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ABSTRACT
Three mentalities have emerged in analytics. One view holds
that reliable analytics is impossible without high-quality
data, and relies on heavy-duty ETL processes and upfront
data curation to provide it. The second view takes a more
ad-hoc approach, collecting data into a data lake, and plac-
ing responsibility for data quality on the analyst querying
it. A third, on-demand approach has emerged over the past
decade in the form of numerous systems like Paygo or HLog,
which allow for incremental curation of the data and help
analysts to make principled trade-offs between data quality
and effort. Though quite useful in isolation, these systems
target only specific quality problems (e.g., Paygo targets
only schema matching and entity resolution). In this paper,
we explore the design of a general, extensible infrastructure
for on-demand curation that is based on probabilistic query
processing. We illustrate its generality through examples
and show how such an infrastructure can be used to grace-
fully make existing ETL workflows “on-demand”. Finally,
we present a user interface for On-Demand ETL and address
ensuing challenges, including that of efficiently ranking po-
tential data curation tasks. Our experimental results show
that On-Demand ETL is feasible and that our greedy rank-
ing strategy for curation tasks, called CPI, is effective.

1. INTRODUCTION
Effective analytics depends on analysts having access to

accurate, reliable, high-quality information. One school of
thought on data quality manifests as Extract-Transform-
Load (ETL) processes that attempt to shield analysts from
any uncertainty, by cleaning all data thoroughly up-front.
The cleansed data is usually represented in a new or trans-
formed way as tables in a data warehouse. Those tables,
typically in form of star schemas, as well as the transforma-
tion and parsing logic, all have to be designed up front, an
arduous and time-consuming task. Only after loading the
parsed and transformed data into the data warehouse can
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the analyst query the data to do any actual analysis. We col-
lectively refer to this selective parsing, transformation and
loading into a new structure as data curation.

Example 1. Alice is an analyst at the HappyBuy retail
store, and is developing a promotional strategy based on pub-
lic opinion ratings for its products gathered by two data col-
lection companies. A thorough analysis of the data requires
substantial data-cleaning effort from Alice: As shown in Fig-
ure 1, the rating companies schemas are incompatible, and
HappyBuy’s own product data is incomplete. However, Al-
ice’s preliminary analysis is purely exploratory, and she is
hesitant to invest the full effort required to curate this data.

The upfront costs of curation have lead many to instead in-
line curation tasks into the analytical process, so that only
immediately relevant curation tasks are performed.

Example 2. Alice realizes that she only needs two spe-
cific attributes for her analysis: category and rating. She
considers manually constructing a task-specific data set con-
taining a sanitized version of only these two columns.

This deferred approach is more lightweight, but encour-
ages analysts to develop brittle one-off data cleansing so-
lutions, incurring significant duplication of effort or orga-
nizational overheads. A third approach, initially explored
as part of Paygo [25], instead curates data incrementally
in response to specific query requirements. This form of
on-demand curation results in a sanitized data set that is
based on a principled trade-off between the quality desired
from the data set and the human effort invested in curat-
ing it. Paygo specifically targets two curation tasks: schema
matching and entity resolution, and other systems have since
appeared for schema matching [2], as well as other tasks like
information extraction [10], and inference [41,42].

A typical ETL pipeline often involves many distinct cura-
tion tasks, requiring that multiple on-demand data curation
systems be used in tandem. However, the data represen-
tations and quality metrics used by these systems are opti-
mized for very specific use-cases, making composition diffi-
cult. In this paper, we explore and address the challenges of
composing specialized on-demand curation techniques into
a general-purpose workflow. The result is a unified model
for on-demand curation called On-Demand ETL that
bridges the gap between these systems and allows them to
be gracefully incorporated into existing ETL and analytics
workflows. This unified model builds around ordinary SQL,
retaining compatibility with existing standards for ETL de-
sign, data analysis, and database management.



Product

id name brand category ROWID

P123 Apple 6s, White ? phone R1

P124 Apple 5s, Black ? phone R2

P125 Samsung Note2 Samsung phone R3

P2345 Sony to inches ? ? R4

P34234 Dell, Intel 4 core Dell laptop R5

P34235 HP, AMD 2 core HP laptop R6

Ratings1

pid . . . rating review ct ROWID

P123 . . . 4.5 50 R7

P2345 . . . ? 245 R8

P124 . . . 4 100 R9

Ratings2

pid . . . evaluation num ratings ROWID

P125 . . . 3 121 R10

P34234 . . . 5 5 R11

P34235 . . . 4.5 4 R12

Figure 1: Incomplete example relations, annotated
with implicit per-row lineage markers (ROWID).

Representing Incomplete Data. On-demand cura-
tion permits trade-offs between data quality, and the effort
needed to obtain high-quality data. This requires a rep-
resentation for the quality loss incurred by only partially
curating data. Existing on-demand curation systems use
specialized, task-specific representations. In Section 2 we
describe an existing representation for incomplete informa-
tion called PC-Tables [17, 18, 23], and show how it can be
leveraged by On-Demand ETL.

Expressing Composition. If the output of a curation
technique is non-deterministic, then for closure, it must ac-
cept non-deterministic input as well. In Section 3, we define
a model for non-deterministic operators called lenses that
capture the semantics of on-demand data curation processes.
We illustrate the generality of this model through examples,
and show that it is closed over PC-Tables.

Backwards Compatibility. For On-Demand ETL to
be practical, it must be compatible with traditional data
management systems and ETL pipelines. In Section 4, we
develop a practical implementation of PC-Tables [23] called
Virtual C-Tables that can be safely embedded into a classi-
cal, deterministic database system or ETL workflow.

Presenting Data Quality. In Section 5, we discuss how
to present the quality loss incurred by incomplete curation
to end-users. We show how lightweight summaries can be
used to alert an analyst to specific problems that affect their
analysis, and how On-Demand ETL computes a variety of
quality measures for query results.

Feedback. Section 6 highlights how lenses act as a form
of provenance, linking uncertainty in query outputs to the
lenses that created them. These links allow for lens-defined
curation tasks that improve the quality of query results. We
introduce a concept called the cost of perfect information
(CPI) that relates the value of a curation task that improves
a result’s quality, to the cost of performing the task, allowing
curation tasks to be ranked according to their net value to
the analyst.

Experimental Results. Finally, in Section 7, we present
experimental results that demonstrate the feasibility of On-
Demand ETL and provide several insights about its use.

Concretely, this paper’s contributions include: (1) A com-
posable model for expressing data curation tasks based on
probabilistic components called lenses, (2) A practical im-
plementation of PC-Tables called Virtual C-Tables that can
be deployed into classical databases without needing sup-
port for labeled nulls, (3) A family of heuristics called CPI
used to prioritize curation tasks that improve result quality

e := R | Column | if φ then e else e

| e {+,−,×,÷} e | V ar(id[, e[, e[, . . .]]])

φ := e {=, 6=, <,≤, >,≥} e | φ {∧,∨} φ | > | ⊥
| e is null | ¬φ

Figure 2: Grammars for boolean expressions φ and
numerical expressions e including support for VG-
Functions V ar(. . .).

at a cost, and (4) Experimental results that illustrate the
feasibility of On-Demand ETL and the effectiveness of CPI.

