Adaptive Schema Databases °

William Spoth®, Bahareh Sadat Arab?, Eric S. Chane, Dieter Gawlicke,
Adel Ghoneimye, Boris Glavic’, Beda Hammerschmidte, Oliver Kennedy?®,
Seokki Lee?, Zhen Hua Liue, Xing Niu?, Ying Yang®

b: University at Buffalo

i: lllinois Inst. Tech.

o: Oracle

{wmspoth|okennedy|yyang25}@buffalo.edu

{barablslee195|xniu7}@hawk.iit.edu

bglavic@iit.edu

{eric.s.chan|dieter.gawlick|adel.ghoneimy|beda.hammerschmidt|zhen.liu}@oracle.com

ABSTRACT

The rigid schemas of classical relational databases help users
in specifying queries and inform the storage organization of
data. However, the advantages of schemas come at a high
upfront cost through schema and ETL process design. In
this work, we propose a new paradigm where the database
system takes a more active role in schema development and
data integration. We refer to this approach as adaptive
schema databases (ASDs). An ASD ingests semi-structured
or unstructured data directly using a pluggable combina-
tion of extraction and data integration techniques. Over
time it discovers and adapts schemas for the ingested data
using information provided by queries and user-feedback.
In contrast to relational databases, ASDs maintain multi-
ple schema workspaces that represent individualized views
over the data which are fine-tuned to the needs of a par-
ticular user or group of users. A novel aspect of ASDs is
that probabilistic database techniques are used to encode
ambiguity in automatically generated data extraction work-
flows and in generated schemas. ASDs can provide users
with context-dependent feedback on the quality of a schema,
both in terms of its ability to satisfy a user’s queries, and
the quality of the resulting answers. We outline our vision
for ASDs, and present a proof-of concept implementation as
part of the Mimir probabilistic data curation system.

1. INTRODUCTION

Classical relational systems rely on schema-on-load, re-
quiring analysts to design a schema upfront before posing
any queries. The schema of a relational database serves
both a navigational purpose (it exposes the structure of
data for querying) as well as an organizational purpose (it
informs storage layout of data). If raw data is available
in unstructured or semi-structured form, then an ETL (i.e.,
Extract, Transform, and Load) process needs to be designed

*Authors Listed in Alphabetical Order

to translate the input data into relational form. Thus, clas-
sical relational systems require a lot of upfront investment.
This makes them unattractive when upfront costs cannot
be amortized, such as in workloads with rapidly evolving
data or where individual elements of a schema are queried
infrequently. Furthermore, in settings like data exploration,
schema design simply takes too long to be practical.

Schema-on-query is an alternative approach popularized
by NoSQL and Big Data systems that avoids the upfront
investment in schema design by performing data extrac-
tion and integration at query-time. For semi-structured and
unstructured data, data integration tasks such as natural
language processing (NLP), entity resolution, and schema
matching have to be performed on a per-query basis. This
enables data to be queried immediately, but sacrifices the
navigational and performance benefits of a schema and fre-
quently leads to reduced data quality (e.g., many task-specific
versions of a dataset) and lost productivity (increased work
being done at query time).

One significant benefit of schema-on-query is that queries
often only access a subset of all available data. Thus, to
answer a specific query, it may be sufficient to limit inte-
gration and extraction to only relevant parts of the data.
Furthermore, there may be multiple “correct” relational rep-
resentations of semi-structured data and what constitutes a
correct schema may be highly application dependent. This
implies that imposing a single flat relational schema will lead
to schemas that are the lowest common denominator of the
entire workload and not well-suited for any of the workload’s
queries. Consider a dataset with tweets and re-tweets. Some
queries over a tweet relation may want to consider re-tweets
as tweets while others may prefer to ignore them.

In this work, we propose adaptive schema databases
(ASDs), a new paradigm that addresses the shortcomings
of both the classical relational and Big Data approaches
mentioned above. ASDs enjoy the navigational and organi-
zational benefits of a schema without incurring the upfront
investment in schema and ETL process development. This
is achieved by automating schema inference, information ex-
traction, and integration to reduce the load on the user. In-
stead of enforcing one global schema, ASDs build and adapt
idiosyncratic schemas that are specialized to users’ needs.

