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ABSTRACT
On-demand curation (ODC) tools like Paygo, KATARA,
and Mimir allow users to defer expensive curation effort un-
til it is necessary. In contrast to classical databases that do
not even permit potentially erroneous data to be queried,
ODC systems instead answer with guesses or approxima-
tions. The quality and scope of these guesses may vary and
it is critical that an ODC system be able to communicate
this information to an end-user. The central contribution of
this paper is a preliminary user study evaluating the cog-
nitive burden and expressiveness of four representations of
“attribute-level” uncertainty. The study shows (1) insignifi-
cant differences in time taken for users to interpret the four
types of uncertainty tested, and (2) that different presen-
tations of uncertainty change the way people interpret and
react to data. Ultimately, we show that a set of UI design
guidelines and best practices for conveying uncertainty will
be necessary for ODC tools to be effective. This paper rep-
resents the first step towards establishing such guidelines.

1. INTRODUCTION
Historically, the quality of a dataset would be ensured be-

fore it was analyzed, often through complex, carefully devel-
oped curation processes designed to completely shield ana-
lysts from any and all uncertainty. This curation establishes
trust in the data, which in turn helps to establish trust in
the results of analyses. However, as typical data sizes and
rates grow, this type of brute-force upfront curation process
is becoming increasingly impractical. As a result, analysts
have started turning to new, “on-demand” or “pay-as-you-
go” approaches [1, 3, 9, 12, 15, 17, 2] to data curation, such
as PayGo, Mimir, or Katara. On-demand curation (ODC)
systems minimize the amount of upfront time and effort re-
quired to load, curate, and integrate data. Data stored in
an ODC is, initially at least, of low quality and queries are
liable to produce incomplete or incorrect results. To miti-
gate the unreliability of these results, ODC systems typically
provide a form of provenance or lineage, tracking the effects

of uncertainty through queries and tagging results with rel-
evant quality metrics (e.g., confidence bounds, standard de-
viations, or probabilities). If the quality is insufficient, the
ODC helps her to prioritize her curation efforts.

Most ODC efforts are specialized forms of probabilistic
databases [16] that allow for queries over uncertain, proba-
bilistically defined data. Classical probabilistic databases
produce outputs either in the form of “certain” answers
(that provide only limited practical utility), or in the form
of probability distributions. Representing a query output as
a distribution alleviates the monotonous (and error-prone)
task of handling probabilities, error conditions, and outliers
in the middle of a query. Nevertheless, error-handling logic
is still necessary, even if it is never expressly declared; A hu-
man interpreting the results must decide whether and how
to act on the results given. Just having a probability distri-
bution for query results is insufficient: the uncertainty must
be communicated to the users who will ultimately act on the
results. Complicating matters further is the fact that many
database users lack the extensive background in statistics
necessary to interpret complex probability distributions.

In this paper, we present our initial efforts to explore how
ODCs can communicate uncertainty about query results to
their users. Fundamentally, we are interested in how the
database should represent potential errors in tabular data
being presented to the user. A representation that com-
municates too much information can create an unnecessary
cognitive burden for users. Conversely, if a representation
communicates too little, the user may not realize that data
values are compromised and act on invalid information.

To explore this tradeoff between imposed cognitive burden
and efficacy, we conducted a preliminary user study with
14 participants drawn from the Department of Computer
Science and Engineering at the University at Buffalo. We
explored four different representations of one specific form
of data uncertainty called attribute-level uncertainty. Our
results show that the choice of how to communicate low-
quality data has a substantial impact on how users react
to that information. Responses to different representations
ranged from a desire for more information, an efficient use
of presented contextual details, and even included mild fear
responses to the data being presented. Thus, we argue that
the design of interface elements for representing uncertainty
is a critical part of probabilistic databases, ODCs, and data
quality research in general. Concretely, this paper makes
the following contributions: (1) We outline a user study that
explores four different presentations of attribute-level uncer-
tainty. (2) We quantitatively analyze the tradeoff between
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Rating Source
Product Buybeast Amazeo Targe Note
Samesung 4.5 3.0
Magnetbox 2.5 3.0

Mapple 3.5 5.0 Not a TV?

Figure 1: Examples of uncertainty.

cognitive burden and decision-making based on results from
our study. (3) We qualitatively analyze the different repre-
sentations’ effects on study participants’ thought processes.