2. BACKGROUND AND RELATED WORK
A deterministic database is a finite collection of relation

instances {R1, . . . , Rk} over a schema S = {S1, . . . ,Sk}. Ac-
cording to the “possible worlds” semantics [37] a probabilis-
tic database D consists of a pair (W, P ), where W is a large
collection of deterministic databases, the so called possible
worlds, all sharing the same schema S, and P is a probability
measure over W. Roughly speaking, D is a database whose
schema is known but whose internal state is uncertain, and
W simply enumerates all its plausible states. We denote by
R the set of all tuples that appear in some possible world
(often called possible tuples). Each element of R is an out-
come for the probability space (W, P ). The confidence of a
possible tuple t is simply the probability that it will appear
in the database D, i.e. its marginal probability

P (t ∈ D) =
∑

Wi∈W|t∈Wi

P (Wi)

The goal of probabilistic databases [1,8,16,22,24,27,34,36] is
to support the execution of deterministic queries like regular,
deterministic databases do. Let’s denote by Q an arbitrary
deterministic query (i.e., a query expressible in classical bag-
relational algebra) and by sch(Q) the schema defined by it,
which consists of a single relation. The application of Q
to D, denoted by Q(D), generates a new probability space
(W′, P ′) where W′ = {Q(Wi) |Wi ∈W} and

P ′(t ∈ Q(D)) =
∑

Wi∈W|t∈Q(Wi)

P (Wi)

A probabilistic query processing (PQP) system is supposed
to answer a deterministic query Q by listing all its possible
answers and annotating each tuple with its marginal prob-
ability, or by computing expectations for aggregate values.
These tasks are difficult in practice, mainly for two reasons:
(i) W is usually too large to be enumerated explicitly, and
(ii) computing marginals is provably #P-hard in the general
case. For example, if our schema contains a single relation
and our set of possible worlds contains all subsets of a given
set of 100 tuples, then we have 2100 distinct possible worlds
where each possible tuple appears in half.

One way to make probabilistic query processing efficient
is to encode W and P with a compact, factorized repre-
sentation. In this paper we adopt a generalized form of
C-Tables [23, 27] to represent W, and PC-Tables [17, 18] to
represent the pair (W, P ). A C-Table [23] is a relation in-
stance where each tuple is annotated with a lineage formula
φ, a propositional formula over an alphabet of variable sym-
bols Σ. The formula φ is often called a local condition and



the symbols in Σ are referred to as labeled nulls, or just vari-
ables. Intuitively, for each assignment to the variables in Σ
we obtain a possible relation containing all the tuples whose
formula φ is satisfied. For example:

Product

pid name brand category φ

t1 P123 Apple 6s, White Apple phone x1 = 1

t2 P123 Apple 6s, White Cupertino phone x1 = 2

t3 P125 Samsung Note2 Samsung phone >

The above C-Table defines a set of three possible worlds,
{t1, t3}, {t2, t3}, and {t3}, i.e. one world for each possible
assignment to the variables in the one-symbol alphabet Σ =
{x1}. Notice that no possible world can have both t1 and
t2 at the same time. C-Tables are closed w.r.t. positive
relational algebra [23] : if W is representable by a C-Table
and Q is a positive query then W′ = {Q(Wi) |Wi ∈W} is
representable by another C-Table.

Following the approach of PIP [27], in this paper we adopt
VG-RA (variable-generating relational algebra), a general-
ization of positive bag-relation algebra with extended pro-
jection, that uses a simplified form of VG-functions [24]. In
VG-RA, VG-functions (i) dynamically introduce new Skolem
symbols in Σ, that are guaranteed to be unique and de-
terministically derived by the function’s parameters, and
(ii) associate the new symbols with probability distribu-
tions. Hence, VG-RA can be used to define new C-Tables.
Primitive-valued expressions in VG-RA (i.e., projection ex-
pressions and selection predicates) use the grammar sum-
marized in Figure 2. The primary addition of this grammar
is the VG-Function term: V ar(. . .).

From PIP, we also inherit a slightly generalized form of
C-Tables. Our C-Tables differ from the canonical ones in
the following: (i) Variables in Σ are allowed to range over
continuous domains, (ii) attribute-level uncertainty is en-
coded by replacing missing values with VG-RA expressions
(not just functions) that act as Skolem terms and (iii) these
VG-RA expressions allow basic arithmetic operations. The
previous example is equivalent to the PIP-style C-Table:

Product

pid name brand category

P123 Apple 6s, White V ar(′X′, R1) phone

P125 Samsung Note2 Samsung phone

From now on, without explicitly mentioning PIP, we will
assume all C-Tables support the generalizations discussed
above. It has been shown that C-Tables are closed w.r.t
VG-RA [23, 27]. The semantics for VG-RA query evalu-
ation [[·]]CT over C-Tables [22, 23, 27] are summarized in
Figure 3. These semantic rules make extensive use of the
lazy evaluation operator [[·]]lazy, which uses a partial bind-
ing of Column or V ar(. . .) atoms to corresponding expres-
sions. Lazy evaluation applies the partial binding and then
reduces every sub-tree in the expression that can be deter-
ministically evaluated. Non deterministic sub-trees are left
intact. Any tuple attribute appearing in a C-Table can be
encoded as an abstract syntax tree for a partially evaluated
expression that assigns it a value. This is the basis for evalu-
ating projection operators, where every expression ei in the
projection’s target list is lazily evaluated. Column bindings
are given by each tuple in the source relation. The local
condition φ is preserved intact through the projection. Se-
lection is evaluated by combining the selection predicate φ
with each tuple’s existing local condition. As an optimiza-
tion, tuples for which φ deterministically evaluates to false
(⊥) are preemptively discarded.

A PC-Table [17,18] is a C-Table augmented with a prob-
ability measure P over the possible assignments to the vari-
ables in Σ. Since each assignment to the variables in Σ
generates a possible world, a PC-Table induces a probabil-
ity measure over W. Hence, it can be used to encode a
probabilistic database (W, P ). PC-Tables are the founda-
tion for several PQP systems, including MayBMS [22], Or-
chestra [16] and PIP [27]. Green et al. [17] observed that
PC-Tables generalize other models like Trio [1]. The re-
lationship between PC-Tables and VG-RA is discussed in
further detail in Section 3.

2.1 Other Related Work
There are numerous tools for on-demand data curation,

each targeting specific challenges like schema matching [2,
25], de-duplication [25], information extraction [9, 10], in-
formation integration [5], or ontology construction [4, 19].
On-Demand ETL generalizes these, providing a tool for on-
demand data curation that these solutions can be plugged
into. On-demand curation can also be thought of as a highly-
targeted form of crowd-sourced databases [32], which lever-
age the power of humans to perform complex tasks.