We propose the probabilistic framework shown in Fig-
ure [[] as a reference architecture for ASDs. When unstruc-
tured or semi-structured data are loaded into an ASD, this
framework applies a sequence of data extraction and integra-
tion components that we refer to as an extraction work-
flow to compute possible relational schemas for this data.

Any existing techniques for schema extraction or informa-
tion integration can be used as long as they can expose the
ambiguity inherent in these tasks in a probabilistic form.
For example, an entity resolution algorithm might identify
two possible instances representing the same entity. Clas-
sically, the algorithm would include heuristics that resolve
this uncertainty and allow it to produce a single determin-
istic output. In contrast, our approach requires that ex-
traction workflow stages produce non-deterministic, prob-
abilistic outputs instead of using heuristics. The final re-
sult of such an extraction workflow is a set of candi-
date schemas and a probability distribution describing the
likelihood of each of these schemas. In ASDs, users create
schema workspaces that represent individual views over
the schema candidates created by the extraction workflow.
The schema of a workspace is created incrementally based
on queries asked by a user of the workspace. Outputs from
the extraction workflow are dynamically imported into the
workspace as they are used, or users may suggest new rela-
tions and attributes not readily available to the database. In
the latter case, the ASD will apply schema matching to de-
termine how the new schema elements relate to the elements
in the candidate schemas. Similar to extraction workflows,
this schema matching consists of candidate matches with as-
sociated probabilities. Based on these probabilities and feed-
back provided by users through queries, ASDs can incremen-
tally modify the extraction workflow and schema workspaces
to correct errors, to improve their quality, to adapt to chang-
ing requirements, and to evolve schemas based on updates
to input datasets. The use of feedback is made possible
based on our previous work on probabilistic curation opera-
tors [19] and provenance [1]. By modelling schemas as views
over a non-relational input dataset, we decouple data repre-
sentation from content. Thus, we gain flexibility in storage
organization — for a given schema we may choose not to
materialize anything, we may fully materialize the schema,
or materialize selectively based on access patterns.
Concretely, this paper makes the following contributions:

e We introduce our vision of ASDs, which enable access
to unstructured and semi-structured data through per-
sonalized relational schemas.

e We show how ASDs leverage information extraction
and data integration to automatically infer and adapt
schemas based on evidence provided by these compo-
nents, by queries, and through user feedback.

e We show how ASDs enable adaptive task-specific “per-

sonalized schemas” through schema workspaces.

We illustrate how ASDs communicate potential sources

of error and low-quality data, and how this communi-

cation enables analysts to provide feedback.

e We present a proof-of-concept implementation of ASDs
based on the Mimir [14] data curation system.

e We demonstrate through experiments that the instru-
mentation required to embed information extraction
into an ASD has minimal overhead.

2. EXTRACTION AND DISCOVERY

An ASD allows users to pose relational queries over the
content of semi-structured and unstructured datasets. We
call the steps taken to transform an input dataset into re-
lational form an extraction workflow. For example, one
possible extraction workflow is to first apply NLP to extract

Schema | | Schema Schema | Schema

Norkspa p:

Schema Matching

Extraction workflow) ((__ Extraction workflow) (Extraction workflow

C D
| Extraction Schema Candidates |
()
[|

Unstructured Data | | Semistructed Data (e.g., JSON)

Figure 1: Overview of an ASD system

semi-structured data (e.g., RDF triples) from an unstruc-
tured input, and then shred the semi-structured data into a
relational form. The user can then ask queries against the
resultant relational dataset. Such a workflow frequently re-
lies on heuristics to create seemingly deterministic outputs,
obscuring the possibility that the heuristics may choose in-
correctly. In an ASD, one or more modular information ex-
traction components instead produce a set of possible ways
to shred the raw data with associated probabilities. This is
achieved by exposing ambiguity arising in the components
of an extraction workflow. Any NLP, information retrieval,
and data integration algorithm may be used as an informa-
tion extraction component, as long as the ambiguity in its
heuristic choices can be exposed. The set of schema can-
didates are then used to seed the development of schemas
individualized for a particular purpose and/or user. The
ASD’s goal is to figure out which of these candidates is the
correct one for the analyst’s current requirements, to com-
municate any potential sources of error, and to adapt itself
as those requirements change.

