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ABSTRACT
Over the past decade, a class of model database engines like
BayesStore and MauveDB have emerged, allowing users to
interact with probabilistic graphical models through queries.
The main bottleneck in model databases, computing marginal
probabilities, grows exponentially with the complexity of
the graph. Although exact solutions are feasible for sim-
ple graphs, approximation techniques are often required for
more complex graphs. Model databases are expected to han-
dle a range of model types and sizes, and as a result they
often resort to approximations, even when exact solutions
are possible. In this paper, we propose a new family of
inference algorithms called convergent inference algorithms
(CIAs) that bridge the gap between approximations and ex-
act solutions. Drawing on techniques from Online Aggrega-
tion, CIAs provide approximate inference results while still
gradually converging to an exact result. We describe two
specific CIAs in which convergence is achieved by sampling
without replacement using a cryptographic technique called
a linear congruential generator. CIAs strike a good trade-
off between exact and approximate algorithms and enjoy the
advantages of both, sacrificing only a little in terms of their
running time and confidence bounds. We discuss lessons
learned in trying to make CIAs scalable and introduce a
novel algorithm called Leaky Joins that permits efficient,
convergent online aggregation over graphical models. We
conclude with experiments that demonstrate the utility of
Leaky Joins for convergent inference: On both synthetic and
real world probabilistic graphical models, Leaky Joins con-
verge to exact marginal probabilities almost as fast as state
of the art exact inference algorithms, while simultaneously
achieving approximations that are almost as good as state
of the art approximation algorithms.

1. INTRODUCTION
Over the past decade, a class of model database systems

have begun to provide support for probabilistic graphical
models (PGMs) inside database engines themselves, typi-

cally as a way to manage uncertain data [38, 12, 32]. A key
challenge in these and many other PGM-based systems is
inference, or computing marginal probabilities over a PGM.
For example, ERACER [25] uses inference on graphical mod-
els to infer missing information. In-database inference on
graphical models is also used to solve information exac-
tion [37] and entity resolution [36] problems. Existing in-
ference algorithms are either exact or approximate. Ex-
act algorithms like variable elimination and belief propa-
gation produce exact results, but can be slow. On the other
hand, approximate algorithms like Gibbs sampling gener-
ate estimates within any fixed time bounds, but only con-
verge asymptotically to exact results. Existing research on
in-database inference frequently focuses exclusively on opti-
mizing exact inference [8] or on approximate inference [41,
40]. For these systems, the choice of inference technique is
typically made up-front, as part of the design of the engine
itself. Without knowing the size or complexity of the graphs
being inferred over, these systems run the risk of either in-
troducing error unnecessarily, or simply being too slow.

In this paper, we propose a new family of convergent in-
ference algorithms (CIAs) that not only provide bounded
approximate inference results within any time bound, but
are also guaranteed to eventually converge to an exact infer-
ence result. Like a file copy progress bar, CIAs can provide
a “result accuracy progress bar” that is guaranteed to termi-
nate. Similar to online-aggregation [16] (OLA), CIAs give
users and client applications more control over accuracy/-
time trade-offs and do not require an upfront commitment
to either approximate or exact inference.

Our approach is based on the observation that inference
problems are essentially a form of select-join-aggregate queries.
Thus, we build on database techniques for OLA [16], spe-
cializing them to the unique requirements of graphical infer-
ence. One such distinction is that in classical group-by ag-
gregate queries, the joint domain of the group-by attributes
is sparse: Tables in a typical database only have a small por-
tion of their active domain populated. Furthermore, classi-
cal database engines are optimized for queries involving a
small number of large input tables. Conversely, in graphical
inference queries, each table is small and dense, and there
are usually a large number of tables with a much more com-
plicated join graph. The density of the input tables (and by
extension, all intermediate relations) makes it practical to
sample directly from the output of a join, since each sam-
ple from the active domain of the output is likely to hit
a row that is actually present. Hence, our first naive CIA
samples directly from the output of the select-join compo-



nent of the inference query, using the resulting samples to
predict the aggregate query result. To ensure convergence,
we leverage a class of cyclic pseudo-random number gener-
ators, specifically Linear Congruential Generators [30, 27]
(LCGs). The cyclicity of LCGs has been previously used for
coordinating distributed simulations [6]. Here, we use them
to perform random sampling from join outputs without re-
placement, allowing us to efficiently iterate through the join
outputs in a shuffled order. These samples not only pro-
duce bounded-error estimates of aggregate values, but also
eventually converge to an exact result.

Unfortunately, the domain of the join output for an in-
ference query can be quite large and this naive approach
will converge very slowly. To improve convergence rates,
we propose a new online join algorithm called Leaky Joins
that produces samples of a query’s result in the course of
normally evaluating the query. Systems for relational OLA
(e.g., [16, 18, 13]) frequently assume that memory is the bot-
tleneck. Instead, Leaky Joins are optimized for small input
tables that make inference more frequently compute-bound
than IO-bound. Furthermore, the density of the input (and
intermediate) tables makes it possible to use predictable,
deterministic addressing schemes. As a result, Leaky Joins
can obtain unbiased samples efficiently without needing to
assume a lack of correlation between attributes in the input.

The Leaky Joins algorithm starts with a classical bushy
query plan. Joins are evaluated in parallel, essentially “leak-
ing”estimates for the aggregated values (the marginal proba-
bility in our motivating use case of graphical inference) from
one intermediate table to the next. One full cycle through a
LCG is guaranteed to produce an exact result for joins with
exact inputs available. Thus, initially only the intermedi-
ate tables closest to the leaves can produce exact results.
As sampling on these tables completes a full cycle, they are
marked as stable, sampling on them stops, and the tier above
them is permitted to converge. In addition to guaranteeing
convergence of the final result, we are also able to provide
confidence bounds on the approximate results prior to con-
vergence. As we show in our experiments, the algorithm sat-
isfies desiderata for a useful convergent-inference algorithm:
computation performance competitive with exact inference
on simple graphs, and progressive accuracy competitive with
approximate inference on complex graphs.

Our main motivation is to generate a new type of inference
algorithm for graphical inference in databases. Nevertheless,
we observe that Leaky Joins can be adapted to any aggregate
queries over small but dense tables.

Specifically, our contributions include: (1) We propose a
new family of Convergent Inference Algorithms (CIAs) that
provide approximate results over the course of inference,
but eventually converge to an exact inference result, (2) We
cast the problem of Convergent Inference as a specialization
of Online Aggregation, and propose a naive, constant-space
convergent inference algorithm based on Linear Congruen-
tial Generators, (3) We propose Leaky Joins, a novel Online
Aggregation algorithm specifically designed for Convergent
Inference, (4) We show that Leaky Joins have time complex-
ity that is no more than one polynomial order worse than
classic exact inference algorithms, and provide an ε−δ bound
to demonstrate that the approximation accuracy is competi-
tive with common approximation techniques, (5) We present
experimental results on both synthetic and real world graph
data to demonstrate that (a) Leaky Joins gracefully degrade
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Figure 1: A simple Bayesian network

from exact inference to approximate inference as graph com-
plexity rises. (b) Leaky Joins have exact inference costs com-
petitive with classic exact inference algorithms, and approx-
imation performance competitive with common sampling
techniques, (6) We discuss lessons learned in our attempts to
design a convergent inference algorithm using state-of-the-
art incremental view maintenance systems [21, 4].