The problem of incomplete data arises frequently in dis-
tributed systems, where node failures are common. Existing
solutions based on uncertainty [7,15,30,40] can similarly be
expressed in On-Demand ETL to provide more fine-grained
analyses of result quality over partial data than these ap-
proaches provide natively.

Prioritizing curation tasks, as addressed in Section 6, is
quite closely related to Stochastic Boolean Function Evalu-
ation, or SBFE, where the goal is to determine the value of
a given Boolean formula by paying a price to discover the
exact value of uncertain boolean variables. The problem is
hard in its general form; exact solutions and heuristics have
been proposed for several classes of functions [26,39]. More
recently Deshpande et al. [11] designed a 3-approximation
algorithm for linear threshold formulas, while Allen et al. [3]
developed exact and approximate solutions for monotone k-
term DNF formulas.

3. LENSES
A lens is a data processing component that is evaluated

as part of a normal ETL pipeline. Unlike a typical ETL pro-
cessing stage that produces a single, deterministic output,
a lens instead produces a PC-Table (W, P ), which defines
the set of possible outputs, and a probability measure that
approximates the likelihood that any given possible output
accurately models the real world. In effect, a lens gives
structure to uncertainty about how an ETL process should
interpret its input data.

Asking ETL designers to specify this structure manually
for the entire ETL process is impractical. Lenses allow this
structure to be specified as a composition of individual sim-
ple transformations, constraints, or target properties that
take the place of normal operators in the ETL pipeline.
However, composition requires closure. In this section, we
define a closed framework for lens specification, and illus-
trate its generality through three example lenses.

3.1 The Lens Framework
A lens instance is defined over a query Q(D), and is in

turn responsible for constructing a PC-Table (W, P ). A
lens defines W as a C-Table through a VG-RA expression



Expression Evaluates To
[[πai←ei(R)]]CT { 〈 ai : [[ei(t)]]lazy, φ : t.φ 〉 | t ∈ [[R]]CT }

[[σψ(R)]]CT { 〈 ai : t.ai, φ : [[t.φ ∧ ψ(t)]]lazy 〉 | t ∈ [[R]]CT ∧ ([[t.φ ∧ ψ(t)]]lazy 6≡ ⊥) }
[[R× S]]CT { 〈 ai : t1.ai, aj : t2.aj , φ : t1.φ ∧ t2.φ 〉 | t1 ∈ [[R]]CT ∧ t2 ∈ [[S]]CT }
[[R ] S]]CT { 〈 ai : t.ai, φ : t.φ 〉 | t ∈ ([[R]]CT ] [[S]]CT ) }

Figure 3: Evaluation semantics for positive bag-relational algebra over C-Tables
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Figure 4: Example of the domain constraint repair
lens applied in a legacy application. The output
layer is discussed in Section 5.

Flens(Q(D)). Independently, the lens constructs P as a joint
probability distribution over every variable introduced by
Flens, by defining a sampling process in the style of classical
VG-functions [24], or supplementing it with additional meta-
data to create a PIP-style grey-box [27]. An example of the
complete process for the Domain Constraint Lens defined
below is illustrated in Figure 4. These semantics are closed
over PC-Tables. If Q(D) is non-deterministic — that is,
the lens’ input is defined by a PC-Table (Q(D), PQ) — the
lens’ semantics are virtually unchanged. VG-RA is closed
over C-Tables, so Flens(Q(D)) simply defines a new C-Table.
Defining P as an extension of PQ with distributions for all
variables newly introduced by Flens provides closure for the
probability measure, a topic we will return to in Section 3.3.

3.2 Lens Examples
We first illustrate the generality of the lens framework

through three example lenses: domain constraint repair,
schema matching, and archival. To construct a lens over
query Q, the user writes:

CREATE LENS <lens_name> AS Q

USING <lens_type>(<lens_arguments>);

Domain Constraint Repair. A domain constraint repair
lens enforces attribute-level constraints such as NOT NULL.
Under the assumption that constraint violations are a con-
sequence of data-entry errors or missing values, domain con-
straint violations can be repaired by finding a legitimate re-
placement for each invalid value. Obtaining reliable replace-
ment values typically requires detailed domain knowledge.
However, in an on-demand setting, approximations are suf-
ficient. The domain constraint repair lens uses educated
guesses about data domains (e.g., uniform distributions over
allowable values) and machine learning models (e.g., a naive
Bayes classifier trained over Q(D)) to approximate domain
knowledge. With sch(Q) = {〈 a1, t1 〉 , . . . , 〈 an, tn 〉} denot-
ing the attributes ai of Q(D) and their type ti, a domain
constraint repair lens definition has the form:

... USING DOMAIN REPAIR(a1 t1, ..., an tn)

The C-Table for the lens’ output is constructed by the query
Flens = π{...,ai←Vi,...}, where each Vi is defined as:

if ti |= ai then ai else V ar(Namei, ROWID))

id name brand category
P123 Apple 6s, White V ar(′X′, R1) phone
P124 Apple 5s, Black V ar(′X′, R2) phone
P125 Samsung Note2 Samsung phone
P2345 Sony 60 inches V ar(′X′, R4) V ar(′Y ′, R4)
P34234 Dell, Intel 4 core Dell laptop
P34235 HP, AMD 2 core HP laptop

Figure 5: The C-Table for SaneProduct

In this expression, ti |= ai if ai satisfies the type constraints
of ti, and each Namei is a freshly allocated variable name.
Independently, P is defined by training a classifier or similar
model for each attribute on the output of Q.

Example 3. Returning to Example 1, Alice creates a lens
to handle missing values in the Product table:

CREATE LENS SaneProduct AS SELECT * FROM Product
USING DOMAIN_REPAIR( category string NOT NULL,

brand string NOT NULL );

From Alice’s perspective, the lens SaneProduct behaves as
a standard database view. However, the content of the lens
is guaranteed to satisfy the domain constraints on category

and brand. NULL values in these columns are replaced ac-
cording to a classifier built over the output of the query over
Product. Figure 5 shows the C-Table for this lens.

Schema Matching. A schema matching lens creates a
mapping from the source data’s schema to a user-defined tar-
get schema. This is especially important for non-relational
data like JSON objects or web tables, which may not have
well defined schemas [21, 25]. Given a destination schema
{〈 b1, t1 〉 , . . . , 〈 bm, tm 〉} and a threshold ω, a schema match-
ing lens definition has the form:

... USING SCHEMA MATCHING(b1 t1, ..., bm tm, ω)

The schema matching lens defines a fresh boolean variable
V ar(Namei,j) for every pair ai, bj , where 〈 ai, ti 〉 ∈ sch(Q).
The probability of V ar(Namei,j) corresponds to the prob-
ability of a match between ai and bj . Flens takes the form:
π{...,bj←Vj ,...}, where Vj enumerates possible matches for bj :

if V ar(Name1,j) then a1 else
...

if V ar(Namen,j) then an else NULL

As an optimization, matches for type-incompatible pairs
of attributes are skipped. Additionally, the lens discards
matches where the likelihood of a schema-level match falls
below a user-defined threshold (ω).