Extraction Schema Candidates. When a collection of
unstructured or semi-structured datasets D is loaded into
an ASD, then information extraction and integration tech-
niques are automatically applied to extract relational con-
tent and compute candidate schemas for the extracted in-
formation. The choice of techniques is based on the input
data type (JSON, CSV, natural language text, etc...). We
associate with this data a schema candidate set Cozt =
(Sext, Pext) Where Sext is a set of candidate schemas and
P.,+ is a probability distribution over this schema. We
use Spae referred to as the best guess schema to denote
argmaxgeg_, (P(S5)), i.e., the most likely schema from the
set of candidate schemas. Similar data models have been
studied extensively in probabilistic databases, allowing us to
adapt existing work on probabilistic query processing, while
still supporting a variety of information extraction, natural
language processing, and data integration techniques.

ExXAMPLE 1. As a running example throughout the paper,
consider a JSON document (a fragment is shown below) that
stores a college’s enrollment. Assume that for every grad-
uate student we store name and degree, but only for some
students there is a record of the number of credits achieved
so far. For undergraduates we only store a name, although
several undergraduates were accidentally stored with a de-
gree. A semi-structured to relational mapper may extract
schema candidates as shown in Figure @

{"grad":{"students": [
{name:"Alice",deg:"PhD",credits:"10"},

{name:"Bob",deg:"MS"}, ...1},
"undergrad":{"students": [
{name:"Carol"},{name:"Dave",deg:"U"}, ...1}}

Querying Extracted Data. We would like to expose to
users an initial schema that allows D to be queried (i.e.,

Student

Student Undergrad Grad

Name Deg
Alice Alice PhD Carol Alice
Bob Bob MS Dave Bob
Carol Carol (null)
Dave Dave U (c) P =022
(a) P=0.19 (b) P =0.27
Undergrad Grad
Name Deg Name Deg Credits
Carol (null) Alice PhD 10
Dave U Bob MS (null)

(d) P =0.32
Figure 2: Extracted Schema Candidate Set and Data

the best guess schema Spas), while at the same time ac-
knowledging that this schema may be inappropriate for the
analyst, incorrect for her current task, or simply outright
wrong. Manifestations of extraction errors appear in three
forms: (1) A query incompatible with Smaz, (2) An update
with data that violates Smaa, or (3) An extraction error re-
sulting in the wrong data being presented to the user. The
first two errors are overt and, thus easy for the database
to quickly detect. In both cases, the primary challenge is
to help the user first determine whether the operation was
correct, and if necessary, to repair the schema accordingly.
Here, the distribution P..: serves as a metric for schema sug-
gestions. Given a query (resp., update or insert) @, the goal
is to compute argmaxgcg_, rseq(P(S5)), where the S F Q
denotes compatibility between schema and query, i.e., the
schema contains the relations and attributes postulated by
the query. While S,,qz has the highest probability of all
schema candidates in Sext, that does not imply that it has
the highest probability with respect to the schema elements
mentioned in the query. Thus, we use Syqz as a generic best
guess to enable the user to express queries at first, but then
adapt the best schema over time. Note that the personalized
schemas we introduce in the next section even allow queries
to postulate new relations and attributes.

Detecting extraction errors is harder and typically only
possible once issues with the returned query result are dis-
covered. Rather, such errors are most often detected as a
result of inconsistencies observed while the analyst explores
her data. Thus, the goal of an ASD is to make the process
of detecting and repairing extraction errors as seamless as
possible. Our approach is based on pay-as-you-go or on-
demand approaches to curation [11,[141(18], and is the focus
of Sections [and [6] below.

