads:

G and H . Both use the same data set, and consist of a distribution of

database insert, upsert, and select operations proportional to typical

app behavior seen in our prior study. Select queries in the two

workloads involve, respectively, 1-dimensional (G) or 2-dimensional

(H) range scans.

A second insight from our previous study was that database

queries on smartphones, unlike those on traditional servers, are

intermittent in nature. Specifically, inter query delays follow a long-

tail distribution that we model as a lognormal distribution with

a mean of 6.67 ms. Accordingly, our benchmark app pauses by

sleeping in between operations for the appropriate amount of time.

2.3 Governors
We evaluated all 6 governor choices [1] available on the Nexus 5:

(1) Conservative, where frequency scaling happens slowly, (2) In-
teractive, where frequency scales up rapidly and down using a

timer delay, (3)Ondemand, which triggers frequency scaling based
on per-task work queues, (4) Performance, where the CPU runs

at the highest frequency modulo thermal limiting, (5) Powersave,
designed to run the CPU at the lowest frequency available, and

(6) Userspace, an option allowing apps to directly set frequencies

Frequency gradations on the Nexus 5 phone consist of 14 discrete

steps between 300 MHz and 2.265 GHz, inclusive. All governors

were run with otherwise default intra-governor settings. Ondemand
is the default governor for the Nexus 5 device that we used, while

Interactive is the default for the Nexus 6 [1]. The Userspace governor
defaults to the maximum frequency and performs identically to the

Performance governor under default conditions. We therefore omit

our results for the Userspace governor.

2.4 Non-Database Load
In contrast to their server-class counterparts, mobile databases typi-

cally share system resources with other applications. An application

executing queries on SQLite may be doing other things, or the user

may be using multiple applications simultaneously. Since governor

behavior is based on active system load, we wish to understand the

effects of load on database performance.

Specifically, we run our benchmark under two load conditions.

First, for each governor we ran the benchmark alone, where it

essentially had system resources to itself. Second, for a subset of

the governors, we ran it simultaneously with a well-known popular

app, Youtube, where it had to compete for resources. We selected

this app because it is a popular and commonly used Android app,

and because video playback and network streaming provides a

representative way to stress system resources.

The Performance and Powersave choices are upper and lower

bounds for available performance, given that the CPU is essentially

pinned to the highest or lowest available frequency. The three

intermediate governors — Conservative, Interactive, and Ondemand

— represent the interesting middle ground where CPU frequency

fluctuates based on system usage, so we focus our evaluation under

load on these three governors.

2.5 Implementation Challenges
Our benchmarking system encountered some challenges. We ran

Youtube to produce a resource-limited environment in which our

benchmark could run. A deliberate policy of the Android system,

however, is periodically to kill background tasks that it determines

are consuming resources, such as our benchmark, in order to maxi-

mize user experience. Getting complete runs thus often involved

repeated trials. While we could have minimized this behavior by

running the benchmark as a system service, this would not have

mimicked the environment enjoyed by a typical app.

Additionally, when running the benchmarks tests, it was a matter

of time until the test devices themselves started exhibiting ther-

mal stress, with display flicker, touchscreen unresponsiveness, and

random app launches. Thermal problems are a known issue with

Android devices, particularly during periods of long screen usage

and during battery charging [10, 17]. Both of these factors were

present when running our app; the solution was inevitably a pro-

longed cooldown period. We observed identical patterns of both

the benchmark killing and thermal limit problems on different

but identically configured devices, to rule out a possible hardware

glitch.

3 STUDY ANALYSIS
Before we discuss results specific to governors, we outline the

general performance characteristics of queries. First, reads are uni-

versally fast, with typical latencies of around 1ms. Update perfor-

mance is bimodal, typically taking either 1ms or 10ms. Inserts are

universally expensive, taking around 10ms. Unlike the formulaic

performance of the other operations, scans are highly variable, but

typically fall in the range of 1ms to 10ms latency.