Example 4. Alice next turns to the ratings data sets,
which have incompatible schemas. She creates a lens and
a joint view:

CREATE LENS MatchedRatings2 AS SELECT * FROM Ratings2
USING SCHEMA_MATCHING( pid string, ..., rating float,

review_ct float, NO LIMIT );
CREATE VIEW AllRatings AS SELECT * FROM MatchedRatings2

UNION SELECT * FROM Ratings1;



The resulting C-Table for MatchedRatings2 is shown in
Figure 6. From Alice’s perspective, AllRatings behaves as
a normal view combining Ratings1 and Ratings2. Behind
the scenes, the attributes of Ratings2 are quietly matched
against those of Ratings1. In this example, only evaluation

and num ratings are type compatible match candidates, and
other match cases are dropped.

Numerous options are available for constructing P , in-
cluding domain-based schemes or complex ontology-based
matching. However, even a simple matching scheme can be
sufficient for On-Demand ETL. We approximate the prob-
ability of a match between two attributes by a normalized
edit distance between the two attribute names. As we show
in Section 7 (Figure 11), even this simple matcher can pro-
duce suitable results.

Archival. An archival lens captures the potential for
errors arising from OLAP queries being posed over stale
data [29], like queries run in between periodic OLTP to
OLAP bulk data copies. The lens takes a list of pairs 〈 T,R 〉,
where R is a reference to a relation in an OLTP database,
and T is the period with which R is locally archived.

... USING ARCHIVAL(〈 T1, R1 〉 , . . . , 〈 Tm, Rm 〉)

This lens probabilistically discards rows from its output that
are no-longer valid according to the lens query Flens =
σV ar(Name,ROWID), where Name is a freshly allocated iden-
tifier. In the background, the lens periodically polls for
samples drawn from each Rj to estimate the volatility of
each relation referenced by Q. Denote by νj the probabil-
ity of a tuple in Rj being invalidated at some point during
the period Tj . P is defined independently for each row as a
binomial distribution with probability

∏
{j|Rj∈Q} νj .

3.3 Composing Lenses

Example 5. When Alice examines AllRatings, she sud-
denly realizes that the data in Ratings1 is missing rating
information. She creates a domain repair lens:

CREATE LENS SaneRatings AS
SELECT pid, category, rating, review_ct FROM AllRatings
USING DOMAIN_REPAIR(rating DECIMAL NOT NULL)

The C-Table for SaneRatings is straightforward to con-
struct, as both lenses involved can be expressed as VG-RA
expressions. However, the domain repair lens must still train
a model to fill in distributions for missing values. In contrast
to Example 3, where the model was trained on deterministic
input, here the input is a PC-Table.

The closure of VG-RA over PC-Tables requires that any
non-deterministic query F be defined alongside a process
that extends the input PC-Table’s probability measure Pin
to cover any variables introduced by F . For lenses, there are
three possibilities. In the trivial case where F introduces no
new variables, Pin remains unmodified. In the second case,
variables introduced by F are independent of Pin and a joint
distribution is defined trivially as the product of the original
and new distributions. If any new variables depend on Pin,
a grey-box distribution definition [27] can be used to express
these dependencies directly.

However, it may not always be possible to explicitly de-
fine dependencies, particularly when adapting existing on-
demand cleaning solutions. On-Demand ETL provides three

separate mechanisms to enable support for lenses that re-
quire deterministic inputs: (i) Train the lens on the most-
likely output of the source lens (see Section 5), (ii) Train
the lens on samples of rows drawn from random instances
of the source model, or (iii) Train the lens on the subset of
the source data that is fully deterministic (i.e., certain).

Example 6. Alice issues the following query:

SELECT p.pid, p.category, r.rating, r.review_ct

FROM SaneRatings r NATURAL JOIN Product p

WHERE p.category IN (‘phone’,‘TV’) OR r.rating > 4

The resulting C-Table is shown in Figure 7. The first two
products are entirely deterministic. P125 is a phone and
deterministically satisfies the query, but has attribute-level
uncertainty from schema matching (Example 4). P2345 has
a missing category (Example 3) and rating (Example 5),
so the row’s condition is effectively the entire selection pred-
icate. P34234 and P34235 are laptops and fail the test on
category, so their presence in the result set depends entirely
on how rating is matched (Example 4). Recall that there are
three candidates: evaluation, num ratings, or neither. In
the last case, domain repair (Example 5) replaces the NULL

with V ar(′Z′, R11) and V ar(′Z′, R12). P34234 and P34235
have functional if expressions in their conditions, with the
form (if φ1 then e2 else e3) > 4. These expressions
can be simplified by recursively pushing the comparison into
the branches: if φ1 then e2 > 4 else e3 > 4, in-lining the
branches into the condition: (φ1∧(e2 > 4))∨(¬φ1∧(e3 > 4)),
and then further simplifying the resulting boolean expression.

4. VIRTUAL C-TABLES
We next address the challenge of deploying the PQP tech-

niques necessary to support Lenses into an existing data-
base or ETL pipeline. Our approach, called Virtual C-
Tables or VC-Tables, works by decomposing VG-RA queries
into deterministic and non-deterministic components. Non-
deterministic components are percolated out of queries, mak-
ing it possible for the bulk of the ETL process to remain
within a classical deterministic system. A small On-Demand
ETL shim layer wraps around the database, and provides a
minimally-invasive interface for uncertainty-aware users and
applications. This shim layer is also responsible for manag-
ing several views, discussed in Section 5, that provide back-
wards compatibility for legacy applications.

Let F(D) denote a VG-RA query over a deterministic
database D. When combined with a probability measure
P , (F(D), P ) defines a PC-Table. Semantics for determin-
istic queries over PC-Tables are well defined, but rely on
support for labeled nulls, a feature not commonly found in
popular data management systems. Existing probabilistic
query processing systems address this limitation by restrict-
ing themselves to special cases like finite-discrete probability
distributions over categorical data [13,22], relying on costly
user-defined types [24, 27, 28], or by specializing the entire
database for uncertain data management [1, 16, 36]. Ulti-
mately, each of these solutions is either too specialized for
On-Demand ETL, or too disruptive to be deployed into an
existing classical ETL pipeline or databases.