2. BACKGROUND AND RELATED WORK
In this section, we introduce notational conventions used

throughout the paper and briefly introduce probabilistic graph-
ical models, inference and on-line aggregation.

2.1 Bayesian Networks
Complex systems can often be characterized by multiple

interrelated properties. For example, in a medical diag-
nostics system, a patient might have properties including
symptoms, diagnostic test results, and personal habits or
predispositions for some diseases. These properties can be
expressed for each patient as a set of interrelated random
variables. We write sets of random variables in bold (e.g.,
X = {Xi}). Denote by p(X) the probability distribution
of X. That is, p(x) is the probability measure of the event
{X = x}. X\Y denotes the set of variables that belong to
X but do not belong to Y.

A Bayesian network (BN)1 represents a joint probability
distribution over a set of variables X as a directed acyclic
graph. Each node of the graph represents a random variable
Xi in X. The parents of Xi are denoted by pa(Xi), the
children of Xi are denoted by ch(Xi).

A Bayesian network compactly encodes a joint probabil-
ity distribution using the Markov condition: Given a vari-
able’s parents, the variable is independent of all of its non-
descendants in the graph. Thus, the full joint distribution
is given as:

P (X) =
∏
i

P (Xi|pa(Xi))

Every random variable Xi is associated with a conditional
probability distribution P (Xi|pa(Xi)). The joint probability
distribution is factorized into a set of P (Xi|pa(Xi)) called
factors denoted by φi or factor tables if Xi is discrete. De-
note by scope(φi) the variables in a factor φi. Finally, we
use attrs(φi) = scope(φi) ∪ {pφi} to denote the attributes
of the corresponding factor table: the variables in the fac-
tor’s scope and the probability of a given assignment to Xi

1Although our focus here is inference on directed graphical
model (i.e. Bayesian Networks), the same techniques can be
easily adapted for inference in undirected graphical model
as well.



given fixed assignments for its parents. A full BN can then
be expressed as the 2-tuple B = (G(X),Φ), consisting of the
graph and the set of all factors.

Example 1. Consider random variables I,D,G,S,J. The
four variables I,D,S,J have two possible values, while G has
3. A relation with 24 · 31 = 48 rows can represent this joint
probability distribution. Through the Markov condition, the
graph can be factorized into the smaller Bayesian network
given in Figure 1. For a graph with large number of vari-
ables with large domains, factorization can reduce the size
significantly.

2.2 Inference
Inference in BNs usually involves computing the posterior

marginal for a set of query variables Xq given a set of ev-
idence, denoted by E. For example, E = {X1 = x1, X3 =
x3} fixes the values of variables X1 and X3. Denote by XE

the set of observed variables (e.g., XE = {X1, X3}). The
posterior probability of Xq given E is

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE}

P (X)∑
X\XE

P (X)
.

The marginalization of X1 . . . Xi over a joint probabil-
ity distribution is equivalent to a select-join-aggregate query
computed over the ancestors of X1 . . . Xi:

SELECT X_1 ,...,X_i ,
SUM(p_1 * ... * p_N) AS prob

FROM factor_1 NATURAL JOIN ...
NATURAL JOIN factor_N

WHERE E_1 = e_1 AND ... AND E_k = e_k
GROUP BY X_1 ,...,X_i;

Applying evidence to a graphical model is computation-
ally straightforward and produces a strictly simpler graphi-
cal model. As a result, without loss of generality, we ignore
evidence and focus exclusively on straightforward inference
queries of the form P(Xq).

2.2.1 Exact Inference
Variable Elimination. Variable elimination mirrors ag-
gregation push-down [9], a common optimization in databases.
The idea is to avoid the exponential blowup in the size
of joint distribution tables by pushing aggregation down
through joins over individual factor tables. As in query
optimization, join ordering plays a crucial role in variable
elimination, as inference queries often have join graphs with
high hypertree width. Intermediate materialized aggregates
in VE are typically called separators (denoted S), interme-
diate (materialized) joins are called cliques (C), variables
aggregated away between a clique and the following separa-
tor are called clique variables (denoted var(C)), and their
inputs are called clique factors.

Example 2. The marginal probability distribution of J in
Figure 1 can be expressed by p(J) =

∑
D,I,S,G p(D, I, S,G, J).

We choose to first marginalize out D by constructing CD’s
separator SD:

SD[G, I] =
∑
D

CD[D,G, I] =
∑
D

φD[D] ./D φG[D,G, I]

Next, we marginalize out I by computing

SI [G,S] =
∑
I

CI [G, I, S] =
∑
I

SD[G, I] ./I φI [I] ./ φS [I, S]

G,I,S J,G,S

      p(D),
       p(G|D)

p(I),
p(S|I) p(J|G,S)C1: C2: C3:

SD(I,G)=
⌃⌃D C1
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Figure 2: Clique tree for BN graph in Figure 1

The marginalization of G and S follows a similar pattern,
leaving us with Cq = SS [J ] = p(J).

The limiting factor in the computational cost of obtaining
a separator is enumerating the rows of the clique. Assuming
that the distribution over each variable Xi has N possible
outcomes (|dom(Xi)| = N), the cost of computing separator

S with clique C will be O(N |scope(C)|). Tree-width in graph-
ical models (related to query hypertree width) is the size of
the largest clique’s scope (maxC(|scope(C)|)), making vari-
able elimination exponential-cost in the graph’s tree-width.
Belief Propagation. Belief propagation generalizes vari-
able elimination by allowing information to flow in both
directions along the graph, messages are sent along each
cluster’s separator by summing out all uncommon variables
between the two clusters. The process creates, for each vari-
able in the graph, its full conditional probability given all
other variables in the graph. Figure 2 shows the message
passing process for the graph in Figure 1. Although belief
propagation is more efficient for performing multiple simul-
taneous inference operations in parallel, for singleton tasks
it is a factor of two slower than variable elimination. Thus,
in this paper we use variable elimination as a representative
example of exact inference.

2.2.2 Approximate Inference
Markov Chain Monte Carlo Inference. MCMC is
a family of sampling techniques that generate sequences of
samples. Intuitively, the first element in the sequence is
drawn from the prior and successive samples are drawn from
distributions that get increasingly closer to the posterior.
For example, we might draw one assignment of values in
X with each variable Xi following the conditional probabil-
ity distribution p(Xi|pa(Xi)) in the topological order of the
graph. Then, we iteratively re-sample one variable’s value at
a time according to its factor table, given the current assign-
ments for its parents and children. The longer we continue
re-sampling, the less the sample is biased by its initial value.
We use Gibbs sampling as a representative MCMC infer-
ence algorithm.
Loopy Belief Propagation. Loopy belief propagation
is the same as belief propagation, but operates on a loopy
cluster graph instead of a clique tree. This change makes the
cluster smaller than those in clique tree and makes message
passing steps less expensive. There is a trade-off between
cost and accuracy in loopy-belief propagation, as join graphs
that allow fast propagation may create a poor approxima-
tion of the result. This tradeoff is antithetical to our goal
of minimizing heuristic tradeoffs, making loopy-belief prop-
agation a poor fit for our target applications. As a result
we focus on Gibbs sampling as a representative example of
approximate inference.