3. ADAPTIVE, PERSONALIZED SCHEMAS

An ASD maintains a set of schema workspaces W =
{Wh,...,Wy}. Each workspace W; has an associated mapped
context C; = (S;, M;, P;) where S; is a schema, M, is a
set of possible schema matchings [2], each between the el-
ements of S; and one S € Sext, and P; assigns probabili-
ties to these matches. Users may maintain their own per-
sonal schema workspace or share workspaces within a group
of users that have common interests (e.g., a business an-
alyst workspace for the sales data of a company). In the
future, we plan to provide version control style features for
the schemas of workspaces including access to data through
past schema versions and importing of schema elements from
one workspace into another. Recent work on schema evo-
lution [4] and schema versioning demonstrates that it is
possible to maintain multiple versions of schemas in parallel

where data is only stored according to one of these schemas.
Specifically, we plan to extend our own work [15] on flexible
versioning of data.

Importing Schema Elements. Initially, the schema of
a workspace is created empty. When posing a query over
an extracted dataset, the user can refer to elements from
schema Spqz, schema S;, or new relations and attributes
that do not occur in either. References of the first two types
are resolved by applying the extraction workflow to com-
pute the instances for these schema elements (and poten-
tially mapping the data based on the matches in M;). If
a query references schema elements from Sy,q., then these
schema elements are added to the current workspace schema
plus one-to-one matches with probability 1 between these el-
ements in Syqz and S; are added to the matching M.

Probabilistic Semantics of ASD Queries. Note that
ASD queries are inherently probabilistic, as the result varies
depending on the distribution of possible extractions. How-
ever, we do not have to overwhelm the user with full prob-
abilistic query semantics. Instead, we apply the approach
from [14] to return a deterministic best guess result based
on S; and expose uncertainty through user interface cues
and through human-readable on-demand explanations.

EXAMPLE 2. Continuing with our running example, as-
sume a user operating in workspace W1 would like to retrieve
all the names of students based on the enrollment JSON doc-
ument. One option the user can take is to query the relations
exposed by the best quess schema Smaz. For instance, one
way to express this query over the schema in Figure[d is:

SELECT name FROM Undergrad UNION
SELECT name FROM Grad

To process this query, the ASD would run the extraction
workflow to create the relational content of the Undergrad
and Grad relations (it would be sufficient to create the pro-
jections of these relations on name only). The query is then
evaluated over these extracted data. As a side-effect, by ac-
cessing these schema elements the user declares interest in
them and they are added to the schema workspace. Note that
only accessed attributes are added to the workspace. If the
workspace’s schema was empty before, the resulting schema
would be S1 = {Undergrad(name), Grad(name)}. Addition-
ally, in M1 these elements are matched with their counter-
part in Smaz- If afterwards the user retrieves the degree of
a graduate student then deg would be added to Grad(name).

Declaring New Schema Elements. So far we have only
discussed the case where a query refers to existing schema el-
ements (either in the user schema or the extracted schema).
If a query uses schema elements that are so far unknown,
then this is interpreted as a request by the user to add these
schema elements to the schema workspace. It is the re-
sponsibility of the ASD to determine how schema elements
in the extracted schema are related to these new elements.
Any existing schema matching (and mapping discovery) ap-
proach could be used for this purpose. For instance, we could
complement schema matching with schema mapping dis-
covery [3}/17] to establish more expressive relationships be-
tween schema elements. Based on such matches we can then
rewrite the user’s query to access only relations from the ex-
tracted schema using query rewriting with views (a common
technique from virtual data integration [8]) or materialize its

content using data exchange techniques [7]. Again we take
a probabilistic view by storing all possible matches with as-
sociated probabilities and choosing the matches with the
highest probability for the given query.

EXAMPLE 3. Assume that a user would like to find names
of students without having to figure out which relations in
Smaz Store student information. A user may ask:

SELECT name FROM Student

Since relation Student occurs in neither S1 nor Smaz, the
ASD would run a schema matcher to determine which ele-
ments from Smaz match with Student and its attribute name,
for instance by probabilistically combining the name attribute
of Grad and Undergrad as in the query from Ezample[3

In the example above, three Student(name) relations could
reasonably be extracted from the dataset: One with just
graduate students, one with just undergraduates, and one
with both. Although it may be possible to heuristically se-
lect one of the available extraction options, it is virtually im-
possible for a single heuristic to cover all use cases. Instead,
ASDs use heuristics only as a starting point for schema defi-
nitions. Thus, an ASD decouples its information extraction
heuristic from the space of possible extractions that could
result from it. In the next section, we present how these
uncertain heuristic choices can be validated or corrected as
needed in a pay-as-you-go manner [11,|14]. Note that we
can use any existing schema matching algorithm for schema
matching M; as long as it can be modified to expose prob-
abilities. As we have demonstrated in previous work this
assumption is reasonable — Mimir [14] already supports a
simple probabilistic schema matching operator.