Virtual C-Tables decouple the deterministic components
of a query from the non-deterministic components that de-
fine a PC-Table. This decomposition is enabled by the ob-
servation that once the probability measure P of a PC-Table



pid . . . rating review ct
P125 . . . if V ar(′rat = eval′) then 3 else if V ar(′rev ct = eval′) then 3 else

if V ar(′rat = num r′) then 121 else NULL if V ar(′rev ct = num r′) then 121 else NULL

P34234 . . . if V ar(′rat = eval′) then 5 else if V ar(′rev ct = eval′) then 5 else
if V ar(′rat = num r′) then 5 else NULL if V ar(′rev ct = num r′) then 5 else NULL

P34235 . . . if V ar(′rat = eval′) then 4.5 else if V ar(′rev ct = eval′) then 4.5 else
if V ar(′rat = num r′) then 4 else NULL if V ar(′rev ct = num r′) then 4 else NULL

Figure 6: The C-Table for MatchedRatings2

id category rating review ct φ (condition)
P123 phone 4.5 50 >
P124 phone 4 100 >
P125 phone if V ar(′rat = eval′) then . . . if V ar(′rat = eval′) then . . . >

. . . else V ar(′Z′, R10) . . . else NULL

(V ar(′Y ′, R4) = ′phone′)
P2345 V ar(′Y ′, R4) V ar(′Z′, R8) 245 ∨ (V ar(′Y ′, R4) = ′TV ′)

∨ V ar(′Z′, R8) > 4
if V ar(′rat = eval′) then . . . if V ar(′rat = eval′) then . . . V ar(′rat = eval′)

P34234 laptop . . . else V ar(′Z′, R11) . . . else NULL ∨ V ar(′rat = num r′)
∨ (V ar(′Z′, R11) > 4)

if V ar(′rat = eval′) then . . . if V ar(′rat = eval′) then . . . V ar(′rat = eval′)
P34235 laptop . . . else V ar(′Z′, R12) . . . else NULL ∨( ¬V ar(′rat = num r′)

∧ (V ar(′Z′, R12) > 4) )

Figure 7: C-Table for the query over SaneRatings and SaneProduct

(F(D), P ) is constructed, further deterministic queries Q
over the PC-Table do not affect P . Consequently, we are
free to rewrite the C-Table Q(F(D)) defined by any query
over (F(D), P ) into any equivalent query F ′(Q′(D)), where
Q′ is deterministic and F ′ is non-deterministic. In this new,
normalized form, the heavy-weight deterministic inner query
Q′ can be evaluated by a traditional database, while a much
simpler F ′ can be evaluated or analyzed by a small shim
layer sitting between the database and its users. Further
queries q(F ′(Q′(D))) can likewise be rewritten into nor-
mal form F ′′(q′(Q′(D))), enabling views and SELECT INTO

queries, both of which frequently appear in ETL workflows.

4.1 Normal Form VG-RA
Non-determinism arises in VG-RA queries through ex-

pressions containing variable terms — that is, only through
projection and selection. Correspondingly, we propose a
normal form of VG-RA: πai←ei(σφ(Q(D))), where the source
query Q(D) is expressible using classical bag-relational al-
gebra. The two outer operators, which we represent jointly
as F(〈 ai ← ei 〉 , φ), fully encode the branching possibilities
of the C-Table. Figure 8 shows how any query in VG-RA
can be rewritten into this form by percolating all expressions
with a VG-Term V ar(. . .) up through the relational algebra
tree.

Projection and selection operators wrapping around F
may be in-lined into F according to rewrites 1 and 2. As
an optimization, expressions and conditions are simplified
through lazy evaluation, and predicates ψ are partitioned
into two components: ψvar ∧ ψdet ≡ [[ψ(ai ← ei)]]lazy, hav-
ing and not having variable terms, respectively.

Cross-products of two normalized expressions are com-
posed in the straightforward way by concatenating attribute
sets and conjunctively combining local conditions as shown
in rewrite 3. We use alpha-renaming to avoid schema con-
flicts between Q(D) and Q′(D), and without loss of gener-
ality, assume that the intersection of ai and a′j is empty.

Finally, rewrite 4 shows how bag-unions can be rewrit-
ten by injecting a provenance marker into the deterministic
queries. A fresh attribute src distinguishes rows originating
from each of two source queries Q and Q′.

πa′j←e′j (F(〈 ai ← ei 〉 , φ)(Q(D)))

≡ F(
〈
a′j ← [[e′j(ai ← ei)]]lazy

〉
, φ)(Q(D)) (1)

σψ (F(〈 ai ← ei 〉 , φ)(Q(D)))

≡ F(〈 ai ← ei 〉 , φ ∧ ψvar)(σψdet(Q(D))) (2)

F(〈 ai ← ei 〉 , φ)(Q(D))×F(
〈
a′j ← e′j

〉
, φ′)(Q′(D))

≡ F(
〈
ai ← ei, a

′
j ← e′j

〉
, φ ∧ φ′)(Q(D)×Q′(D)) (3)

F(〈 ai ← ei 〉 , φ)(Q(D)) ] F(
〈
ai ← e′i

〉
, φ′)(Q′(D))

≡ F(
〈
ai ← [[if src = 1 then ei else e

′
i]]lazy

〉
,

[[if src = 1 then φ else φ′]]lazy)(

π∗,src←1(Q(D)) ] π∗,src←2(Q′(D))) (4)

Figure 8: Recursive reduction to Normal Form.

4.2 Virtual Views
Normalization allows lenses to be incorporated into exist-

ing ETL pipelines. A lens constructs a probability measure
P out of its input Q(D), and a C-Table using Flens(Q(D)).
The lens query and any subsequent queries over it are nor-
malized into a normal form query F ′(Q′(D)), and the view
Q′(D) is constructed and materialized by the traditional
database. F ′ is stored alongsideQ′ and defines a virtual view
for F ′(Q′(D)). The shim interface transparently normalizes
queries over virtual views q(F ′(Q′(D))) to F ′′(q′(Q′(D))),
allowing q′(Q′(D)) to be evaluated by the traditional data-
base. View definitions and SELECT INTO queries are simi-
larly rewritten, defining new virtual views instead of their
normal behavior.

5. ANALYSIS
Using virtual views, queries over lens outputs are rewrit-

ten into the normal form F(Q(D)), and Q(D) is evaluated
by the database. However, the C-Table construction query
F is of minimal use in its raw form. We next turn to the
construction of user-consumable summaries of F .



id category rating review ct
P123 phone 4.5 50
P124 phone 4 100
P125 phone 2 * 3 *

P34235 laptop 5 * 4.5 * *

(Up to 2 results may be missing. *)

Figure 9: The best-guess summary of the C-Table
from Figure 7 that Alice actually sees.

5.1 Summarizing the Result Relation
Users consume a Virtual C-Table F(〈 ai ← ei 〉 , φ)(Q(D))

through one of two deterministic summary relations: A de-
terministic relation Rdet, and a best-guess relation Rguess.
The deterministic relation Rdet represents the certain an-
swers [12] of the virtual C-Table, and is constructed by re-
placing every variable reference in each ei and φ with NULL,
and dropping rows where φ 6= >:

SELECT ei(∗ → NULL) AS ai FROM Q(D) WHERE φ(∗ → NULL)

The resulting relation contains all of the rows determinis-
tically present in F(Q(D)), with NULL taking the place of
any non-deterministic values. Rdet can be computed en-
tirely within a classical deterministic database, making it
backwards compatible with legacy ETL components.

The best-guess relationRguess is constructed in two stages.
First, the deterministic database system executes Q(D). As
the classical database streams results for Q(D), the shim
layer evaluates each ei and φ based on the valuation given
by argmaxv(P (v)), the most-likely possible world. Field val-
ues or row confidences in the best guess relation that depend
on v are annotated in the shim layer’s output. Legacy appli-
cations can quietly ignore this annotation. In uncertainty-
aware applications, this annotation is used to indicate which
parts of the result are uncertain to the end-user.