General Governor Behavior. To get a better sense of the gover-

nors and their effect on query processing times, consider the scatter

plots presented in Figure 1 and Figure 2. These two figures show the

predominantly IO-bound workload F (Figure 1), and the predomi-

nantly CPU-bound workload G (Figure 2)
1
. On both workloads, the

Powersave/Performance governors are stable, while the Conserva-

tive governor adapts frequencies slowly throughout the workload,

with 3 discrete steps seen in Workload F and 1 step in Workload

G. By comparison, the Interactive governor adapts frequently dur-

ing the workload leading to highly variable performance, while

the Ondemand governor fluctuates more predictably, ramping up

periodically when its utilization threshold is crossed before slowly

ramping back down.

Performance Under Load. When additional load is added to the

system, as shown in the 3 graphs in the lower left of both figures,

we see a marketed shift in performance for the governors. The most

1
Similar graphs for the remaining workloads, excluded in the interest of space, may

be found at http://pocketdata.info

2

http://pocketdata.info

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mobile Frequency Scaling Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

10 3

10 2

10 1

La
te

nc
y

(s
)

Conservative Governor
SELECT
UPDATE

10 3

10 2

10 1

Interactive Governor
SELECT
UPDATE

10 3

10 2

10 1

Ondemand Governor
SELECT
UPDATE

10 3

10 2

10 1

Performance Governor
SELECT
UPDATE

0 500 1000 1500
Query Index

10 3

10 2

10 1

La
te

nc
y

(s
)

Loaded Conservative Governor
SELECT
UPDATE

0 500 1000 1500
Query Index

10 3

10 2

10 1

Loaded Interactive Governor
SELECT
UPDATE

0 500 1000 1500
Query Index

10 3

10 2

10 1

Loaded Ondemand Governor
SELECT
UPDATE

0 500 1000 1500
Query Index

10 3

10 2

10 1

Powersave Governor
SELECT
UPDATE

Workload F

Figure 1: Per-Query Latencies on Workload F

10 3

10 2

10 1

La
te

nc
y

(s
)

Conservative Governor
SELECT
UPDATE
INSERT

10 3

10 2

10 1

Interactive Governor
SELECT
UPDATE
INSERT

10 3

10 2

10 1

Ondemand Governor
SELECT
UPDATE
INSERT

10 3

10 2

10 1

Performance Governor
SELECT
UPDATE
INSERT

0 500 1000 1500
Query Index

10 3

10 2

10 1

La
te

nc
y

(s
)

Loaded Conservative Governor
SELECT
UPDATE
INSERT

0 500 1000 1500
Query Index

10 3

10 2

10 1

Loaded Interactive Governor
SELECT
UPDATE
INSERT

0 500 1000 1500
Query Index

10 3

10 2

10 1

Loaded Ondemand Governor
SELECT
UPDATE
INSERT

0 500 1000 1500
Query Index

10 3

10 2

10 1

Powersave Governor

SELECT
UPDATE
INSERT

Workload G

Figure 2: Per-Query Latencies on Workload G

important thing to notice is that the change in the governor’s behav-

ior and the system as a whole, depends on whether the workload is

CPU-bound or not. The added load, in general, keeps the Interactive

and Ondemand governor policies tuned toward performance, keep-

ing the CPU running at higher frequencies. The counter intuitive

result is that if the workload is not CPU bound (as in Workload

F), the added load actually improves median performance, albeit

at the cost of increased variability. In the reverse case where the

workload is CPU bound (Workload G), latency times become longer

and more variable.

Performance by Workload Bottleneck. In general, the most

CPU bound workloads tended to be scan heavy (Workloads E, G, H).

The read-heavy workloads (B, C, D) are dominated by operations

with negligible cost, and spend most of their time not in database

code (sleeping or displaying video in our tests). Update-heavy work-

loads (A, F) tended to be IO-bound, leaving the CPU underutilized.

The variation in performance between best-case (Performance gov-

ernor) and worst-case (Powersave governor) is roughly one order

of magnitude, increasing from 1ms to 10ms or from 10ms to 100ms.