2.3 Online Aggregation
Starting with early work by Hellerstein et.al. [16], Olken [26],

and others, a large body of work has been developed for
so-called online aggregation (OLA) or approximate query
processing (AQP) systems. Such systems replace pipeline-
blocking operators like join and aggregate with sampling-
based operators that permit approximate or partial results
to be produced immediately, and iteratively refined the longer
the user is willing to wait. The work most closely related
to our own efforts is on OLA [14, 16, 15]. OLA systems
use query evaluation strategies that estimate and iteratively
refines the output of aggregate-joins. Given enough time, in
most systems, the evaluation strategy eventually converges
to a correct result. As in random sampling, ε − δ bounds
can be obtained, for example using Hoeffding’s inequality.
A key challenge arising in OLA is how to efficiently gener-
ate samples of source data. Sampling without replacement
allows the algorithm to converge to the correct result once
all samples have been exhausted, but has high space require-
ments, as it is necessary to keep track of the sampling order.
Conversely, sampling with replacement is not guaranteed to
ever converge to the correct answer. One of our key contri-
butions in this paper is a specialization of OLA to graphi-
cal models called Cyclic Sampling, which permits sampling
without replacement using only constant-space. Numerous
other systems have since adapted and improved on the idea
of OLA. Aqua [1] uses key constraints for improved strati-
fied sampling. BlinkDB [2, 3] and Derby [19] maintain pre-
materialized stratified samples to rapidly answer approxi-
mate queries. GLADE [29] and DBO [18, 13] exploit file
buffering to opportunistically generate samples of a query
result in the course of normal query evaluation.

3. CONVERGENT INFERENCE
Running-time for variable elimination O(N |scope(C)|), is

dominated by tree-width, and strongly depends on the elim-
ination ordering (already an NP -hard problem [22]). Since
the running time grows exponentially in the size of largest
clique cluster Cmax, the running complexity can have high
variance depending on the order. Because the cost is ex-
ponential, even a small increase in complexity can change
the runtime of variable elimination from seconds to hours,
or even days. In short, predicting whether an exact solution
is feasible is hard enough that most systems simply rely
exclusively on approximation algorithms. On other hand,
approximate inference may get asymptotically close to an
answer, but it will never fully converge. Thus, most appli-
cations that benefit from exact results must rely on either
human intuition to decide.

The goal and first contribution of this paper is to introduce
convergent inference, a specialized form of approximate in-
ference algorithm that is guaranteed to eventually converge
to an exact result. In this section, we develop the idea of
convergent inference and propose several convergent infer-
ence algorithms, or CIAs. A CIA eventually produces an
exact result, but can be interrupted at any time to quickly
produce a bounded approximation. More precisely, a CIA
should satisfy the following conditions: (1) After a fixed pe-
riod of time t, a CIA can provide approximate results with
ε − δ error bounds, such that P (|Pt − Pexact| < ε) > 1 − δ;
and (2) A CIA can will obtain the exact result Pexact in a
bounded time texact.

Ideally, we would also like a CIA to satisfy two additional
conditions: (3) The time complexity required by a good CIA
to obtain an exact result should be competitive with vari-
able elimination; and (4) The quality of the approximation
produced by a good CIA should be competitive with the ap-
proximation produced by a strictly approximate inference
algorithm given the same amount of time.

We first introduce a fundamental algorithm called cyclic
sampling which performs pseudo-random sampling without
replacement from the joint probability distribution of the
graph. This algorithm is guaranteed to converge, but re-
quires an exponential number of samples to do so. We then
present an improved CIA based on classical aggregate-join
query processing that relies on a novel “leaky join” opera-
tor. Finally, we discuss lessons learned in a failed attempt
to combine cyclic sampling with state-of-the-art techniques
for incremental view maintenance.

All three of our approaches draw on the relationship be-
tween graphical inference and aggregate query processing.
However, though the problems are similar, we re-emphasize
that there are several ways in which graphical inference
queries violate assumptions made in classical database query-
processing settings. First, conditional probability distribu-
tions are frequently dense, resulting in many-many rela-
tionships on join attributes. Correlations between variables
are also common, so graphical models often have high tree
widths. By comparison, the common case for join and ag-
gregation queries is join graphs with a far smaller number of
tables, simpler (e.g., foreign key) predicates, and typically
low tree widths.

Finally, we note that although we use graphical models
as a driving application, similar violations occur in other
database applications (e.g., scientific databases [35]). The
algorithms we present could be adapted for use in these set-
tings as well.

3.1 Cyclic Sampling
We first discuss a naive form of convergent inference called

cyclic sampling that forms the basis for each of our ap-
proaches. Recall that each intermediate table (the sepa-
rator) is an aggregate computed over a join of factor tables
(the clique), and that the domain of the clique is (or is very
nearly) a cartesian product of the attributes in its scope.
Thus, using array-indexed storage for the clique tables is
feasible and the cost of accessing one row of the clique is a
constant. In principle, one could compute an entire separa-
tor table by scanning over the rows of its clique.

We note that input factor tables and the separator tables
are typically small enough to remain in memory, permit-
ting efficient random access. Consequently, efficient random
sampling on the joint probability distribution is possible,
and the marginal probabilities of interest can be incremen-
tally approximated as in OLA [16].

The key insight of cyclic sampling is that if this random
sampling is performed without replacement, it will eventu-
ally converge to an exact result after each row of the clique
has been sampled exactly once. Unfortunately, sampling
without replacement typically has space complexity linear in
the number of items to be sampled, which is exponential in
the number of variables. Fortunately for graphical inference,
a class of so-called cyclic pseudorandom number generators
exist that allow us to iteratively construct a pseudorandom
sequence of integers in constant space.



A cyclic pseudorandom number generator generates a se-
quence of non-repeating numbers in the range [0,m) for
some given period m with members that exhibit minimal
pairwise correlation. We use Linear Congruential Gener-
ators (LCGs) [30, 27], which generate a sequence of semi-
random numbers with a discontinuous piecewise linear equa-
tion defined by the recurrence relation:

Xn = (aXn−1 + b) mod m (1)

Here Xn is the nth number of the sequence, and Xn−1 is
the previous number of the sequence. The variables a, b and
m are constants: a is called the multiplier, b the increment,
and m the modulus. The key, or seed, is the value of X0,
selected uniformly at random between 0 and m. In general,
a LCG has a period no greater than m. However, if a, b,
and m are properly chosen, then the generator will have a
period of exactly m. This is referred to as a maximal period
generator, and there have been several works on choosing
constants that create one [20, 24]. In our system, we follow
the Hull-Dobell Theorem [34], which states that an LCG
will be maximal if

1. m and the offset b are relatively prime.

2. a− 1 is divisible by all prime factors of m.

3. a− 1 is divisible by 4 if m is divisible by 4.

LCGs are fast and require only constant memory. With a
proper choice of parameters a, b and m, a LCG can produce
maximal period generators and pass formal tests for ran-
domness. Parameter selection is outlined in Algorithm 1.