2. BACKGROUND
A probabilistic database [16] 〈D, P 〉 is typically defined

as a set of deterministic database instances D ∈ D that
share a common schema, and a probability measure P :
D 7→ [0, 1] over this set. Under possible worlds semantics, a
deterministic query Q may be evaluated on a probabilistic
database by (conceptually) evaluating it simultaneously on
all instances in D, producing a set of relation instances and
a probabiliity measure over the result set.

Numerous semi-automated tools for curating low-quality
data [1, 3, 17, 13] emit probabilistic database relations.
These relations model the ambiguity that arises during au-
tomated data curation, most frequently appearing in one of
three forms: (1) Row-level uncertainty, (2) Attribute-level
uncertainty, and (3) Open-world uncertainty. Row-level un-
certainty arises when a specific tuple’s membership in a re-
lation is unknown. Attribute-level uncertainty arises when
specific values in the database are not known precisely. Fi-
nally, open-world uncertainty arises when a relation can not
be bounded to a finite set of possible tuples.

Example 1. The example spreadsheet given in Figure 1
shows reviews for 3 fictional television products from 3 fic-
tional sources. Each of the three types of uncertainty are
illustrated: It is unclear whether the Mapple is actually a
television (row-level uncertainty). There are ratings missing
for several fields (attribute-level uncertainty). Finally, there
is the possibility that the spreadsheet is incomplete and there
are television products missing (open-world uncertainty).

Efforts to presentat of uncertain data often focus on vi-
sual encodings like graphs [14, 11] or maps [5]. For tabular
layouts used in database query results, a common approach
is to present only so-called “certain” answers [4] — the sub-
set of the output relation with no row- or attribute-level
uncertainty. Although computing certain answers presents
a computationally interesting challenge, completely exclud-
ing low-quality results significantly decreases the utility of
the entire result set. Another common approach is to com-
pute statistical metrics like expectations or variances for
attribute-level uncertainty, and per-row probabilities (con-
fidences) for row-level uncertainty. Presenting this infor-
mation to users in a way that can be clearly distinguished
from deterministic data is challenging. Thus, systems like
MayBMS [7] and MCDB [8] require users to explicitly re-
quest specific statistical metrics as part of queries, and in
doing so place an unnecessary burden on users, who must
now track which attributes are uncertain. In multiple at-
tempts to deploy probabilistic databases in practice [11, 17,
13], such SQL extensions have been non-starters.

Online Aggregation [6] uses sampling to approximate and
incrementally refine results for aggregate queries. The user

Figure 2: User Interface.

interface explicitly gives an expectation, confidence bounds,
and % completion, clearly communicating that the result is
an approximation, and the level of quality a user can ex-
pect from it. Wrangler [10] helps users to visualize errors
in data: A “data quality” bar communicates the fraction of
data in each column that conforms to the column’s type and
the number of blank records. Finally, the Mimir system [17,
13] uses automatic data curation operators that tag curated
records with markers that persist through queries. These
markers manifest as highlights that communicate the pres-
ence of attribute and row-level uncertainty. Users click on
markers to learn more about why the value/row is uncertain.

3. EXPERIMENTAL DESIGN
The experiment consisted of a ranking task where partici-

pants were presented with a web form that had a 3x3 matrix
showing three ratings each for three products. Participants
were told that the ratings came from three different sources
and were normalized to a scale of 1 to 5, with 5 being best
and 1 being worst.

Each participant was presented with the same set of in-
formation and asked to evaluate the products for purchase
by ranking the products in the order of their preference. A
total of 14 participants, predominantly undergraduate and
graduate students in the Department of Computer Science
and Engineering at the University at Buffalo, participated
in the experiment.

Ratings for each product were biased to ensure a random,
but still predictable ordering from participants. For simplic-
ity, we will use the labels A, B, and C to describe a random or-
dering of the products. We generated ratings using rejection
sampling based on a uniform random distribution, subject
to the following constraints: A had to have one extremely
favorable rating compared to B (at least 1 point higher), one
slightly more favorable rating (0, 0.5, or 1 point higher), and
one slightly less favorable rating (0, 0.5, or 1 point lower).
The same constraints were applied to B and C, respectively.
These constraints were designed to elicit a ranking of A, B, C
from participants, regardless of the order in which the three
products were presented.

