
On-Demand Query Result Cleaning

Ying Yang
Supervised by Oliver Kennedy and Jan Chomicki

State University of New York at Buffalo, Buffalo, NY, USA

{yyang25,okennedy,chomicki}@buffalo.edu

ABSTRACT
Incomplete data is ubiquitous. When a user issues a query
over incomplete data, the results may contain incomplete
data as well. If a user requires high precision query re-
sults, or current estimation algorithms fail to make accurate
estimates on incomplete data, data collection by humans
may instead be used to find values for, or to confirm this
incomplete data. We propose an approach that incremen-
tally confirms incomplete data: First, queries on incomplete
data are processed by a probabilistic database system. In-
complete data in the query results is represented in a form
called candidate questions. Second, we incrementally solicit
user feedback to confirm candidate questions.

The challenge of this approach is to determine in what or-
der to confirm candidate questions with the user. To solve
this, we design a framework for ranking candidate questions
for user confirmation using a concept that we call cost of
perfect information (CPI). The core component of CPI is a
penalty function that is based on entropy. We compare each
candidate question’s CPI and choose an optimal candidate
question to solicit user feedback. Our approach achieves ac-
curate query results with low confirmation and computation
costs. Experiments on a real dataset show that our approach
outperforms other strategies.

1. INTRODUCTION
RDBMSs assume data to be correct, complete and unam-

biguous. However, in reality, this is not always the case.
Incomplete data appears in many domains including sta-
tistical models, expert systems, sensor data, and web data
extraction. Without user interaction, incomplete data can
be queried in several ways: (1) by treating incomplete data
as NULLs, or (2) by estimating incomplete data through
heuristic methods. In case 1, query results will not be com-
plete and in case 2, automatic processes may not be able
to achieve an accurate result. Human operators, however,
can often accurately find the ground truth for incomplete
data. People have started to realize the power of human

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org.
Proceedings of the VLDB 2014 PhD Workshop.

computation through crowdsourcing services such as Me-
chanical Turk, oDesk, and SamaSource, which use human
operators to confirm incomplete information. Examples in-
clude finding the book’s authors for a picture of the book or
matching earthquake survivor pictures with missing persons
in Haiti [10, 11, 13]. For such tasks, reliable data collection
by humans may be required to achieve accurate query re-
sults. In some domains, reliable measurement and expert
knowledge are also needed to collect reliable data.

Example 1. A patient (Alice) comes to the doctor (Dave)
and describes her symptoms. Since Alice has just come to
hospital, her BloodSugar, BloodPressures and heart rate may
not be known. Dave issues a query Q querying whether Alice
has one or more diseases. The system then interacts with
Dave to obtain the ground truths of the unknown values and
eventually obtains an accurate query result. Below we show
the dialogue between the system and Dave.

System: Please input query:

Doctor: select Name,‘HEART DISEASE’
from Table
where BloodPressureA >= 180 and BloodSugar >= 90
or HeartRate > 100
UNION select Name,‘HIGH BLOOD PRESSURE’
from Table
where BloodSugar > 150 and BloodPressureB > 90
or KidneyDisease=true
UNION · · ·

(System calculating which variable to confirm by our algorithm...)

System: What is the value of BloodPressureA?

Doctor: 121.

System: Thank you. And what is the value of HeartRate?

Doctor: 110.

System: Alert! The patient has HEART DISEASE

What is the value of...

Traditionally, incomplete data is cleaned before query pro-
cessing [15]. However, cleaning all incomplete data may re-
quire upfront time and cost when some of the data may
not even be utilized in the query results. Therefore, our
primary challenge is to achieve accurate query results with
minimal confirmation cost through reliable data collection.
To address this challenge, we propose to postpone uncer-
tainty management until after query processing has com-
pleted. After query processing, the importance of each in-
complete datum to a query result becomes clear. Incomplete
data may disappear and contribute little or nothing to the
incompleteness of the query results. On the other hand,
some incomplete data are detrimental to the query result

1

accuracy. It is clear that we should put more effort and
resources towards the latter case.