Algorithm 1 InitLCG(totalSamples)

Require: the total number of samples
Ensure: a,b,m
1: m← totalSamples
2: S ← prime factors of m
3: for each s in S do
4: a← a× s
5: if m = 0 mod 4 and a 6= 0 mod 4 then
6: a← 4a+ 1
7: b← any coprime of m smaller than m

The cyclic sampling process itself is shown in Algorithm 2.
Given a bayesian network B=(G(X),Φ), and a marginal prob-
ability query Q = p(Xq), we first construct the LCG sam-
pling parameters (lines 1-5): a, b and m according to Hull-
Dobell Theorem for the total number of samples in the joint
probability distribution p(X). The sampling process (starts
at Line 16) constructs an index by obtaining the next value
from the LCG (line 7) and decomposes the index into an as-
signment for each variable (line 10). We calculate the joint
probability of p(X) for this assignment (line 13) add this
probability to the corresponding result row, and increment
the sample count.

At any point, the algorithm may be interrupted and each
individual probability in p(Xq) may be estimated from the
accumulated probability mass p(x):

p(Xq) =

∏
Xj∈X |dom(Xj)|

countx
· p(x)

Cyclic sampling promises to be a good foundation for CIA,
but must be made to satisfy the two constraints. First, it

needs to provide an epsilon-delta approximation in a fixed
period of time. In classical OLA and some approximate
inference algorithms, samples generated are independently
and identically distributed. As a result, Hoeffding’s inequal-
ity can provide accuracy guarantees. In CIAs, samples are
generated without replacement. We need to provide an ε−δ
approximation under this assumption. Second, cyclic sam-
pling needs to eventually converge to an exact inference re-
sult. This requires that we sample all the items in the joint
probability distribution exactly once and the samples should
be sampled randomly.

Algorithm 2 CyclicSampling(B, Q)

Require: A bayes net B=(G(X),Φ)
Require: A conditional probability query: Q=P (Xq)
Ensure: Probabilities for each ~q: {p~q = P (Xq) = ~xq)}
Ensure: The number of samples for each ~q: {count~q}
1: totalSamples← 1
2: for each φi in Φ do
3: totalSamples = totalSamples ∗ |dom(Xi)|
4: index1 ← rand_int() mod totalSamples
5: a, b,m← InitLCG(totalSamples)
6: for each k ∈ 0 . . . totalSamples do
7: assignment← indexk
8: /* De-multiplex the variable assignment */

9: for each j ∈ 0 . . . n do
10: xj ← assignment mod |dom(Xj)|
11: assignment← assignment÷ |dom(Xj)|
12: /* probability is a product of the factors */

13: prob←
∏
i φi

(
πscope(φi)(〈x1, . . . , xn〉)

)
14: /* assemble return values */

15: ~q ← πXq( ~x ); p~q ← p~q + prob; count~q ← count~q + 1
16: /* step the LCG */

17: indexk+1 ← (a ∗ indexk + b) mod m

Computation Cost. Let n be the number of random
variables in B, as a simplification assume w.l.o.g. that each
random variable has domain size dom. Calculating the pa-
rameters for LCG takes constant time. The sampling pro-
cess takes O(|N |) time, where |N | is the total number of
samples in the reduced joint probability distribution P (X).
N can be as large as domn, that is exponential in the size
of the graph.
Confidence Bound. Classical approximate inference
and OLA algorithms use random sampling with replace-
ment, making it possible to use well known accuracy bounds.
For example one such bound, based on Hoeffding’s inequal-
ity [17] establishes a tradeoff between the number of samples
needed n, a probabilistic upper bound on the absolute error
ε, and an upper bound on probably that the bound will be
violated δ. Given two values, we can obtain the third.

Hoeffding’s inequality for processes that sample with re-
placement was extended by Serfling et al. [33] for sampling
without replacement. Denote by N the total number of sam-
ples, P(x) is the true probability distribution after seeing all
the samples N. Denote by Pn(x) the approximation of P(x)
after n samples. From [33], and given that probabilities are
in general bounded as 0 ≤ p ≤ 1, we have that:

Pn (Pn(x) /∈ [P (x)− ε, P (x) + ε]) ≤ δ ≡ exp

[
−2nε2

1− ( n−1
N−1

)

]
(2)



In other words, after n samples, the probability that our
estimate Pn(x) is not within an error bound ε with respect
to P(x) is smaller or equal to δ.

3.2 Leaky Joins
In Cyclic Sampling, samples are drawn from an extremely

large joint relation and require exponential time for conver-
gence. To address this limitation, we first return to Variable
Elimination as described in Section 2.2.1. Recall the clique
tree representation in Figure 2 for the BN in Figure 1, where
the marginal for the goal variable (J) is produced by clique
cluster C3. Each clique focuses on a single clique variable
Xi, and the clique cluster is a product of the separator table
to the clique’s left and all remaining factor tables containing
Xi. As a result, each factor φ in B=(G(X),Φ) belongs to ex-
actly one clique cluster. Variable Elimination (the process
below the red line) mirrors classical blocking aggregate-join
evaluation, computing each separator table (aggregate) fully
and passing it to the right.

The key idea is to create a clique tree as in Variable Elim-
ination, but to allow samples to gradually “leak” through
the clique tree rather than computing each separator table
as a blocking operation. To accomplish this, we propose a
new Leaky Join relational operator. A single Leaky Join
computes a group-by aggregate over one or more Natural
Joins, “online” using cyclic sampling as described above. As
the operator is given more cpu-time, its estimate improves.
Crucially, Leaky Joins are composable. During evaluation,
all Leaky Joins in a query plan are updated in parallel. Thus
the quality of a Leaky Join operator’s estimate is based not
only on how many samples it has produced, but also on the
quality of the estimates of its input tables.

Algorithm 3 gives an evaluation strategy for inference
queries using Leaky Joins. Abstractly, an evaluation plan
consists of a set of intermediate tables for each clique Ci ∈ C
(i.e., each intermediate join), and for each separator Si ∈ S
(i.e., each intermediate aggregate). Queries are evaluated
volcano-style, iterating over the rows of each clique and sum-
ming over the product of probabilities as described in Sec-
tion 2.2. As in Cyclic Sampling, the iteration order is ran-
domized by a LCG (lines 9-13). For each clique Ci, the algo-
rithm samples a row ~x (lines 9-12), computes the marginal
probability for that row (line 14), and adds it to its run-
ning aggregate for the group ~q that ~x belongs to (line 20).
It is necessary to avoid double-counting samples in the sec-
ond and subsequent cycles of the LCG. Consequently, the
algorithm updates the separator using the difference δprob
between the newly computed marginal and the previous ver-
sion (lines 16-19).