Participants were asked to complete multiple rounds of
survey, with each round consisting of four trials. A single
trial consisted of a single ranking task. The first Certain
trial in each round served as a control: The matrix shown
was generated exactly as described above. The remaining
trials in each round each evaluated a single representation
of uncertainty. In these trials, base data generation followed
an identical process, but between 2 and 4 randomly chosen
values were labeled as uncertain. To emphasize, the only
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Rating Source
Product Buybeast Amazeo Targe
Samesung 4.5 3.0 3.5±1

Magnetbox 2.5 2.5 3.0
Mapple 5.0* 3.5 5.0

Figure 3: Example uncertainty representations.
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Figure 4: Agreement with BestOf3 order

change was the addition of a label. Four labeling mecha-
nisms were used: (1) Asterisk: Some ratings were marked
with an asterisk. (2) Colored text: The text of some rat-
ings was colored red. (3) Confidence interval: Some rat-
ings were annotated with a plus/minus bound. (4) Color
coding: The cells containing some ratings were given a red
background. participants were informed that these fields
were uncertain. For confidence intervals, participants were
informed that the value for those fields could range over the
indicated interval. For the other representations, partici-
pants were informed that highlighted fields were uncertain.
Examples of these representations are shown in Figure 3.

Interactions with the web-form — such as product selec-
tion, re-ordering the product list, and submitting the par-
ticipant’s final order — were logged along with timestamps.
In addition to interactions with the web form, the exper-
iment also used a think-aloud protocol: Participants were
asked to verbalize their thought process while performing
the task. Audio logs were transcribed and the anonymized
transcriptions were tagged and coded for analysis.

4. EFFICIENCY AND EFFECTIVENESS
The two primary questions that we sought to answer for

each of the four representations of uncertainty were (1) Is
the representation effective at communicating uncertainty,
and (2) What is the cognitive burden of interpreting the rep-
resentation? Concretely, we identified at least three distinct
behavioral responses to uncertainty in the data presented,
suggesting differences in the efficacy of each representation.
We also noted that all four representations of uncertainty
required a similar amount of decision time, suggesting that
all four representations impose similar cognitive burdens in
the population under study.

Effectiveness. Recall that the data presented was care-
fully selected to elicit a specific ordering, regardless of whether
participants made their choice based on the best two ratings
or based on the average of all three ratings. We term this
ranking order BestOf3. Our analysis is based on the ex-
pectation that users who disregard uncertain data are more
likely to select orderings closer to random relative to Be-
stOf3. In short, if a representation of uncertainty is ef-
fective, we would expect to see a more random product

ranking. In the confidence interval representation — where
bounds were not wide enough to prompt a significant level
of ambiguity — we would expect to see ranking close to
BestOf3. Figure 4 summarizes our results, showing the
probability of agreement between the participant-selected
ordering and the BestOf3 ordering. Standard deviations
are computed under the assumption that agreement with
BestOf3 follows a Beta-Bernoulli distribution. A 16.7%
agreement would indicate a purely random ordering. The
‘certain’, deterministic baseline shows a consistent, roughly
85% agreement with BestOf3, and as predicted, so does the
confidence interval presentation (89%)1. Both colored text
and color coding significantly altered participant behavior
(45% and 56% agreement with BestOf3). Asterisks were
not as effective at altering participant behavior (73% agree-
ment). This is consistent with colored text and color coding
signaling significant errors, while asterisks signal caveats or
minor considerations on the values presented.

Efficiency. We measure time taken for each form of
uncertainty as a proxy for cognitive burden. Figure 5 il-
lustrates time taken by users to complete each individual
ranking task. We distinguish between the first round, where
participants initially encounter the task and representation,
from subsequent rounds where they are already familiar with
the task. As seen in Figure 5a, participants spent signifi-
cantly more time familiarizing themselves with the overall
ranking task than with any of the specific representations
of uncertainty. Furthermore, time taken per representation
was relatively consistent across all forms of uncertainty; The
slowest two trials in Figure 5b were both deterministic.

5. DISCUSSION
Participants were encouraged to verbalize their thought

process. Based on this feedback, we were also also able
to make several qualitative observations. In general partici-
pants considered consistency in the rating sources and prod-
ucts as a secondary source of feedback about data quality.
For example, if Source 1 had uncertain ratings for two prod-
ucts, then some participants were more likely to discard it
as uninformative and base their rating solely on the other
two sources. If the range of ratings for a product was wide
(4.5, 2, 1) then the product was considered unreliable by a
few participants. Most of the participants explicitly stated
that they were choosing based on the best two of, or the
average of the three ratings.