Example 7. Continuing Example 6, the database now re-
sponds to Alice’s query with the most-likely result shown in
Figure 9. Every non-deterministic (i.e., guessed) field is an-
notated with an asterisk. Every row with a non-deterministic
condition is similarly marked. A footer indicates how many
rows were dropped due to a non-deterministic condition eval-
uating to false in the most likely possible world. Note that
this best-guess estimate is not entirely accurate: evaluation

has been mapped to review ct, and rating has not been
matched, resulting in best-effort guesses of 2 and 5 for the
last two rows of the result. In spite of the error, Alice can
quickly see the role uncertainty plays in her results.

5.2 Summarizing Result Quality
Once the user is made aware that parts of a query re-

sult may be uncertain, two questions likely to be asked are
“How bad?” and “Why?”. Answering the latter question
is trivial: F contains a reference to all of the variables that
introduce uncertainty, each of which is explicitly linked to
the lens that constructed it. In other words, F serves as a
form of provenance that can be used to explain sources of
uncertainty to the end-user.

The former question requires us to develop a notion of
result quality. Our approach is based on the ideas of noise:
intuitively, the less noise is present in the model, the higher
the quality of the best-guess relation’s predictions. We ab-
stractly define result quality as the level of confidence that
the user should have in the annotated best-guess results.

These results include both non-deterministic attribute val-
ues, as well as possible tuples.

Recall that a non-deterministic value inRguess is obtained
from non-deterministic expressions in Rguess. Numerous
metrics that effectively convey the quality of attribute values
drawn from a probabilistic database have been proposed,
including pessimistic hard bounds [29], variance [24,27], and
ε− δ bounds [20].

As a simplification, we assume that with respect to under-
standing uncertainty in a specific attribute value, the cog-
nitive burden on the user is constant, while for the presence
or absence of rows in the output, it scales linearly. Intu-
itively, guessing wrong about tuple presence can mean the
difference between overwhelming the user with a flood of
unnecessary results, and hiding the presence of potentially
critical information. Under this assumption, tuple-level un-
certainty adds more noise to the result, and we will focus
primarily on this type of uncertainty from here on.

The appearance of a tuple t in a query result is determined
by the ground truth of its local condition t.φ. Valuations
v(Σ) map t.φ to a deterministic boolean value t.φ[v]. From
the PC-Table’s probability measure P (v), we get the bino-
mial distribution P (t.φ[v]), often called the confidence of t.
We use the confidence of t to measure how difficult it is for
the analyst to predict the ground truth of t.φ. Intuitively, if
P (t.φ[v]) is skewed towards 0 or 1, we expect to predict the
value of t.φ with reasonable accuracy; on the other hand,
if P (t.φ[v]) is a fair coin flip, we have no reliable informa-
tion about the expected result of t.φ. It is natural to use
Shannon entropy as a metric to quantify the quality of the
query result. We define the entropy of a tuple in terms of
its confidence pt = P (t.φ[v]) as:

entropy(t) = −( pt · log2(pt) + (1 − pt) · log2(1 − pt) )

Efficiently approximating tuple confidences by sampling from
P (v) is well studied in probabilistic databases [22, 34], and
we use similar techniques for estimating tuple entropies.

To unify the individual per-attribute and per-row met-
rics, we define a relation-wise noise function N (R) as a
linear combination of individual metrics. For example, a
relation R without non-deterministic attributes might have
N (R) =

∑
t∈R entropy(t). To account for the entropy gen-

erated by non-deterministic attributes, we start with the in-
tuition that each attribute in the output provides 1

N
th of the

information content of a tuple, where N is the arity of R.
Thus, by default, we assume each non-deterministic value
contributes to the noise seen in the final result a fraction
in the range [0, 1

N
] inversely proportional to the attribute’s

estimated variance.

6. FEEDBACK
When the analyst is given a query result R that does

not meet her quality expectations, she can allocate addi-
tional resources for gathering more evidence. For exam-
ple, she may spend some time gathering ground-truth values
for variables in the output C-Table. By construction, vari-
ables represent uncertainty about basic facts. For example,
a schema matching lens generates expressions of the form
V ar(′rat = eval′) that could be stated as a simple question
like “Do rating and evaluation mean the same thing?”.
Replacing variables with their ground truths means perform-
ing these basic curation tasks, with the goal of reducing the



noise seen in the final result. Since N (R) depends on the
entropy generated by the tuples in R, in expectation, each
curation task will reduce the noise seen in the final result.
Identifying the variable1 that affects N (R) the most is not
trivial: depending on { t.φ | t ∈ R } some variables may gen-
erate more noise in the final result than others. In a perfect
world, the analyst would simply replace variables in R until
the required level of quality is reached. In the real world,
curation tasks are expensive, and the optimal cleaning strat-
egy depends on both quality goals and budget constraints.
Hence, deciding a good strategy is essentially a resource al-
location problem. We assume that a cost model is given by
each lens in the form of a cost function c(·). This function
maps variables to positive real numbers that represent the
effort, or dollar cost of discovering the ground truth for the
given variable.

6.1 Prioritizing Curation Tasks
Prioritizing curation tasks is a dynamic decision process,

as the outcome of one curation task affects the choice of
the next one to be performed. Let’s assume, for the mo-
ment, that the analyst has no budget constraints and her
goal is simply to determine the ground truth of a given
condition formula φ, minimizing the expected amount of re-
sources spent in the process. In the literature, this optimiza-
tion problem is known as stochastic boolean function eval-
uation [11, 39]. Both exact and approximated algorithms
have been proposed for several classes of formulas. In its
general form, the problem can be thought of as a Markov
Decision Process2, having one state for each partial assign-
ment to the variables in φ and one action for each variable
(a curation task). Rewards are determined by −c(·) and
state-transitions are determined by P (v). Final states con-
sist of assignments that make φ either true or false with
certainty. The planning horizon is finite and equal to the
number of variables in φ. A simple solution to the prob-
lem consists of a policy, prescribing a curation task for each
non-terminating assignment to perform. The application of
a policy is an interactive process: the system instructs the
analyst to address a particular curation task (“Do rating

and evaluation mean the same thing?”), the analyst pro-
vides the required ground truth, and asks the system for the
next move. This feedback loop continues until the deter-
ministic value of φ is obtained. As a baseline for evaluation
(Section 7), On-Demand ETL implements a näıve algorithm
for computing policies of this kind, named näıve minimum
expected total cost (NMETC).

6.2 Balancing Result Quality and Cost
Real-world ETL applications are unlikely to be free from

budget constraints. Even when budget is not a problem, the
average analyst will rarely aim for perfect information. In-
stead, she would rather target a reasonable approximation of
the value of φ, setting an upper-bound on the entropy of the
formula. Hence, we generalize the approach discussed above
and make the assumption that the analyst wants to plan
her curation tasks so to maximize a hidden value function
V(·), which depends on c(·) and N (·) and is unknown to the
system. Clearly, we assume V(·) decreases monotonically

1A generalization to curation tasks that span multiple vari-
ables is possible, but left to future work.
2Clearly, the translation of the problem into a Markov Deci-
sion Process is not polynomial, neither in space nor in time.
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Figure 10: An example of the CS IDX algorithm
optimizing CPI.