In order to determine progress towards convergence, the
algorithm also tracks a sample count for each row of the
clique and separator tables (lines 15, 17), as well as the
total, aggregate count for each separator table (line 21). In-
formally, this count is the number of distinct tuple lineages
represented in the current estimate of the probability value.
For a given clique table Ci the maximum value of this count
is the product of the sizes of the domains of all variables
eliminated (aggregated away) in Ci (line 3). For example,
in Figure 2, no variables have been eliminated in C1 so each
row of C1 contains at most one sample. By C2, the variable
D has been eliminated, so each row of C2 can represent up
to |dom(D)| = 2 samples. Similarly each row of C3 repre-
sents up to |dom(D)| · |dom(I)| = 4 samples. The algorithm

Algorithm 3 EvaluateLeakyJoins(B, Q)

Require: A bayes net B = (G(X),Φ)
Require: An inference query Q = P (Xq)
Ensure: The result separator Starget = P (Xq)
1: 〈S,C〉 ← assemblePlan(B,Xq)
2: for each i ∈ 1 . . . |S| do
3: samplesi ← 0; maxSamplesi = |dom(desc(Si))|
4: ai, bi,mi ← initLCG(|dom(Ci)|)
5: indexi ← rand_int() mod mi

6: Fill Si and Ci with 〈 prob : 0.0 , count : 0 〉
7: while there is an i with samplesi < maxSamplesi do
8: for each i where samplesi < maxSamplesi do
9: /* Step the LCG */

10: indexi ← (ai ∗ indexi + bi) mod |dom(ψi)|
11: /* Demux index as Alg. 2 lines 9-11 */

12: Get ~x from indexi
13: /* Get the joint probability as Alg. 2 line 13

and get the joint sample count similarly */

14: prob←
∏
φ∈factors(Ci)

(
φ
[
πscope(φ)( ~X)

]
.prob

)
15: count←

∏
φ∈factors(Ci)

(
φ
[
πscope(φ)( ~X)

]
.count

)
16: /* Compute update deltas */

17: 〈δprob, δcount〉 = 〈 prob, count 〉 − Ci[~x]
18: /* Apply update deltas */

19: Ci[~x] = Ci[~x] + 〈δprob, δcount〉
20: ~q = πscope(Si)(~x); Si[~q] = Si[~q] + 〈δprob, δcount〉
21: samplesi = samplesi + δcount

uses the sample count as a termination condition. Once a
table is fully populated, sampling on it stops (line 8). Once
all tables are fully populated, the algorithm has converged
(line 7).

In short, Leaky Joins work by trickling samples down
through each level of the join graph. The cyclic sampler
provides flow control and acts as a source of randomization,
allowing all stages to produce progressively better estimates
in parallel. With each cycle through the samples, improved
estimates from the join operator’s input are propagated to
the next tier of the query.

Example 3. As an example of Leaky Joins, consider a
small graph with nodes D, I,G from Figure 1 and an infer-
ence query that computes p(G). Using classical heuristics
from variable elimination, the Leaky Joins algorithm select
D, I as an elimination order and assembles the intermediate
clique cluster C and clique separator S tables as shown in
Figure 3. Samples are generated for each intermediate clique
cluster one at a time, following the join order: First from
C1(D, I,G) and then C2(I,G). As shown in Figure 3b, the
first sample we obtain from C1 is 〈0, 0, 1〉

φD(D = 0) · φG(D = 0, I = 0, G = 1) = 0.6 · 0.3 = 0.18

S1(I,G) is correspondingly updated with the tuple 〈0, 1〉 with
aggregates 〈1, 0.18〉. Then the second sample is drawn from
C2(I,G). For this example, we will assume the random sam-
pler selects 〈0, 1〉, which has probability:

S1(I = 0, G = 1) · φI(I = 0)

Although we do not have a precise value for S1 we can still
approximate it at this time and update S2 accordingly. After
12 samples, C1 has completed a round of sampling and is
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D I G count Σp
0 0 1 1 0.18

!1(I,G)
I G count Σp
0 1 1 0.18

Ψ2(I,G)
I G count Σp
0 1 1 0.126

!2(G)
G count Σp
1 1 0.126

Ψ1(D,I,G)
D I G count Σp
0 0 1 1 0.18
1 0 3 1 0.28
0 1 1 1 0.54
1 1 1 1 0.2
0 0 2 1 0.24
1 0 2 1 0.1
0 1 2 1 0.048
1 1 2 1 0.12
0 0 3 1 0.18
1 0 1 1 0.02
0 1 3 1 0.012
1 1 3 1 0.08

!1(I,G)
I G count Σp
0 1 2 0.2
1 1 2 0.74
0 2 2 0.34
1 2 2 0.168
0 3 2 0.46
1 3 2 0.092

Ψ2(I,G)
I G count Σp
0 1 1 0.126
1 1 2 0.222
0 2 2 0.238
1 2 2 0.050
0 3 2 0.322
1 3 2 0.028

!2(G)
G count Σp
1 3 0.348
2 4 0.288
3 4 0.350

Ψ2(I,G)

I G count Σp
0 1 2 0.14
1 1 2 0.222
0 2 2 0.238
1 2 2 0.050
0 3 2 0.322
1 3 2 0.028

!2(G)
G count Σp
1 4 0.362
2 4 0.288
3 4 0.350

(b) After 1 Iteration(a) Join Graph (c) After 12 Iterations (d) After 18 Iterations

Figure 3: Leaky Joins example join graph (a) and the algorithm’s state after 1, 12, and 18 iterations (b-d). In the 12-iteration
column (c), incomplete sample counts are circled.

ready to be finalized. The state at this point is shown in Fig-
ure 3c. Note that the approximation of S2 is still incorrect,
due to the approximation made in step 1 and several follow-
ing steps. However, this error will only persist until the next
sample is drawn for C2(0, 1), at which point the system will
have converged to a final result.

Cost Model. We next evaluate the cost of reaching an
exact solution using the Leaky Join algorithm. Assume we
have k random variables X1, ..., Xk, and the corresponding k
factors φX1 , ..., φXk . Furthermore, assume the variables are
already arranged in the optimal elimination order, and we
wish to marginalize out variables X1, . . . , Xj . Leaky joins
generates exactly the same set of j cliques and separators
as Variable Elimination. Like variable elimination, we can
measure the computation complexity by counting multipli-
cation and addition steps. The primary difference between
Variable Elimination and Leaky Joins is that some aggrega-
tion steps will base on approximations and must be repeated
multiple times. Let V denote the cost of constructing the
largest joint factor in Variable Elimination (i.e., the time
complexity of Variable Elimination is O(V )). After V iter-
ations, the lowest level of the join tree is guaranteed to be
finalized. After a successive V iterations, the second level
of the tree is guaranteed to be finalized, and so forth. The
maximum depth of the join tree is the number of variables k,
so a loose bound for the complexity Leaky Joins is O(kV ).
Confidence Bound. In Section 3.1, we showed an ε-
δ bound for random sampling without replacement (For-
mula (2)). Here, we extend this result to give a loose bound
for Leaky Joins. The primary challenge is that, in addition
to sampling errors in the Leaky Join itself, the output can
be affected by cumulative error from the join’s inputs. We
consider the problem recursively. The base case is a clique
that reads from only input factors — the lowest level of joins
in the query plan. Precise values for inputs are available im-
mediately and Formula (2) can be used as-is.