Approximately half of the participants conveyed a strong
negative emotional reaction to the color coding representa-
tion — a well known response to the color red. Reactions in-
cluded participants expressing a feeling of negative surprise
on first seeing the value. Several participants suggested feel-
ings of comfort associated with the additional information
that the confidence interval supplied, although we note the
same may not be true of broader study populations.

In addition to strong negative emotional responses, most
participants indicated that they were ignoring values with a
red background, except as a tiebreaker. This was true even
for several participants who did not react in the same way
toward the red text or asterisk representations.

Most participants exhibited risk-averse behavior. Given
two similar choices, many participants stated a preference

1Note that results from both certain and confidence interval
trials are well within one standard deviation of each other.
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Figure 5: Time taken per form of uncertainty. Graphs show cumulative distributions per-trial.

for products with more consistency in their ratings, as well
as for products that did not include uncertain ratings. A
frequent exception to this pattern was cases where uncertain
values appeared at the low end of the rating spectrum —
several participants indicated that the true value of a low,
uncertain rating could only be greater than the value shown.

In several instances, participants requested additional in-
formation, most frequently with the asterisk representation.
It is possible that this is an artifact of the experimental pro-
tocol; The asterisk was the first form of uncertainty that
many participants encountered. However, based on our ef-
ficacy analysis, it may also be the case that participants
assumed that this representation signaled less significant er-
rors. In future trials, we will use a random trial order and
evaluate whether some representations are better at prompt-
ing users to seek out additional information.

For confidence bounds, users appeared to react to the pre-
sented uncertainty in one of two ways. One group appeared
to first evaluate whether the uncertainty would make a sig-
nificant impact on their deterministic ranking strategy (best
2 of 3 or average). The other group adopted a pessimistic
view and plugged the lower bound into their determinis-
tic strategy as a worst-case. For the experimental protocol
used, both strategies typically resulted in the same outcome.

6. CONCLUSIONS AND FUTURE WORK
Data quality is becoming an increasingly painful challenge

to scale. As a result of issues ranging from low-quality source
data [10, 17, 13] to time-constrained execution [6, 11], the
future is clear: Before long, imprecise database query re-
sults will be common. It is thus imperative that we learn
how to communicate uncertainty in results effectively and ef-
ficiently. We presented our initial exploration of this space:
a user study that examined four approaches to presenting
attribute-level uncertainty. We plan to continue these efforts
by exploring (1) other types of uncertainty in relational data
(row-level and open-world), (2) qualitative feedback such as
explanations [17], (3) giving the user mechanisms to dynam-
ically control the level and complexity of uncertainty repre-
sentation being shown, and (4) incorporating our findings
into the Mimir on-demand curation system [17, 13].

Acknowledgements This work was supported in part by a
gift from Oracle and NPS Grant N00244-16-1-0022. Opin-
ions, findings and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views
of Oracle or the Naval Postgraduate School.

7. REFERENCES
[1] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin.

Sampling from repairs of conditional functional dependency
violations. VLDBJ, 23(1):103–128, 2014.

[2] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti,
N. Tang, and Y. Ye. Katara: A data cleaning system
powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1247–1261.
ACM, 2015.

[3] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang. NADEEF: A commodity
data cleaning system. In SIGMOD, 2013.

[4] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
Getting to the core. TODS, 30(1):174–210, Mar. 2005.

[5] H. Griethe and H. Schumann. The visualization of
uncertain data: Methods and problems. In SimVis, pages
143–156. SCS Publishing House e.V., 2006.

[6] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. SIGMOD Rec., 26(2):171–182, June 1997.

[7] J. Huang, L. Antova, C. Koch, and D. Olteanu. MayBMS:
A probabilistic database management system. In SIGMOD,
2009.

[8] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and
P. J. Haas. MCDB: a monte carlo approach to managing
uncertain data. In SIGMOD, 2008.

[9] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD.

[10] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, 2011.

[11] O. A. Kennedy and S. Nath. Jigsaw: Efficient optimization
over uncertain enterprise data. In SIGMOD, 2011.

[12] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani,
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