4. EXPLANATIONS AND FEEDBACK

Allowing multiple schemas to co-exist simultaneously opens
up opportunities for ambiguity to enter into an analyst’s in-
teraction with the database. To minimize confusion, it is
critical that the analyst be given insight into how the ASD
is presently interpreting the data. Our approach to commu-
nicating the ASD’s decision process leverages our previous
work in explaining results of probabilistic queries and data
curation operators as developed in Mimir [14] and our previ-
ous provenance frameworks for database queries |1}[15]. We
discuss the details of these systems along with our proof
of concept implementation in Section [} An ASD must be
able to: (1) Warn the analyst when ambiguity could impact
her interaction, (2) Explain the ambiguity, (3) Evaluate the
magnitude of the ambiguity’s potential impact, and (4) As-
sist the analyst in resolving the ambiguity. In this section,
we explore how an ASD can achieve each of these goals in
the context of three forms of interaction between the ASD
and the outside world: Schema, Data, and Update.

Schema Interactions. Schema interactions are those that
take place between the analyst and the ASD as she composes
queries and explores the relations available in her present
workspace. Recall that referencing a relation that does not
exist in the workspace and extraction schema Sy,q. does not
necessarily constitute a problem since this triggers the ASD
to add this relation to the workspace and figure out which
relations in Sext it could be matched with. However, it may
be the case that no feasible match can be found. This either
means that the user is asking for data that is simply not

present in the dataset D or that errors in the extraction
workflow or matching caused the ASD to miss the correct
match. To explain the failure, we may provide the user with
a summary of why matching with Sext failed, e.g., there are
no relations with similar names in Sext.

Data Interactions. Data interactions happen when the
ASD produces query results. Here, ambiguity can typically
not be detected by static analysis. For example, the query
in Example [3| can have three distinct responses, depending
on which relations from the extraction schema are matched
against the workspace Student relation. At this level un-
intrusive interface cues [14] are critical for alerting the ana-
lyst to the possibility that the results she is seeing may not
be what she had in mind. The Mimir system uses a form
of attribute provenance [14] to track the effects of sources
of ambiguity on the output of queries. In addition to flag-
ging potentially ambiguous query result cells and rows (e.g.,
attributes computed based on a schema match that is uncer-
tain), Mimir allows users to explore the effects of ambiguity
through both human-readable explanations of their causes
and statistical precision measures like standard deviation
and confidence. Linking results to sources of ambiguity also
makes it easier for the analyst to provide feedback that re-
solves the ambiguity. In Section |§| we show how we leverage
Mimir to streamline data interactions in our prototype ASD.

Update Interactions. Finally, update interactions take
place when the ASD receives new data or changes to ex-
isting data. In comparison to the other two cases, there
may not be an analyst directly involved in an update in-
teraction, e.g., a nightly bulk data import. Thus, the ASD
must be able to communicate the ambiguity arising from
update interactions to analysts indirectly. The main prob-
lem with updates is that the extraction schema candidates
Sext may get out of sync with the data it is describing.
However, rather than blocking an insertion or update which
does not conform with the extraction schema outright, the
ASD will represent schema mismatches as missing values
when data is accessed through the out of sync schema. Al-
ternatively, we can attempt to resolve data errors with a
probabilistic repair. The ASD can also adjust the informa-
tion extractor to adapt the schema candidate set Cez: and
its probability distribution. However, this change could in-
validate the matches of an existing workspace. For instance,
consider an extracted schema that contains a relation Stu-
dent(name,credits). If subsequent updates to the dataset
insert many students without credits, then eventually the
relation Student(name,credits) should be replaced with Stu-
dent(name). If a workspace schema contains an attribute
matched to Student.credits, then this attribute is no longer
matched with any attribute from the extraction schema.
When explaining missing values to the user, we plan to high-
light their cause: 1) data does not match the schema or 2)
a workspace attribute is orphaned (it is no longer matched
to any attribute in Ceqt).