This effect is most pronounced for the faster operations like

selects. Slower operations, which tend to be IO-bound, are still

affected, but not to the same degree (e.g., compare Performance

and Powersave governor for workload G in Figure 2). In general,

adding system load (Youtube) causes CPU time and performance

variability to move in opposite directions. CPU time gets better

(core kept warm), but latency variation is significantly worse.

Ramp-Down vs Contention. The Ondemand and Interactive gov-

ernors adjust performance continuously. Hence, it is possible for

added load to actually decrease latencies. Concretely, higher loads

have two effects: (1) The governors are more likely to keep the CPU

running at higher frequencies, and (2) more contention from scarce

resources makes performance slower and more variable. On the

CPU-bound workloads, contention is the dominant factor, and per-

formance suffers under load. Figure 3 illustrates the performance

breakdown for YCSB’s three read/write workloads. On the IO-heavy

Workload A (Figure 3a), median performance for both Interactive

(◀, ▶) and Ondemand (▲, ▼) governors improves under load, as

contention has a comparatively small effect. However, at roughly

the 85th percentile, performance degrades significantly. These op-

erations are exclusively updates, and their reduced performance is

most likely caused by increased bus or flash drive contention.

Android Defaults are Highly Variable. Note also the compara-

tive behavior of the Ondemand and Interactive governors (default

governors for the Nexus 5 and 6, respectively) on Workloads B

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA C. Nuessle et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

100 101 102

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Conservative Governor

Interactive Governor
Ondemand Governor
Performance Governor
Load+Conservative Governor
Load+Interactive Governor
Load+Ondemand Governor
Powersave Governor

Workload A

(a) Workload A (Write-Heavy — 50/50 read/write)

100 101 102

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Conservative Governor

Interactive Governor
Ondemand Governor
Performance Governor
Load+Conservative Governor
Load+Interactive Governor
Load+Ondemand Governor
Powersave Governor

Workload B

(b) Workload B (Read-Heavy — 95/5 read/write)

100 101 102

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Conservative Governor

Interactive Governor
Ondemand Governor
Performance Governor
Load+Conservative Governor
Load+Interactive Governor
Load+Ondemand Governor
Powersave Governor

Workload C

(c) Workload C (Pure Read)
Figure 3: CDF of Governor Performance on Workloads A-C

and C (Figures 3b and 3c respectively) in response to added load.

The Interactive governor’s performance is significantly improved

on the read-heavy workload B, but begins to suffer from variable

performance on workload C. Conversely, Ondemand performance

is relatively unaffected by load on workload B, but improves signif-

icantly in both performance and reduced variability on Workload

C as governor-caused performance fluctuations are eliminated.

Conservative is Surprisingly Fast. Conservative, which as a pol-

icy is indented to keep CPU frequencies low, is consistently second

Con
se

rv
ati

ve

Lo
ad

 +

Con
se

rv
ati

ve

In
ter

ac
tiv

e

Lo
ad

 +

In
ter

ac
tiv

e

Ond
em

an
d

Lo
ad

 +

Ond
em

an
d

Pe
rfo

rm
an

ce

Po
wer

sa
ve

0

20000

40000

60000

80000

100000

To
ta

l R
un

ti
m

e
(i

m
s)

Block Time
Delay Time
CPU Time

(a) Workload A

Con
se

rv
ati

ve

Lo
ad

 +

Con
se

rv
ati

ve

In
ter

ac
tiv

e

Lo
ad

 +

In
ter

ac
tiv

e

Ond
em

an
d

Lo
ad

 +

Ond
em

an
d

Pe
rfo

rm
an

ce

Po
wer

sa
ve

0

20000

40000

60000

80000

To
ta

l R
un

ti
m

e
(i

m
s)

Block Time
Delay Time
CPU Time

(b) Runtime on Workload E

Con
se

rv
ati

ve

Lo
ad

 +

Con
se

rv
ati

ve

In
ter

ac
tiv

e

Lo
ad

 +

In
ter

ac
tiv

e

Ond
em

an
d

Lo
ad

 +

Ond
em

an
d

Pe
rfo

rm
an

ce

Po
wer

sa
ve

0

20000

40000

60000

80000

To
ta

l R
un

ti
m

e
(i

m
s)

Block Time
Delay Time
CPU Time

(c) Runtime on Workload H
Figure 4: Per-Governor Runtimes forWorkloads A, E, andH

fastest. It is possible that this is an artifact of the trial duration, and

that decayed performance could appear in multi-hour trials.