Current probabilistic database systems (PDBMS) provide
query processing solutions without making completeness as-
sumptions on data in the ways RDBMSs do [5, 8]. During
query processing, many PDBMSs represent incomplete data
as boolean formulas over atoms. Here, an atom stands for
a property of incomplete data that can be either true or
false. Boolean atoms in Example 1 include: “Is HeartRate
> 100?”, or “Does the patient have kidney disease family
history?”. Boolean atoms can be connected by logic connec-
tives {¬,∧,∨} into boolean formulas. In this paper, bool-
ean atoms reference the incomplete data in the input, and
contribute to the incompleteness of the query results. Con-
firming a boolean atom means obtaining the ground truth
of the atom, which usually comes with a cost. The challenge
is how to confirm boolean atoms to achieve accurate query
results with minimal total confirmation cost. Confirming
all boolean atoms will achieve accurate query results but at
maximal confirmation cost. Since boolean atoms can be con-
nected by logic connectives, the ground truth of a boolean
atom can affect the utility of others. Confirming a fraction
of boolean atoms can often achieve accurate query results
with a lower confirmation cost and latency. For instance,
consider the formula (A > 180 ∧ B < 50) ∨ C > 30. If
we know A > 180 is false, then there is no need to confirm
B since confirming {A > 180, C > 30} will be sufficient.
Therefore, we want a form of incremental cleaning, where
the system incrementally solicits the ground truths of bool-
ean atoms as the user provides answers. One of the main
challenges for soliciting user feedback is to decide in what
order to confirm the boolean atoms.

We consider the problem of confirming boolean atoms to
achieve an accurate query result with a low confirmation
cost and a quick response time. We develop algorithms for
ranking boolean atoms for confirmation using a novel deci-
sion theoretic concept that we call cost of perfect informa-
tion (CPI). CPI provides a method to estimate the benefit
obtained from a user confirming the ground truth of a bool-
ean atom. At the core of CPI is a penalty function which
quantifies the uncertainty of a query result. To decide which
boolean atom to confirm, we need to compare each boolean
atom’s penalty function and choose the smallest one. Our
approach has several benefits. In addition to an accuracy
guarantee, we provide an incremental query result clean-
ing method with low confirmation cost and quick response
time. In a large database or a database with frequently
changing data, some incomplete data may never be used in
queries or may be overwritten before use. Therefore, us-
ing our method saves confirmation cost compared to naively
cleaning all data. For small and medium size databases,
with low data volatility, in the extreme case all incomplete
data will be confirmed by our method. Even in this case,
compared to the naive total cleaning approach, we provide
an accurate query result with low latency by confirming in-
complete data related to the query result first. We strike a
good trade-off between query result confirmation cost and
computation cost. Furthermore, the proposed method gives
users the flexibility to control the trade-off between compu-
tation time and confirmation cost. We have done experi-
ments on real data and the results show that the rankings
of incomplete data proposed by our algorithms yield lower
confirmation costs than other approaches.

Q(D)
global conditions:

(BloodPressureA >= 70 and BloodPressureA <= 190,
BloodPressureB >= 40 and BloodPressureB <= 110)

Name φCQ

Alice
(BloodPressureA >= 180 and BloodSugar >= 90

or HeartRate> 100) OR (BloodSugar > 150
and BloodPressureB > 90 or KidneyDisease=true)