User Feedback. We envision to let the user provide various
kind of feedback about errors in query results such as mark-
ing sets of invalid attribute values and unexpected rows.
Based on provenance we can then back-propagate this in-
formation to interpret these as feedback on matches and ex-
traction workflow decisions. To determine a precise method
for determining the best fixes based on such information is
an interesting avenue for future work.

S. ADAPTIVE ORGANIZATION

The schemas discovered by ASDs can be used for perfor-
mance tuning by caching relations that are used frequently
and are stable (their schema and content are not modified
frequently). Furthermore, we can cache the outputs of data
extraction or projections over this output to benefit multiple
workspace schema elements. This leads to interesting opti-
mization problems because of the sharing of elements. The
difference to other automated approaches for tuning physi-
cal design is that the sharing of such elements by workspace
schemas is encoded in their matchings. It remains to be
seen whether this information can be exploited to devise
caching strategies that are fine tuned for ASDs. Note that
in constrast to relational databases which materialize data
according to a schema, this caching is optional for ASDs.

6. PROOF OF CONCEPT

We now outline a proof of concept ASD implementation,
leveraging the Mimir [14,/18| system for its provenance and
feedback harvesting capabilities. For this preliminary imple-
mentation, we chose to implement a normalizing relational
data extractor for JSON data recently proposed by DiScala
and Abadi [5]. This extractor uses heuristics based on func-
tional dependencies (FDs) between the objects’ attributes to
create a narrow, normalized relational schema for the input
data.

6.1 Deterministic Extraction

The DiScala extractor [5] runs on collections of JSON ob-
jects with a shared schema. The first step in the extrac-
tion process is to create a FD graph from the objects. The
objects are first flattened, discarding nesting structure and
decomposing nested arrays, resulting in a single, very wide
and very sparse relation. The extractor creates a FD graph
for this relation using a fuzzy FD detection algorithm [9],
originally proposed by Ilyas et. al., that keeps it resilient to
minor data errors. Any subtree of this graph can serve as a
relation, with the root of the tree being the relation’s key.
At this point, the original, deterministic DiScala extractor
heuristically selects one set of relations upfront.

In a second pass, the extractor attempts to establish cor-
relations between the domains of pairs of attributes. Re-
lations with keys drawn from overlapping domains become
candidates for being merged together. Once two potentially
overlapping relations are discovered, the DiScala extractor
uses constraints given by FDs to identify potential mappings
between the relation attributes.

6.2 Non-Deterministic Extraction

The DiScala extractor makes three heuristic decisions: (1)
Which relations to define from the FD graph, (2) Which
relations to merge together, and (3) How to combine the
schemas of merged relations. Errors in the first of these
heuristics appear in the visible schema, and as discussed in
Section [2| are easy to detect and resolve. The remaining
heuristics can cause data errors that are not visible until
the user begins to issue queries. As a result, the primary
focus of our proof of concept is on the latter two heuristics.

Concretely, our prototype ASD generalizes the DiScala
extractor by providing: (1) Provenance services, allowing
users to quickly assess the impact of the extractor’s heuris-
tics on query results, (2) Sensitivity analysis, allowing users

to evaluate the magnitude of that impact, and (3) Easy feed-
back, allowing users to easily repair mistakes in the extrac-
tor’s heuristics. We leverage a modular data curation system
called Mimir [14}18] that encodes heuristic decisions through
a generalization of C-Tables [10]. A relation in Mimir may
include placeholders, or variables that stand in for heuristic
choices. During normal query evaluation, variables are re-
placed according to the heuristic. However, the terms them-
selves allow the use of program analysis as a form of prove-
nance, making it possible to communicate the presence and
magnitude of heuristic ambiguity in query results, and also
allow users to easily override heuristic choices.