Distances Correct Matches by Index
Metric 1 2 3 4 5 6 . . . 9 n/a

Levenstein 24 2 2 0 0 1 0 1 0
JaroWinkler 20 4 2 1 1 0 0 1 1

NGram 25 0 3 1 0 0 0 0 1

Figure 11: Distance evaluated by the index of the
correct match in the ranked list of matches output
by the algorithm, or n/a if the correct match was
discarded. Results include 30 test cases.

as the cumulative cost increases, and increases monotoni-
cally as the noise decreases. In simple words, V determines
how much the analyst is willing to pay for an improvement
in the estimation of the value of φ, on a case-by-case ba-
sis. We call this trade-off the cost of perfect information
(CPI). Since the details of V(·) are unknown, the goal of
the system is to propose several candidate policies. Each
policy should guarantee a certain expected entropy at the
price of a certain expected cumulative cost. The user is then
able to choose the candidate policy that best matches her
hidden value function. Since the analyst may be subject
to budget constraints hidden to the system, the candidate
list includes greedy versions of the policies, computed pro-
gressively over limited planning horizons. Inspired by the
algorithms EG2 [33], CS ID3 [38] and CS C4.5 [14], On-
Demand ETL supports the following four greedy strategies:

Algorithm CPI(vi)

EG2 (2IG[R(vi)] − 1)/ci
CS ID3 (IG[R(vi)]

2)/ci
CS IDX IG[R(vi)]/ci
CS C4.5 IG[R(vi)]/

√
ci

Here, IG denotes the information gain, or the reduction in
noise produced by the curation task on variable vi.

Example 8. Consider the condition φ for P34235 in Fig-
ure 7, which has the form A∨ (B ∧C). Figure 10 illustrates
the decision tree that ranks curation tasks (the three vari-
ables), given lens-defined ground-truth costs and marginal
probabilities as shown in the figure. The expected entropy af-
ter performing the curation task for vi, denoted by E[H(vi)],
is computed as a weighted average over all possible outcomes
of the task. CPI(vi) is computed according to the CS IDX
formula given above, with IG[R(vi)] = H − E[H(vi)].

7. EXPERIMENTS
In this section we show the feasibility of On-Demand ETL

and explore several points in its design space. Specifically,



we find that: (i) The greedy approach of minimizing CPI
produces higher-quality query results at lower costs than
optimizing for total cost when the hidden value function is
not known, (ii) The precise formula used to compute CPI
is not critical to achieving high quality results, (iii) When
composing lenses, order is relevant, as open-ended lenses
like domain-constraint repair can fix issues created by other
lenses earlier in the pipeline, and (iv) Tree-based classifiers
work best for domain constraint repair lenses.

7.1 Experimental Setup
Our experimental setup consists of three data sets drawn

from publicly available sources. To simulate data-entry er-
ror, a portion of the data values are randomly removed.
To simulate an analyst’s querying behavior, we identify one
attribute in each data set, remove the attribute from the
source data, and use a tree-based classifier to construct a
query that the analyst might issue to recover the attribute.
For each data source, we also provide simulated user-defined
costs for available curation tasks.

Product Data. We used the product search APIs of two
major electronics retailers3 to extract product data for a to-
tal of 586 items (346 and 240 items respectively). The prod-
ucts extracted fall into three categories: TVs, cell phones
and laptops. There are ten attributes in the schema of each
data source. We randomly replaced 45% of the data values
with NULL, and coerce both data sets into the schema of a
third retailer’s search API4. On this data-set, we simulate
an analyst trying to predict what factors go into a good
product rating. We trained a tree based classifier on the
partial data, used the resulting decision tree to simulate the
analyst’s query:

SELECT * FROM products
WHERE brand in (4,5,6,7) AND category in (1,2,3)
AND totalReviews < 3 AND instoreAvailability = 0
AND (onsale_clearance = 0 OR (quantityAvailableHint = 0

AND shippingCost in (0,1,2,3,4)));

Curation tasks fall into four categories: Trivial schema
matching tasks, simple data gathering of boolean values like
item availability, more detailed data gathering of values like
strings, and more open-ended data gathering tasks such as
soliciting item reviews from focus groups. We assign the
cost of these four curation tasks to be 1, 5, 10, and 30 units
of effort respectively.

Credit Data. We used the German and Japanese Credit
Data-sets from the UCI data repository [31]. These data
sets contain 1000 and 125 items, respectively, and have 20
and 8 attributes, respectively. As in the product dataset, we
randomly replaced 45% of data values with NULL values. The
German data is coerced into the schema of the Japanese data
set. We simulate an analyst searching for low-risk customers
by using the following classifier-constructed query:

SELECT * FROM PD
WHERE (purchase_item < 0.5 AND monthly_payment >= 3.5

AND num_of_years_in_company in (2,3) )
OR (num_of_months >= 6.5 AND married_gender >= 2.5);

In addition to trivial schema-matching tasks, there are
two kinds of missing attributes: Some attributes can be com-
puted from other values (e.g., a customer’s monthly payment
3
http://developer.bestbuy.com/documentation/products-api

http://developer.walmartlabs.com/docs/read/Search_API
4
http://go.developer.ebay.com

can be computed from the total loan value and duration) or
retrieved from other parts of the bank. Other attributes re-
quire personal information about the client. We set the cost
of these three classes of task to be 1, 10, and 20 respectively.

Real Estate Data. We obtain house listing informa-
tion from five real estate websites5. Unlike the prior cases,
where the number of data-sets is small and the number of
records per data set is comparatively large, the Real Estate
data set emulates web-tables where the number of data sets
is comparatively large and the number of records per data
set is small. We further reduce the data size by randomly
sampling only 20 items from each dataset. As above, 45% of
data values are replaced by NULL. All source data is coerced
into a globally selected target-schema. For this data set, we
simulate an analyst trying to identify houses likely to have
a price rating of 3 out of 4 points, where all curation tasks
have a flat cost of 1:

SELECT * FROM PD WHERE Baths < 2.5
AND (Beds >= 3.5 OR Garage >= 2.5);

7.2 Lens Configuration
For each experiment, we simulate an analyst using the

Domain-Constraint Repair and Schema Matching lenses de-
scribed in Section 3.2. We use the values randomly re-
moved from each data-set as ground truths for evaluating
the Domain-Constraint Repair lens, and a manually defined
mapping as ground truth for evaluating the Schema Match-
ing lens. Both lenses define curation tasks as summarized
in the description of each data-set.

Schema Matching. We employ a combination of schema
matchers [35] that hybridize structure-level and element-
level matchers. We first use constraint-based (data type
and data range) filters to eliminate candidate matches, and
then use the Levenstein, JaroWinkler, and NGram distance
metrics to rank attribute matches based on string similarity
with a threshold. The performance of these three strategies
is shown in Figure 11. We take an average of the similarity
scores from the three distance metrics and normalize them
to approximate the probability of a match.