Sally BloodPressureB > 90

Table 1: Query result in Example 1

1.1 Research Questions
We have a probabilistic database D, defined over a set of

possible worlds. Each possible world is a deterministic data-
base instance. A user issues a query Q on D, and since D
consists of a set of possible database instances, Q is eval-
uated in parallel on all instances in D. The query results
Q(D) will be composed of a set of possible result instances
as well. The goal is to reduce the number of result instances
in Q(D). We model incomplete data in Q(D) as one or more
candidate question formulas (φCQ). To obtain a determin-
istic Q(D), we need to confirm φCQ. A candidate question
formula is formed by candidate questions connected by logic
connectives. A candidate question (cq) is a boolean atom of
the form x�y, x�{c}, where x and y are incomplete data, c
is a constant and � is a relational operator {>,<,≥,≤,=}1.
cq has a ground truth value which is unknown. We are given
a probability distribution for its possible values. Confirm-
ing a candidate question involves posing a natural language
question that can be answered with “yes” or “no”. All can-
didate questions in φCQ form a candidate question set (CQ).
Candidate question formulas consist of all incomplete data
in Q(D) denoted as CQ={CQ1, · · · , CQn} where n is the
number of tuples in Q(D). Table 1 shows part of the query
result by PDBMS in Example 1. Atoms in φCQ are can-
didate questions cq. All cq in φCQ constitute CQ, CQk is
composed of cq in φCQ in row k. There is a cost associ-
ated with obtaining a ground truth, and confirming all CQ
provides us with an upper bound on the total confirmation
cost to achieve any desired accuracy for the query results.
However, confirming a subset of CQ may be sufficient to
achieve a desired accuracy. Hence, our approach is to con-
firm CQ incrementally. This approach makes use of the fact
that some candidate questions provide more information (re-
ducing uncertainty) to the query results than others. The
challenge is to decide which cqi provides the most benefit to
the query results when confirmed. Hence, the problem we
consider in this paper is ranking CQ to reduce the uncer-
tainty of query results with minimal confirmation cost. We
propose a decision-theoretic concept CPI, which determines
the optimal candidate question oq:

oq = argmincqi CPI(cqi)

oq is utilized to solicit the ground truth from the user. D
will be updated to D’ based on oq’s ground truth. This
interaction terminates when a user determined precision of
Q(D) is achieved.

In conclusion, the contributions presented in this work
include:

• A mechanism to incrementally clean query results with
low confirmation cost.

1More general formulas are possible, but beyond the scope
of this paper.

2

• A penalty function that quantifies uncertainty of query
results using the information theoretic concept of en-
tropy.

• A decision-theoretic concept that we call the cost of
perfect information (CPI). CPI measures the penalty
of a query result, with confirmation cost as a bias.

• An approximation of CPI that allows a user to trade
off between computation cost and confirmation cost.

2. BACKGROUND AND RELATED WORK
2.1 C-tables

C-table is short for conditional table [6]. A condition is a
conjunct of equality atoms of the form x = y, x = c and of
inequality atoms of the form x 6= y, x 6= c, where x and y
are variables and c is a constant. Boolean true and false can
be respectively encoded as boolean atoms x = x and x 6= x.
Let φ be a boolean formula of atoms. A valuation v is a
mapping of variables to constants. A valuation v satisfies φ
if its assignment of constants to variables makes the formula
true. A global condition ψT is associated with the entire
table T and limits the set of valid valuations to those that
satisfy ψT . A local condition φt is associated with tuple t
of T. Table 1 shows part of the C-table obtained in example
1. An example of a global condition is in Table 1, and local
conditions are the φCQ cell in each row. A tuple t exists in
the query result if φt is evaluated to be true and does not
exist if false. PSUJ-queries are closed over C-tables.

The probabilistic database component of our system is
implemented based on C-tables with some generalization:
local conditions are extended to arithmetic formulas over
atoms and constants, or boolean formulas of the same.

2.2 Uncertain applications
[17] is an overview of the representation formalisms and

query processing techniques for probabilistic data. Trio [1]
introduced the concept of an Uncertainty-Lineage Database,
a database with both uncertainty and lineage. A recent work
is MayBMS [5], which presents a confidence estimation for
tuples in query results. A general probabilistic database
system, PIP [8] uses symbolic representations of probabilis-
tic data to defer computation of expectations, moments and
other statistical measures until the expression to be mea-
sured is fully known.