Overall Throughput. Figure 4 shows performance for workloads

A, E, and H . Blue bars indicate time spent running queries (CPU

Time), while the stacked Yellow and Red bars show time spent

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Mobile Frequency Scaling Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

sleeping in between queries (Delay Time) or blocked on IO (Block

Time), respectively. The Powersave governor is clearly slower, but

especially bad on (CPU-intensive) scan-heavy workloads. Most

notably, throughputs plummet under load. Specifically, the time

that the benchmark app spends off-core, including both block time

and delay time, is substantially worse. Worst-case latencies get

worse under load for Interactive and Ondemand. Workload A is

especially bad for interactive.

4 IS MY GOVERNORWORKING?
As databases are commonly used by smartphone apps, their per-

formance is often crucial to user experience. In many cases, the

problem can be traced back to an inappropriate choice of governor.

Another governor, with a different set of policies, could furnish

better performance. Figuring out whether this is the case, however,

is not straightforward. One governor is not necessarily better than

another in all areas (with the obvious exception of Performance,

which is by design an upper bound). Much more typically, better

performance in one respect is counterbalanced by worse perfor-

mance in another. Hence, we want to help developers answer the

question of whether the governor is responsible for their app’s

performance issues Specifically, what should a developer look for,

and how should they interpret their findings? We now present a

decision process, summarized in Figure 5, which provides 3 sets

of color-coded gradients of expected performance for each of 3

metrics: throughput (Figure 5a), median latency (Figure 5b), and

95th percentile latency (Figure 5c). In general, Blue means not a

problem, Yellow indicates a potential problem, and Red indicates

a serious limitation. The top 5 rows in each graph represent data-

base performance metrics of each of the 5 governor choices under

study when run on an otherwise unloaded system. Workloads are

clustered by category: Write-Heavy (A, F) on the left, Read-Heavy

(B, C, D) in the middle, and Scan-Heavy (E, G, H).

4.1 Governor Choice
The first metric the app developer should identify is what gover-

nor is already being used. Developers seeking absolute maximal

or minimal database performance have likely already selected ei-

ther the Performance or Powersave governor respectively. As the

corresponding horizontal rows in the decision graphs show, these

two choices unsurprisingly furnish upper and lower bounds to

performance under all 3 metrics with an unloaded system.

For most developers, things will not be so simple: other governor

choices offer trade-offs among different performance metrics. The

Android system defaults on the Nexus platforms are the Ondemand

and Interactive governors; one of these two choices will be the

likely starting point for analysis.

4.2 Overall System Load
Given the likely selection of one of the mid-level governors, the

second factor that developers to evaluate is the overall system load.

Different types of apps can expect to be run under different system

conditions. An interactive game, for example, can reasonably expect

to enjoy uninterrupted complete foreground usage for several min-

utes. Others apps will have to contend with going out of focus or

shunted into the background while other tasks consume resources.

For each of the 3 mid-level governors (Interactive, Ondemand,

and Conservative), the 3 performance evaluation graphs each pro-

vide 2 alternative paths. Developers whose apps run on relatively

unloaded systems should continue to reference the appropriate

governor rows from the top of the decision graphs. If instead the

app runs on a resource-loaded system, they should consult the 3

appropriately labeled lower rows. Considering the system load level

on which an app’s database runs is crucial, as the popular mid-level

governors can offer conflicting performance trade-offs.

Decision Step Summary:Using the appropriate governor choice
/ system load level combination, select the appropriate row of the

performance analysis graphs.