Next, consider a clique C2 computed from only a single
leaky join output. Thus, we can say that C2 = S1 ./ φ,
where φ is the natural join of all input factors used by C2.
There are |dom(S1)| rows in S1, so after n sampling steps,

each row of S1 will have received n
|dom(S1)|

samples. Denote

the maximum number of samples per row of S1 by N1 =
|dom(S1)|
|dom(C1)|

. Then, by (2), all rows in S1 will have error less

than ε with probability:

δ1 ≡ δ|dom(S1)| = exp

[
−2nε2 · (N1 − 1)

N1 − n
|dom(S1)|

]
(3)

Let us consider a trivial example where the cumulative error
in each row of S1 is bounded by ε:

S1 X1 p
1 p1 ± ε
2 p2 ± ε

φ X1 p
1 p3
2 p4

Here, the correct joint probabilities for rows of C2 are p1 ·p3
and p2 ·p4 respectively. Thus a fully-sampled S2 (projecting
away X1) will be approximated as (p1 ± ε)p3 + (p2 ± ε)p4.
The cumulative error in this result is (p3 + p4)ε, or using a
pessimistic upper bound of 1 for each pi, at worst 2ε. Gen-
eralizing, if one row of S2 is computed from k rows of C1,
the cumulative error in a given row of S2 is at most kε.
Repeating (3), sampling error on S2 after n rounds will be

bounded by ε with probability δ|dom(S2)|. After n rounds of
sampling, each row of S2 will have received n

|dom(S2)|
rows of

C2, so the cumulative error on one row is n
|dom(S2)|

ε. Com-

bining (2) and (3), we get that for one row of S2:

P

[
|p− En,x| <

(
1 +

n

|dom(S2)|

)
ε

]
≤

exp

[
−2 n
|dom(S2)|

ε2 · (N2 − 1)

N2 − n
|dom(S2)|

]
· δ1 (4)

The joint probability across all rows of S2 is thus:

exp

[
−2nε2(N2 − 1)

N2 − n
|dom(S2)|

]
· δ|dom(S2)|

1 ≡ δ2 · δ|dom(S2)|
1

Generalizing to any left-deep plan, an error ε′ defined as:

ε′ = ε ·
|X|∏
i=2

(
1 +

n

|dom(Si)|

)
(5)



is an upper bound on the marginal in S|X| with probability:

|X|∏
i=1

δ
(
∏i−1
j=1 |dom(Sj)|)

i =

|X|∏
i=1

e

(
(
∏i−1
j=1 |dom(Sj)|)

−2nε2(Nj−1)

Nj−
n

|dom(Sj)|

)

(6)
Consider a slightly more complicated toy example clique

C4 = S3 ./ S1, where both S3 and S1 both have bounded
error ε1 and ε3 respectively.

C1 X1 p
1 p1 ± ε1
2 p2 ± ε1

C3 X1 p
1 p3 ± ε3
2 p4 ± ε3

As before, the correct joint probability is p1 · p3 + p2 · p4.
Given an ε′ = max(ε1, ε3), the estimated probability will be
p1 ·p3 +p2 ·p4 +

(∑4
i=1 piε

′)+ ε′2. As before, using an upper
bound of 1 for each p1 . . . p4 bounds the error by:

(|dom(S1)| · |dom(S3)|)ε′ + ε′2

More generally, the predicted value across m source tables is
a sum of terms of the form (p+ε′), and the overall cumulative
error per element of C1 is bounded as:

εcum =

m−1∑
i=1

(m C i)εm−i

where m C i is the combinatorial operator m choose i. Thus
re-using Equation (4), we can solve the recursive case of
a separator with m leaky join inputs that each have error
bounded by ε′ with probability δcum =

∏m
i δi. Then the

total error on one row of the separator can be bounded by
ε+ εcum with probability:

exp

[
−2 n
|dom(S2)|

ε2 · (N2 − 1)

N2 − n
|dom(S2)|

]
· δ (7)

The joint error is computed exactly as before. To estimate
the error on the final result, we apply this formula recursively
on the full join plan.

4. LESSONS LEARNED FROM IVM
Materialized views are the precomputed results of a so-

called view query. As the inputs to this query are updated,
the materialized results are updated in kind. Incremental
view maintenance (IVM) techniques identify opportunities
to compute these updates more efficiently than re-evaluating
the query from scratch. Incremental view maintenance has
already seen some use in Monte Carlo Markov Chain infer-
ence [39], and recent advances — so called recursive IVM
techniques [4, 21] have made it even more efficient.

Our initial attempts at convergent inference were based on
IVM and recursive IVM in particular. It eventually became
clear that there was a fundamental disconnect between these
techniques and the particular needs of graphical inference.
In the interest of helping others to avoid these pitfalls, we
use this section to outline our basic approach and to explain
why, perhaps counter-intuitively, both classical and recur-
sive IVM techniques are a poor fit for convergent inference
on graphical models.

4.1 The Algorithm
Our first approach at convergent inference used IVM to

compute and iteratively revise an inference query over a pro-
gressively larger fraction of the input dataset. That is, we

declared the inference query as a materialized view using
exactly the query defined in Section 2.2. The set of fac-
tor tables was initially empty. As in Cyclic Sampling, we
iteratively insert rows of the input factor tables in a shuf-
fled order. A backend IVM system updates the inference
result, eventually converging to a correct value once all fac-
tor rows have been inserted. This process is summarized in
Algorithm 4.

Algorithm 4 SimpleIVM-CIA(B, Q)

Require: A bayes net B=(G(X),P)
Require: A conditional probability query: Q=P (Xq)
Ensure: The set retXq = P (Xq)
1: for each φi ∈ G(X) do
2: index0,i = rand_int() mod |dom(Xi)|
3: ai, bi,mi ← InitLCG(|dom(Xi)|)
4: φ′i ← ∅
5: Compile IVM Program Q′ to compute P (Xq) from {φ′i}
6: for each k ∈ 1 . . .maxi(|dom(Xi)|) do
7: for each φi ∈ G(X) do
8: if k ≤ |dom(Xi)| then
9: indexk,i ← (a ∗ indexk−1,i + b) mod mi

10: Update Q′ with row φ′i[indexk,i]← φi[indexk,i]
11: retXq ← the output of Q′

While naive cyclic sampling samples directly from the out-
put of the join, IVM-CIA constructs the same output by it-
eratively combining parts of the factor tables. The resulting
update sequence follows a pattern similar to that of multi-
dimensional Ripple Joins [15], incrementally filling the full
sample space of the join query. As in naive cyclic sampling,
this process may be interrupted at any time to obtain an
estimate of P (Y) by taking the already materialized partial
result and scaling it by the proportion of samples used to
construct it. This proportion can be computed by adding a
COUNT(*) aggregate to each query. IVM-CIA uses the under-
lying IVM engine to simultaneously track both the estimate
and the progress towards an exact result.

4.2 Post-Mortem
For our first attempt at an IVM-based convergent infer-

ence algorithm, we used DBToaster [21], a recursive IVM
compiler. DBToaster is aimed at relational data and uses a
sparse table encoding that, as we have already mentioned, is
ill suited for graphical models. Recognizing this as a bottle-
neck, we decided to create a modified version of DBToaster
that used dense array-based table encodings. Although this
optimization did provide a significant speed-up, the resulting
engine’s performance was still inferior: It converged much
slower than variable elimination and had a shallower result
quality ramp than the approximation techniques (even cyclic
sampling in some cases).

Ultimately, we identified two key features of graphical
models that made them ill-suited for database-centric IVM
and in particular recursive IVM. First, in Section 3, we noted
that nodes in a Bayesian Network tend to have many neigh-
bors and that the network tends to have high hypertree-
width. The size of intermediate tables is exponential in the
hypertree-width of the query — rather large in the case of
graphical models. Recursive IVM systems like DBToaster
are in-effect a form of dynamic programming, improving
performance by consuming more space. DBToaster in par-



ticular maintains materialized copies of intermediate tables
for all possible join plans. As one might imagine, the space
required for even a BN of moderate size can quickly outpace
the available memory.