Jeffery et al. [7] present a decision-theoretic framework to
determine the order in which to confirm schema matching
and reference reconciliation candidates to provide more ben-
efit to a dataspace. Our work is potentially more general and
can confirm any incomplete data that can be expressed in
our version of C-tables. We could treat a schema matching
candidate as one form of candidate question and apply our
mechanism to rank these candidate questions together with
other candidate questions for user confirmation. In this way,
our framework measures the benefit of confirming different
types of incomplete data in a uniform way. Our framework is
more general because, besides schema matching, we can also
confirm missing data values to obtain accurate query results.
A recent work [3] presents several cleaning algorithms with-
out assuming cleaning is perfect. Our work is orthogonal to
this work and it is query-result oriented. We can provide
accurate query results with shorter response time than con-
firming all incomplete data before query processing. Raman
and Hellerstein [16] presented an interactive data cleaning

Incomplete Data Processing
(Query Rewriting)

Resolving Plan
(NMETC,AMETC,AMETCS)

Question Template User Defined/Learnt
Model

User Feedback

Incomplete
Data

C-table

Learned
Model

AnswerQuestion
(oq)

Query

Answer

Figure 1: Data flow in our system.

system that integrates transformation and discrepancy de-
tection. Bahar and Mirek [14] considered uncertainty in
query and data, and proposed a probability-based frame-
work that reduces the uncertainty. Our work differs in that
we consider budgets when cleaning query results. Given a
limited budget, our system can optimize its utilization. Our
work can be applied to cost-sensitive systems, for example
crowdsourcing platform such as Mechanical Turk.

2.3 Cost-sensitive decision theory
Enlightened by the idea that in decision trees, we tend

to greedily choose the feature that yields the highest in-
formation gain, we studied research on inducing decision
trees that considers the cost of acquiring features. A sur-
vey by Lomax et al. [9] presented over 50 algorithms on
cost-sensitive decision tree learning. ID3 provides a mea-
sure to define the expected entropy for an attribute. C4.5
uses an information gain ratio to reduce the influence by the
bias towards attributes that have more values. CS-ID3 [18]
and CS-C4.5 [4] utilize the same information gain formulas
as ID3 and C4.5 respectively, however, they include cost of
attributes to bias the measure towards selecting attributes
that cost less and considering the information grain at the
same time. EG2 [12] adopted a user-defined parameter ω
that varies the extent of the bias. In our approach, en-
tropy and cost are also considered as factors to determine
the ranking of incomplete data for user confirmation. How-
ever, the above solutions cannot be directly adopted to solve
our problem. In the above solutions, there is a training data
set and each training data consists of a set of attributes and
a corresponding decision. A decision tree is trained using
training data and used for decision-making on the data that
has the same data distribution as training data. Choosing
an attribute as current node in the tree do not affect the ex-
istence of other attributes. In our work, the incomplete data
in query results is represented as boolean formulas and the
ground truth of one incomplete data can affect the existence
of other incomplete data.

3. FRAMEWORK
Figure 1 shows the system workflow.

• Incomplete Data Processing (IDP):
When a user issues a query on incomplete data, the
system processes the query as a normal PDBMS and
returns a C-table as output.

• User Defined/Learned Model (UDLM):
In our version of C-tables, incomplete data is repre-
sented as candidate questions. We want to use any
existing models on the incomplete data to confirm the

3

ground truths of the candidate questions with min-
imal confirmation cost. If a user has rules for con-
firming candidate questions without extra confirma-
tion cost, they can be predefined in the UDLM. For
example: “candidate question A always returns true if
B is false”. We can thus obtain the ground truth of
A from B if B false. These models can be treated as
global conditions ψT and utilized to reduce the num-
ber of query result instances to achieve accurate query
results.