4.3 App Database Operation Mixture
The third metric developers should identify is the nature of database

operations their apps request. The vertical columns of the graphs

in Figure 5 represent the performance of workloads containing

different combinations of operations. The last two columns in each

graph, G and H , represent custom workloads designed to reflect the

actual workload mixes we encountered in our previous study [14].

App developers lacking further specific information about their

apps’ usage patterns should focus on the data in these two columns.

Apps known to be read-heavy in operation, however, should look

at the information in columns B-C-D most closely (representing

read-heavy workloads). Similarly, write-heavy apps should look at

A and F, and scan-heavy ones at E.

Decision Step Summary: Use the type of database operation
mixture to determine which column(s) of each of the 3 performance

analysis graphs to consult.

4.4 Database Performance Metrics
The final item developers need to consider is what measures are

relevant for their apps. Each of the three performance graphs illus-

trate expected performance for three key measures: throughput,

median latency, and 95th percentile latency. Using the rows and

columns obtained in previous steps, developers can now obtain a

customized set of performance expectations: Use cases falling into

red or yellow regions may wish to consider workarounds like the

use of futures for query responses to mitigate latency issues.

Decision Step Summary: The color gradient of the 3 boxes

identified in previous steps indicates expected database perfor-

mance bands in 3 key areas.

5 RELATEDWORK
There have a been a number of performance studies focusing on

mobile platforms and governors for managing their runtime perfor-

mance characteristics [3, 4, 6, 7, 15]. Most of these studies focus on

managing the performance and energy tradeoff and none look at the

effect of the governor on embedded database performance. A few

make the argument that for more effective over all system utiliza-

tion considerations of the whole program stack must be made [13]

and instead of managing applications individually, system wide ser-

vices should be created for more wholistic management [11]. More

recently, there has been interest in specialized studies focusing on

performance and energy consumption of specific subsystems, like

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA C. Nuessle et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

W
or

kl
oa

d
A

W
or

kl
oa

d
F

W
or

kl
oa

d
B

W
or

kl
oa

d
C

W
or

kl
oa

d
D

W
or

kl
oa

d
E

W
or

kl
oa

d
G

W
or

kl
oa

d
H

Operations per Second

Performance

Conservative

Interactive

Ondemand

Powersave

Loaded Conservative

Loaded Interactive

Loaded Ondemand

Throughput

10 20 30 40 50 60

(a) Expected throughput

W
or

kl
oa

d
A

W
or

kl
oa

d
F

W
or

kl
oa

d
B

W
or

kl
oa

d
C

W
or

kl
oa

d
D

W
or

kl
oa

d
E

W
or

kl
oa

d
G

W
or

kl
oa

d
H

Milliseconds

Median Latency

5 10 15 20 25 30

(b) Expected median latency

W
or

kl
oa

d
A

W
or

kl
oa

d
F

W
or

kl
oa

d
B

W
or

kl
oa

d
C

W
or

kl
oa

d
D

W
or

kl
oa

d
E

W
or

kl
oa

d
G

W
or

kl
oa

d
H

Milliseconds

95 Percentile Latency

20 40 60 80 100 120

(c) Expected 95%ile latency
Figure 5: Performance metrics of governors under varying database workloads and system conditions.

mobile web [2]. These studies do not, however, document the com-

peting performance metric tradeoffs between governors. Nor do

they explore the effect of system load on performance rankings of

governor choices. We view our study and performance debugging

methodology for embedded databases on mobile devices to be a

first step at understanding the performance effect of the mobile

platform on mobile databases and PocketData [14].

ACKNOWLEDGMENTS
This work was supported by NSF Award CNS-1629791 and relies on

data gathered from PhoneLab [16]. The conclusions and opinions

in this work are solely those of the authors and do not represent

the views of the National Science Foundation.

REFERENCES
[1] Dominik Brodowski. 2018. (2018). https://android.googlesource.com/kernel/

msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt

[2] Yi Cao, Javad Nejati, Muhammad Wajahat, Aruna Balasubramanian, and Anshul

Gandhi. 2017. Deconstructing the Energy Consumption of the Mobile Page Load.