The second, even more limiting factor of IVM for graphi-
cal models is the fan-out of joins. Because of the density of
a graphical model’s input factors and intermediate tables,
joins are frequently not just many-many, but all-all. Thus a
single insertion (or batch of insertions) is virtually guaran-
teed to affect every result row. In recursive IVM, the prob-
lem is worse, as each insertion can trigger full-table updates
for nearly every intermediate table (which as already noted,
can be large). Batching did improve performance, but not
significantly enough to warrant replacing cyclic sampling.

Our approach of Leaky Joins was inspired, in large part,
by an alternative form of recursive IVM initially described
by Ross et. al., [28], which only materializes intermediates
for a single join plan. Like this approach, Leaky Joins mate-
rializes only a single join plan, propagating changes through
the entire query tree. However, unlike the Ross recursive
join algorithm, each Leaky Join operator acts as a sort of
batching blocker. New row updates are held at each Leaky
Join, and only propagated in a random order dictated by
the LCG.

5. EVALUATION
Recall in Section 3, we claimed CIAs should satisfy four

properties. In this section we present experimental results
to show that they do. Specifically, we want to show: (1,2)
Flexibility: CIAs are able to provide both approximate re-
sults and exact results in the inference process. (3) Approx-
imation Accuracy: Given the same amount of time, CIAs
can provide approximate results with an accuracy that is
competitive with state-of-the-art approximation algorithms.
(4) Exact Inference Efficiency: The time a CIA takes to
generate an exact result is competitive with state-of-the-art
exact inference algorithms.

5.1 Experimental Setup and Data
Experiments were run on a 12 core, 2.5 GHz Intel Xeon

with 198 GB of RAM running Ubuntu 16.04.1 LTS. Our
experimental code was written in Java and compiled and
run single-threaded under the Java HotSpot version 1.8 JD-
K/JVM. For experiments, we used five probabilistic graph-
ical models from publicly available sources, including the
bnlearn Machine Learning Repository [31] to compare the
available algorithms. Visualizations of all five graphs are
shown in Figure 4.
Student. The first data set is the extended version of the
Student graphical model from [22]. This graphical model
contains 8 random variables. All the random variables are
discrete. In order to observe how CIAs are influenced by
exponential blowup of scale, we use this graph as a micro-
benchmark by generating synthetic factor tables for the Stu-
dent graph. In the synthetic data, we vary the domain size
of each random variable from 2 to 25. Marginals were com-
puted over the Happiness attribute.
Child. The second graphical model captures the symp-
toms and diagnosis of Asphyxia in children [11]. The number
of random variables in the graph is 20. All the random vari-
ables are discrete with different domain sizes. There are 230
parameters in factors. The average degree of nodes in the
graph is 3.5 and the maximum in-degree in the graph is 4.

Marginals were computed over the sick variable.
Insurance. The third graphical model we used models
potential clients for car insurance policies [7]. It contains
27 nodes. All the random variables are discrete with dif-
ferent domain sizes. There are 984 parameters in factors.
The average number of degree is 3.85 and the maximum in-
degree in the graph is 3. Marginals were computed over the
PropCost variable.
Barley. The fourth graphical model is developed from
a decision support system for mechanical weed control in
malting barley [23]. The graph contains 48 nodes. All the
random variables are discrete with different domain sizes.
There are 114005 parameters in factors. The average degree
of nodes in the graph is 3.5 and the maximum in-degree in
the graph is 4. Marginals were computed over the ntilg

variable.
Diabetes. The fifth graphical model is a very large graph
that captures a model for adjusting insulin [5]. The number
of random variables in the graph is 413. All the random
variables are discrete with different domain sizes. There
are 429409 parameters in factors. In average, there are
2.92 degrees and the maximum in-degree in the graph is
2. Marginals were computed over the bg_5 variable.

5.2 Inference Methods
We compare our two convergent inference algorithms with

variable elimination (for exact inference results) and gibbs
sampling (for approximate inference). We are interested in
measuring runtime for exact inference and accuracy for ap-
proximate inference. We assign an index for each node in the
Bayes net following the topological order. We assume that
for each factor φi, the variables are ordered by the follow-
ing conventions: pa(X) ≺ X, where X={Xi, . . . , Xj , . . . } is
ordered increasingly by index. The domain values in each
random variable is ordered increasingly.
Variable Elimination. Variable elimination is the clas-
sic exact inference algorithm used for graphical models, as
detailed in Section 2. As is standard in variable elimination,
intermediate join results are streamed and never actually
materialized. To decide on an elimination (join) ordering,
we adopt the heuristic methods in [22]. At each point, the
algorithm evaluates each of the remaining variables in the
Bayes net based on a heuristic cost function. The cost cri-
teria used for evaluating each variable is Min-weight, where
the cost of a node is the product of weights, where weight is
the domain cardinality of the node’s neighbors. For exam-
ple, using Min-weight, the selected order for the extended
student graph in Figure 4a is: C, D, S, I, L, J , G. H is the
target random variable.
Gibbs Sampling. As discussed in Section 2, Gibbs sam-
pling first generates the initial sample with each variable Xi
in B = (G(X),Φ) following the conditional probability dis-
tribution p(Xi|pa(Xi)). Then, we randomly fix the value for
some random variable Xj and use it as evidence to gener-
ate next sample. With more and more samples collect, the
distribution will get increasingly closer to the posterior. We
skip the first hundred samples for small graphs 4a, 4b and
4c, and thousand samples for larger graphs 4d and 4e at
the beginning of the sample process. The target probability
distribution is calculated by normalizing the sum of sample
frequencies for each value in the target variables Xq.
Cyclic Sampling. Cyclic Sampling is our first CIA, de-
scribed in Section 3.1 and in Algorithm 2. Note that cyclic
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Figure 4: Visualizations of five graphical models from [31] used in our experiments.
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Figure 5: Microbenchmarks on the synthetic, extended Student graph (Figure 4a)

sampling does not materialize the joint probability distri-
bution, but rather constructs rows of the joint distribution
dynamically using a LCG (Equation 1). This process takes
constant time for a fixed graph.
Leaky Joins. Leaky Joins, our second CIA, were de-
scribed in Section 3.2. We use the same elimination (join)
order as in variable elimination algorithm to construct the
clique tree and materialize intermediate tables, Clique’s clus-
ters C and Clique’s seperator S. Then we conduct the“pass-
ing partial messages” process according to Algorithm 3.

5.3 Flexibility
We first explore the flexibility of CIAs by comparing the

accuracy of different algorithms (both exact and approxi-
mate) within a finite cutoff time. We imitate the situation
that time is the major concern for user and the goal is to
provide an accurate inference result at a given time. We
compute the marginal probability, cutting each algorithm
off after the predefined period, and average the fractional
error across each marginal “group”.