EXAMPLE 4. Consider a relation R(A,B). To remap R
into a new relation R'(C), Mimir uses a query of the form:

SELECT CASE {C} WHEN A’ THEN A WHEN °B’ THEN B
ELSE NULL END AS C FROM R

where {C} denotes a boolean-valued variable that is true if
A maps to C and false otherwise. The resulting C-Table
includes a labeled null for each row output that can take the
values of R.A, R.B, or NULL, depending on how the model
assigns variable values. Consider this example instance:

R|A B R C
1 2 {C}=A"?1: ({C}=‘B’ ? 2 : NULL)
3 4 {C}=‘A"? 3 : ({C}=‘B’ 2 / : NULL)

Conceptually, every value of R'.C is expressed as deferred
computation (a future). A wvaluation for {C} allows R’ to
be resolved into a classical relation. Conversely, program
analysis on the future links each value of R'.C, as well as
any derived values back to the choice of how to populate C'.

Heuristic data transformations, or lenses, in Mimir consist
of two components. First, the lens defines a view query that
serves as a proxy for the transformed data with variables
standing in for deferred heuristic choices. Second, a model
component abstractly encodes a joint probability distribu-
tion for each variable through two operations: (1) Compute
the most likely value of the variable, and (2) Draw a ran-
dom sample from the distribution. Additionally, the model
is required to provide a human-readable explanation of the
ambiguity that the variable captures.

For this proof of concept we adopt an interaction model
where the ASD dynamically synthesizes workspace relations
by extending one extracted relation (the primary) with data
from extracted relations (the secondaries) containing simi-
lar data. Figure [3|illustrates the structure of one such view
query: The primary and all possible secondaries are initial-
ized by a projection on the source data. A a single-variable
selection predicate (i.e., {relation?}) reduces the set of sec-
ondaries included in the view. Second, a schema matching
projection as illustrated in Example E| adapts the schema of
each secondary to that of the primary.

Our adapted DiScala extractor interfaces with this struc-
ture by providing models for relation- and schema-matching,
respectively. We refer the reader to [5] for the details of
how the extractor computes relation and attribute pairing
strength. The best-guess operations for both models use the
native DiScala selection heuristics, while samples are gener-
ated and weighted according to the pairing strength com-
puted by the extractor. By embedding the DiScala extractor
as a lens, we are able to leverage Mimir’s program analysis
capabilities to provide feedback. When a lens is queried,
Mimir highlights result cells and rows that are ambiguous.

D e e N S (o e i
relation 1: relation 2:] ‘repNtion 3: ‘retweet’

T Thig : retweet_id,
pic : CASE {pic} WHEN ...

[
i
"
"
i
i
"
i
i
i

I "
i
i
"
"
i
i
"
"
i
i
"

id : reply_id,
pic : CASE {pic} WHEN ...
T

Source JSON Object

Figure 3: Structure of an extracted relation’s merged view
Time
Dataset | Precompute | ASD Classic
TwitterS | 223.18s (1.53) | 1.56s (0.19) | 0.77s (0.04)
Figure 4: Overhead of the provenance-aware extractor (5-
trial average, with one standard deviation in parenthesis)

On-request, Mimir constructs human-readable explanations
of why they are ambiguous, as well as statistical metrics
that capture the magnitude of the potential result error.
Crucially, this added functionality requires only lightweight
instrumentation and compile-time query rewrites.

6.3 Evaluation

Mimir and the prototype ASD are implemented in Scala
2.10.5 being run on the 64-bit Java HotSpot VM v1.8-b132.
Mimir was used with SQLite as a backend. Tests were run
single-threaded on a 12x2.5 GHz Core Intel Xeon running
Ubuntu 16.04.1 LTS. The primary goal of our experiments
is to evaluate the overhead of our provenance-instrumented
implementation of the DiScala extractor compared to the be-
havior of the classical extractor. We used a dataset, Twit-
terS consisting of 100 thousand rows and the 100 most com-
mon fields taken from Twitter’s Firehose. Figure [shows
the performance of the extractor. We show pre-processing
time, the time necessary to compile and evaluate SELECT *
FROM workspace_relation, and the same query against a
table containing the output of the classical DiScala extrac-
tor. Note that both these queries return the same set of
results, but the former is instrumented, allowing it to pro-
vide provenance and feedback capabilities. Runtime for the
instrumented extractor is a factor of 2 larger than the orig-
inal, but is dominated by fixed compile-time costs.