Domain Constraint Repair. We use incremental classi-
fiers from the massive online analysis (MOA) framework [6]
for the Domain-Constraint Repair lens. We use classifiers
in five categories: active, bayes, stochastic gradient descent,
ensemble and tree. For each attribute in the source table,
we train a classifier using tuples in which the value is not
missing. The estimation results for missing values are prob-
ability distributions of all candidate repairs.

7.3 Ranking Curation Tasks
We compare three ranking policies over curation tasks

(one per variable vi). Each policy implements a ranking
over the available curation tasks, the top-ranked task is per-
formed. Curation costs are as listed in Section 7.1.

NMETC. This (naive, exponential-time) policy calculates
an optimal long-term strategy based on repeatedly selecting
the variable that minimizes the global expected total cost
of obtaining a deterministic value. Potential curation tasks
are ranked in descending order of their expected total cost,
weighted over all possible paths through the decision tree.

5
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/

domains/real_estate1.html
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Figure 12: Composability of schema matching and domain repair for 11 classifiers (Product Data)
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Figure 13: Composability of schema matching and domain repair for 11 classifiers (Credit Data)
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Figure 14: Composability of schema matching and domain repair for 11 classifiers (Real Estate Data)
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Figure 15: Performance comparison for different methods on query results of (a) product, (b) credit, and (c)
real estate data-sets. Detailed step-by-step performance for the naive strategy is computationally infeasible
for the real estate data-set, so only final results are shown.



Greedy (CPI). CPI based policies rank curation tasks in
ascending order of CPI. All four CPI-based metrics produce
virtually identical results for each of our test cases, so only
results for the EG2 implementation of CPI are shown. The
scoring function for the greedy strategy is the CPI itself.

Random. The random strategy ranks curation tasks in a
random order, and provides a baseline for other methods.

7.4 Lens Composition
We first explore the default (i.e., pre-feedback) behavior

of lenses under composition. Of interest to us are three
questions: (i) Does the machine learning model used for
domain-constraint repair matter? (ii) Can lenses be com-
posed together safely? and (iii) Does the order in which
lenses are composed matter? We evaluate the accuracy of
the output of Schema Matching (SM) and Domain Con-
straint Repair (DCR) lenses applied to each data set. Fig-
ures 12, 13, and 14 show the fraction of cells in the output
of each query that correspond to ground truth results before
any feedback is gathered. Our results include two variants
of Domain-Constraint Repair, one where all data sources
are combined before being repaired (DCR-Joint), and one
where all data sources are repaired independently (DCR-
Sep). We consider three different lens combinations: DCR-
Joint or DCR-Sep applied to the output of SM (DCR-
Joint ← SM and DCR-Sep ← SM, respectively), and
SM applied to the output of DCR-Sep (SM ← DCR-
Sep). The remaining combination is not possible, as DCR-
Joint requires SM first to create a unified schema. For
comparison, we also present results for each lens alone, using
ground truth values for the output of the other lens. Per-
formance results are shown for 11 different machine learning
models from the MOA framework.

In general, the performance of different orderings of lenses
appears to differ by only a small amount, generally under
5%. An exception appears in the Product data set (Figure
12), where we can see for all estimation methods, applying
SM first and then applying DCR-Joint produces the best
results. By being trained on both data-sets together, DCR
is able to detect and correct some schema matching errors.
Moreover, in all cases, the combined error of composing both
lenses is lower than the error introduced by either lens in-
dividually. This shows that composing different lenses is
feasible. By comparison, the Credit data set (Figure 13) is
extremely noisy — both lenses have initial error rates around
34%. Hence, too much noise exists in the data, and different
lens orderings have little effect.

The observation above shows that reordering lenses can
be beneficial in some cases. Given analyses of lenses, we can
help users reorder lenses to achieve better accuracy. An-
other observation is that when the data is sufficiently corre-
lated for DCR to have relatively small error rates, the error
rate of DCR-Joint is typically lower than DCR-Sep. In-
tuitively, if inter-attribute correlations from different data
sets are similar, DCR-Joint is effectively being trained on
a larger dataset.

7.5 On-Demand ETL
We next study the effectiveness of On-Demand ETL and

CPI-based heuristics. To study the efficacy of our CPI-based
approach, we investigate the performance of different rank-
ing strategies on product,credit, and real estate data-sets.
We use the same basic setup as described above for each

data-set. We present results using DCR-Joint applied to
SM, but all three composition orders behave similarly.

Figure 15 shows the total entropy remaining in the query
results after multiple rounds of feedback, in which the ana-
lyst repeatedly performs the curation task with best score.
The rightmost dot for each line denotes the point at which
the noise in the query result relation reaches zero. Since the
analyst may have a limited budget to improve the quality of
very noisy query results, the goal is to provide the highest
level of noise reduction with as low a total cost as possible,
or in other words to create a curve with as little volume
under the curve as possible.

EG2 denotes the greedy EG2-based CPI heuristic (all
other CPI heuristics behave almost identically). The curve
is very steep until the final curation tasks, allowing EG2 to
produce high-quality results with minimal investment.

NMETC denotes the naive brute-force cost-optimization
strategy, while Random denotes a completely random or-
dering of curation tasks. Although the brute-force strategy
produces a completely reliable result at the lowest cost, it
does so at the expense of short-term benefits. For the prod-
uct data-sets, a result with virtually no entropy is reached
after 24,000 units of cost, while the brute force strategy re-
quires over 30,000 units. Although NMETC requires the
lowest cost to obtain a deterministic query result, it may
not be optimal for a limited budget or when the user’s value
function is not known.

8. CONCLUSIONS
We have presented On-Demand ETL, which generalizes

task-specific on-demand curation solutions such as Paygo.
On-Demand ETL enables composable non-deterministic data
processing operators called Lenses that provide the illusion
of fully cleaned relational data that can be queried using
standard SQL. Lenses use PC-Tables to encode output, and
can be deployed in traditional, deterministic database en-
vironments using Virtual C-Tables. On-Demand ETL sup-
ports best-effort guesses at the contents a PC-Table, eval-
uation of quality measures over a PC-Table, and a family
of heuristics for prioritizing curation tasks called CPI. We
have demonstrated the feasibility and need for On-Demand
ETL, and the effectiveness of CPI-based heuristics.
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[33] Marlon Núñez. The use of background knowledge in
decision tree induction. JMLR, 6:231–250, 1991.

[34] Dan Olteanu, Jiewen Huang, and Christoph Koch.
Approximate confidence computation in probabilistic
databases. In ICDE, pages 145–156. IEEE, 2010.

[35] Erhard Rahm and Philip A Bernstein. A survey of
approaches to automatic schema matching. VLDB J.,
10(4):334–350, 2001.

[36] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil
Prabhakar, Susanne Hambrusch, and Rahul Shah.
Orion 2.0: Native support for uncertain data. In
SIGMOD, pages 1239–1242. ACM, 2008.

[37] Dan Suciu, Dan Olteanu, Christopher Ré, and
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