Figure 5a shows the average fractional error for each in-
ference algorithm on the student graph with a cutoff of 10
seconds. We vary the factor size from 10 to 70 to simulate
small and large graphs. Variable elimination provides an
exact inference result for variables with domain size smaller
than 50. On larger graphs, it times out, resulting in a 100%
error. Gibbs sampling can always provide an approximate
result, but produces results that are inaccurate, even when
variable elimination can produce an exact result. Leaky
joins provide exact inference results when the domain size is
smaller than 40, but when the domain size passes 40, it still
provides approximate results with a lower error than gibbs
sampling. This graph shows that, with leaky joins, the same
algorithm can support both the exact inference and approxi-
mate inference cases; neither users or inference engines need
to anticipate which class of algorithms to use.

5.4 Approximate Inference Accuracy

Figure 5b compares each algorithm’s approximate accu-
racy relative to time spent on the student graph with a
node size of 35. At each time t, the average fractional er-
ror of leaky joins is smaller than that of gibbs sampling. In
addition, leaky join converges to exact result, which gibbs
sampling will never do. The steep initial error in leaky joins
at the start stems from the first few sampling rounds for
each intermediate table Ci being based on weak preliminary
approximations; The algorithm needs some burn-in time to
have samples to cover their domains to provide approximate
result. Gibbs sampling algorithm also has burn-in process.
The sharp curve for gibbs sampling is because it takes more
samples for gibbs sampling to cover corner cases, and gener-
ate samples with less probabilities. Figure 6a, Figure 6b and
Figure 6d show the approximate accuracy result for child
and insurance graph. Gibbs sampling performs well in this
two graph for that the domain of the target variables Xq
are small (the domain of sick node for child graph is two
and propcost for insurance is 4). There will be less corner
cases and by Chernoff’s bound [10], the number of samples
to required decreases as the probability of P(Xq) increases.

Pest(Pest(Xq) /∈ P (Xq)(1± ε)) ≤ 2e−NP (Xq)ε
2/3 ≤ δ.

The result shows that even in this situation, the approximate
result of leaky joins is still comparable to Gibbs sampling.
Of these four graphs, the “Diabetes” graph was the most
complex, and only Leaky Joins produced meaningful results.

For comparison with the accuracy results in Figure 6,
Variable Elimination produces exact results for “Child” in
19 ms, for “Insurance” in 49 ms, for Barley in approximately
1.4 hours, and for Diabetes in approximately 1.5 hours.

5.5 Convergence Time
Figure 5c shows the exact running time for variable elimi-

nation and leaky join. In the figure, we can see that running
time of leaky join is about a constant factor more than vari-
able elimination. Recall that the running complexity of vari-
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(a) The “Child” Graph (Figure 4b)
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(b) The “Insurance” Graph (Figure 4c)
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(c) The “Barley” Graph (Figure 4d)
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Figure 6: Approximation accuracy for real world graphs
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Figure 7: JVM Memory use for Cyclic Sampling. Note that
at startup, Java has already allocated roughly 2 GB.

able elimination and leaky join is dominated by the size of
the clique’s cluster, O(k|Cmax|), where |Cmax| is the size of
largest clique’s cluster. The difference is that leaky join has
a constant k. As the factor size increases, Cmax increases.
Therefore, the difference of running time for both algorithms
increases as factor size increases.

5.6 Memory
Unlike variable elimination and many of the approximate

algorithms, leaky joins does continuously maintain material-
ized intermediate results. To measure memory use, we used
the JVM’s Runtime.totalMemory() method, sampling im-
mediately after results were produced, but before garbage
collection could be run. Figure 7 shows Java’s memory us-
age with leaky joins for the “Student” micro benchmark.
The actual memory needs of leaky joins are comparatively
small: The two largest intermediate results have roughly 20-
thousand rows, with 5 columns each. Overall, Leaky Joins
only forms a small portion of Java’s overall footprint.

6. CONCLUSIONS
We have introduced a class of convergent inference al-

gorithms (CIAs). CIAs are based on cyclic sampling, an
approach to sampling without replacement based on linear
congruential generators. We proposed CIAs built over in-
cremental view maintenance and a novel aggregate join al-
gorithm that we call Leaky Joins. We evaluated both IVM-
CIA and Leaky Joins, and found that Leaky Joins were able
to approximate the performance of Variable Elimination on
simple graphs, and the accuracy of state-of-the-art approxi-
mation techniques on complex graphs. As graph complexity
increased, the bounded-time accuracy of Leaky Joins de-
graded gracefully.
Acknowledgements. This work was supported by a gift
from Oracle Academic Relations, by NPS Grant N00244-16-
1-0022 and by NSF Grants #1409551 and #1640864. Opin-
ions, findings and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views
of Oracle, the Naval Postgraduate School, or the National
Science Foundation.



7. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. The Aqua approximate query
answering system. SIGMOD Rec., 28(2):574–576,
1999.

[2] S. Agarwal, A. P. Iyer, A. Panda, S. Madden,
B. Mozafari, and I. Stoica. Blink and it’s done:
Interactive queries on very large data. pVLDB,
5(12):1902–1905, 2012.

[3] S. Agarwal, A. Panda, B. Mozafari, S. Madden, and
I. Stoica. BlinkDB: Queries with bounded errors and
bounded response times on very large data. Technical
report, ArXiV, 03 2012.

[4] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic.
DBToaster: Higher-order delta processing for
dynamic, frequently fresh views. pVLDB,
5(10):968–979, 2012.

[5] S. Andreassen, R. Hovorka, J. Benn, K. G. Olesen,
and E. R. Carson. A model-based approach to insulin
adjustment. In AIME 91, pages 239–248. Springer,
1991.

[6] S. Arumugam, F. Xu, R. Jampani, C. Jermaine, L. L.
Perez, and P. J. Haas. MCDB-R: Risk analysis in the
database. pVLDB, 3(1-2):782–793, 2010.

[7] J. Binder, D. Koller, S. Russell, and K. Kanazawa.
Adaptive probabilistic networks with hidden variables.
Machine Learning, 29(2-3):213–244, 1997.

[8] H. C. Bravo and et al. Optimizing mpf queries:
Decision support and probabilistic inference, 2007.

[9] S. Chaudhuri and K. Shim. Including group-by in
query optimization. In VLDB, 1994.

[10] H. Chernoff. A career in statistics. Past, Present, and
Future of Statistical Science, page 29, 2014.

[11] A. P. Dawid. Prequential analysis, stochastic
complexity and bayesian inference. Bayesian statistics,
4:109–125, 1992.

[12] A. Deshpande and S. Madden. MauveDB: Supporting
model-based user views in database systems. In
SIGMOD, 2006.

[13] A. Dobra, C. Jermaine, F. Rusu, and F. Xu.
Turbo-charging estimate convergence in DBO.
pVLDB, 2(1):419–430, Aug. 2009.

[14] P. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, pages
51–62, 1997.

[15] P. J. Haas and J. M. Hellerstein. Ripple joins for
online aggregation. In SIGMOD, 1999.

[16] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. SIGMOD Rec., 26(2):171–182, 1997.

[17] W. Hoeffding. Probability inequalities for sums of
bounded random variables. JASS, 58(301):13–30, 1963.

[18] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra.
Scalable approximate query processing with the DBO
engine. TODS, 33(4):23:1–23:54, 2008.

[19] A. Klein, R. Gemulla, P. Rösch, and W. Lehner.
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