7. RELATED WORK

Information extraction and data integration have been
studied intensively. Several papers study schema match-
ing [2], entity resolution [6l[16] and mapping XML or JSON
data into relational form [5]. Furthermore, there is exten-
sive work on discovering schemas [3}/17] and ontologies [13]
from collections of data. We build upon this comprehensive
body of work and leverage such techniques in ASDs. With
JSON as a simplified semi-structured data model, data can
be stored, indexed and queried without upfront schema defi-
nition. Liu et al. |12] have introduced the idea that a logical
schema can be automatically derived from JSON data and
be used to materialize query-friendly adaptive in-memory
structures. Curino et al. [4] study multiple schema versions
can co-exist virtually in the context of schema evolution.
This paper takes these ideas one step further by introducing
the notion of adaptive schema databases based on flexible
schema data management and establishes a practical frame-

work of probabilistic schema inference with user feedback
and provenance tracking.

8. CONCLUSION

We present our vision for adaptive schema databases (ASDs),
a technique for querying unstructured and semi-structured
data by iteratively inferring and refining personalized schemas
that govern access to the data. We discuss how ASDs can
be realized using probabilistic query processing techniques
and by incorporating extraction and integration into the
DBMS. By means of these techniques we can develop sys-
tems that enjoy the navigational and organizational benefits
of schemas without requiring the high upfront cost of manual
schema design, information retrieval, and data integration.

9. i REFERENCES

(1] B. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan,
and B. Glav1c Reenactment for read-committed snapshot
isolation. In CIKM, 2016.

(2] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. PVLDB, 4(11):695-701,
2011.

[3] M. J. Cafarella, D. Suciu, and O. Etzioni. Navigating
extracted data with schema discovery. In WebDB, 2007.

[4] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.
Automating the database schema evolution process. VLDB
Journal, 22(1):73-98, 2013.

[5] M. DiScala and D. J. Abadi. Automatic generation of
normalized relational schemas from nested key-value data.
In SIGMOD, 2016.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1):1-16,
2007.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. T'CS,
336(1):89-124, 2005.

[8] A.Y. Halevy. Answering queries using views: A survey.
VLDBJ, 10(4):270-294, 2001.

[9] L. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of correlations
and soft functional dependencies. In SIGMOD, 2004.

[10] T. Imieliriski and W. Lipski, Jr. Incomplete information in
relational databases. J. ACM, 31(4):761-791, Sept. 1984.

[11] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD, 2008.

[12] Z. H. Liu, B. Hammerschmidt, D. McMahon, Y. Liu, and
H. J. Chang. Closing the functional and performance gap
between SQL and NoSQL. In ICMD, 2016.

[13] A. Maedche and S. Staab. Learning ontologies for the
semantic web. In ICSW, 2001.

[14] A. Nandi, Y. Yang, O. Kennedy, B. Glavic, R. Fehling,

Z. H. Liu, and D. Gawlick. Mimir: Bringing ctables into
practice. Technical report, The ArXiv, 2016.

[15] X. Niu, B. Arab, D. Gawlick, Z. H. Liu, V. Krishnaswamy,
O. Kennedy, and B. Glavic. Provenance-aware versioned
dataworkspaces. In TaPP, 2016.

[16] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(11):1483-1494,
2012.

[17] K. Wang and H. Liu. Schema discovery for semistructured
data. In KDD, volume 97, pages 271-274, 1997.

[18] Y. Yang. On-demand query result cleaning. In VLDB PhD
Workshop, 2014.

[19] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and
O. Kennedy. Lenses: An on-demand approach to etl.
VLDB, 8(12):1578-1589, 2015.

	Introduction
	Extraction and Discovery
	Adaptive, Personalized Schemas
	Explanations and Feedback
	Adaptive Organization
	Proof of Concept
	Deterministic Extraction
	Non-Deterministic Extraction
	Evaluation

	Related Work
	Conclusion
	References