PMACS 1, 1, Article 6 (June 2017), 25 pages. https://doi.org/10.1145/3084443

[3] Aaron Carroll and Gernot Heiser. 2010. An Analysis of Power Consumption in a

Smartphone. In USENIXATC. 21–21.
[4] Xiang Chen, Yiran Chen, Mian Dong, and Charlie Zhang. 2014. Demystifying

Energy Usage in Smartphones. In Proceedings of the 51st Annual Design Au-
tomation Conference (DAC ’14). ACM, New York, NY, USA, Article 70, 5 pages.

https://doi.org/10.1145/2593069.2596676

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 143–154.

[6] Benedikt Dietrich and Samarjit Chakraborty. 2013. Power Management Using

Game State Detection on Android Smartphones. In MobiSys. 493–494.
[7] Begum Egilmez, Gokhan Memik, Seda Ogrenci-Memik, and Oguz Ergin. 2015.

User-specific Skin Temperature-aware DVFS for Smartphones. In DATE. 1217–
1220.

[8] Google. 2018. Android Open Source Project. https://source.android.com/. (2018).

[9] Google. 2018. Youtube App. (2018). https://youtube.en.uptodown.com/android/

[10] Gtricks. 2018. (2018). https://www.gtricks.com/android/

android-phone-overheating-cool-down-android-phone/

[11] Ahmed Hussein, Mathias Payer, Antony Hosking, and Christopher A. Vick. 2015.

Impact of GC Design on Power and Performance for Android. In SYSTOR. Article

13, 12 pages.

[12] Business Insider. 2018. (2018). http://www.businessinsider.com/

most-used-smartphone-apps-2017-8#2-youtube-9

[13] Melanie Kambadur and Martha A. Kim. 2014. An Experimental Survey of Energy

Management Across the Stack. In OOPSLA. 329–344.
[14] Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek. 2015. Pocket

data: The need for TPC-MOBILE. In Technology Conference on Performance Eval-
uation and Benchmarking. Springer, 8–25.

[15] Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and

Luca Benini. 2014. A Linux-governor Based Dynamic Reliability Manager for

Android Mobile Devices. In DATE. Article 104, 4 pages.
[16] Anandatirtha Nandugudi, Anudipa Maiti, Taeyeon Ki, Muhammed Fatih Bu-

lut, Murat Demirbas, Tevfik Kosar, Chunming Qiao, Steven Y. Ko, and Geof-

frey Challen. 2013. PhoneLab: A Large Programmable Smartphone Testbed. In

SENSEMINE@SenSys. ACM, 4:1–4:6.

[17] pcnexus. 2018. (2018). https://www.gtricks.com/android/

android-phone-overheating-cool-down-android-phone/

[18] SQLite. 2017. Write-Ahead Logging. https://www.sqlite.org/draft/wal.html.

(2017).

[19] Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hempstead, and Ge-

offrey Challen. 2017. Separated By Birth: Hidden Differences Between Seemingly-

Identical Smartphone CPUs. In HotMobile. ACM, 103–108.

[20] Shengqian Yang, Dacong Yan, and Atanas Rountev. 2013. Testing for Poor

Responsiveness in Android Applications. In MOBS. 1–6.

6

https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/3084443
https://doi.org/10.1145/2593069.2596676
https://youtube.en.uptodown.com/android/
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/
http://www.businessinsider.com/most-used-smartphone-apps-2017-8#2-youtube-9
http://www.businessinsider.com/most-used-smartphone-apps-2017-8#2-youtube-9
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/
https://www.gtricks.com/android/android-phone-overheating-cool-down-android-phone/

	Abstract
	1 Introduction
	2 Study Design
	2.1 Benchmarking Environment
	2.2 Workloads
	2.3 Governors
	2.4 Non-Database Load
	2.5 Implementation Challenges

	3 Study Analysis
	4 Is My Governor Working?
	4.1 Governor Choice
	4.2 Overall System Load
	4.3 App Database Operation Mixture
	4.4 Database Performance Metrics

	5 Related Work
	Acknowledgments
	References