• Question Template (QT): The QT component man-
ages question templates that translate candidate ques-
tions into natural language forms. For some candidate
questions, the total cost of confirming them together is
smaller than confirming them separately. For instance,
the total cost of confirming systolic and diastolic blood
pressure is half the cost of confirming them separately,
whereas the total cost of confirming blood sugar and
urine are the same as the cost of confirming them sep-
arately. A user could group candidate questions into
one question, denoted as 〈(cq1, cq2, · · · , cqn),C〉, where
(cq1, cq2, · · · , cqn) are a group of candidate questions
and C is the total cost of confirming them together. In
future work, we will consider how users could provide
this type of templates and the group questions could
be treated as one candidate question to minimize total
confirmation cost.

• Resolving Plan (RP): After obtaining C-tables from
the IDP, the RP component fetches input from the
UDLM and the QT for pre-confirming candidate ques-
tions at no cost. Then the RP calculates optimal can-
didate questions oq and formulates natural language
questions using question templates in the QT. After
obtaining the ground truth of oq, RP updates the ini-
tial incomplete data, and iterates the whole precess
until the desired query result precision is achieved.

• User Feedback Interface (UF): After a candidate
question is translated into a natural language question,
the UF interface presents the question to the user and
receives the true answer. Then incomplete data is up-
dated given the ground truth. As future work, we will
consider to learn models from the user-system inter-
action and store them in the UDLM for future use.

3.1 Ordering Candidate Questions
In this paper we focus on the RP phase, where it is neces-

sary to select an optimal question. We consider several algo-
rithms: First, naive minimum expected total cost (NMETC)
method. This serves as a lower bound for confirmation
cost. Then we introduce an information-theoretic approach
to ranking candidate questions for user feedback which is
called approximate minimum expected total cost (AMETC).
Also, we devise a Monte-Carlo version of AMETC which we
call approximate minimum expected total cost with sampling
(AMETCS). For simplicity, we initially confirm the candi-
date question formula φCQ in each tuple independently. We
assume formulas do not share common candidate questions
and each tuple contributes the same value to the query re-
sults. In section 3.2, we generalize our method to avoid
making such assumptions.

!!A�!(B�C)

A CB

!!A�B

B

F

T

C

C

F

T(p=0.5) F(p=0.5) F(p=0.2) F(p=0.5)T(p=0.8) T(p=0.5)

cost=5

cost=16

F=0.2 T=0.8 F=0.5

cost=18

cost=8

cost=2.5

cost=16.5

cost=16.25

cost=18.75

cost=22.8 cost=1.6

cost=24.4

cost=20.75

cost=15

cost=13.25 cost=7.5

!!B�C

B

cost=18

FT

!!!!!!A!!!!!!!!T

T=0.5

[1+,0-];u=0 [0.4+,0.6-];u=0.97

penalty(B|A)=0.8*1+0.2*0=0.8

[0.75+,0.25-];u=0.81 [0.5+,0.5-];u=1 [0.9+,0.1-];u=0.47 [0.5+,0.5-];u=1

CPI(A)=(2^(0.5*0+0.5*0.97)-1)*5=2.0

CPI(B)=(2^(0.8*0.81+0.2*1)-1)*3=2.4

CPI(C)=(2^(0.5*0.47+0.5*1)-1)*10=6.64

penalty(A)=0.5*0+0.5*0.97
=0.485

penalty(C)= 0.5*0.47+0.5*1
=0.735

[0.5+,0.5-];u=1

u=0u=0

[0.8+,0.2-];u=0.72

penalty(C|A)=0.5*0+0.5*0.72=0.36

CPI(B|A)=(2^(penalty(B|A))-1)*5=2.22

CPI(C|A)=(2^(penalty(C|A))-1)*10=2.83

penalty(C|B)=0.5*0+0.5*0=0 penalty(B|C)=0.8*0+0.2*0=0

CPI(C|B)=(2^(penalty(C|B))-1)*10=0

CPI(B|C)=(2^(penalty(B|C))-1)*3=0

F

C(A)=5
p(A=T)=0.5

C(B)=3
p(B=T)=0.8
C(C)=10

p(C=T)=0.5

NMETC

AMETC

penalty(B)= 0.8*0.81+0.2*1
=0.849

!!A�C !!!!!!A!!

u=0 u=0 u=0 u=0

Figure 2: NMETC and AMETC example, rectan-
gles represent boolean formulas; circles represent
candidate questions; diamonds represent probability
distributions of the ground truths of the candidate
questions; squashed rectangles represent functions
in AMETC, subprocesses represent expected total
confirmation cost in NMETC.

3.1.1 NMETC-Naive Minimum Expected Total Cost
A valid candidate question path is an ordered candidate

question set CQ with a given ground truth for each candi-
date question. We can obtain the deterministic query results
if evaluating based on the ground truths given by the path.
One naive solution to ranking candidate questions is to cal-
culate the expected total cost for all possible valid candidate
question paths and choose the candidate question set in the
path with minimal expected total cost. As shown in Figure
2, we construct a tree structure to illustrate the process. A
formula node lists all its candidate questions as child nodes.
Each circle node of the tree represents a candidate question,
which has two branches denoting two sets of possible worlds
from the two possible ground truths of the candidate ques-
tion. We start from the leaves of the tree, then climb all
the way up to the root. During this process, the expected
total cost at each node is calculated as weighted sum of its
children’s confirmation cost. After visiting all nodes in the
tree, we start from the root and choose the circle node that
returns the minimum expected total cost.

The time complexity of this method is exponential in the
number of candidate questions. Although the method has
high complexity, it gives us a lower bound of the confirma-
tion cost we can reasonably expect. We use this method for
a confirmation cost comparison with other methods.

3.1.2 AMETC-approximate expected total cost
We develop an information-theoretic concept, we call the

the cost of perfect information (CPI), which quantifies the
penalty of a query result after a candidate question is con-
firmed, with confirmation cost as a bias. In what follows,
we illustrate how CPI can be utilized to measure the benefit
of confirming a candidate question.

Suppose we are given a probabilistic database D, and a
query Q, a candidate question formulas in Q(D) is denoted
as φCQ. We assume that there is some means of measuring
the uncertainty of a query result, denoted as U(Q(D)), which

4

will be introduced shortly. Given a candidate question cqi,
if the system solicits the ground truth of cqi, there are two
possible results, each with their possible world: a possible
world in which cqi is confirmed and the other possible world
in which cqi is disconfirmed. We denote the uncertainty in
two possible worlds by U(Q(D\cq+i)), U(Q(D\cq−i)), where

D\cq+/−
i represents D after cqi is confirmed or disconfirmed.

Furthermore, we assume the probability of cqi confirmed to
be true is pi, the penalty of a question result after cqi is
confirmed can be expressed by the penalty function Pen:

Pen(cqi) = U(Q(D\cq+i)) · pi +U(Q(D\cq−i)) · (1− pi) (1)

Pen measures the expected uncertainty of query results if
we confirm cqi. A lower penalty indicates the query result
is more certain.

The key to computing the penalty function is to determine

U(Q(D\cq+i)) and U(Q(D\cq−i)). U(Q(D\cq+/−
i)) quanti-

fies the uncertainty of an updated query result and we want
them to be 0 if confirmation requires no further questions,
that is, the query result achieves 100% accuracy. They ap-
proach 1 if the query result is very uncertain. As an uncer-
tainty metric, we use entropy:

U(Q(D)) = P · log(P) + (1− P) · log(1− P) (2)

Here we assume that we can approximate the probability of
a possible world P, where P denotes p(φCQ=true).

This penalty function presents us the uncertainty of the
query results and we want to bias the measurement to-
wards achieving less uncertainty with less confirmation cost.
Hence, inspired by the algorithm EG2 [12], we define the cost
of perfect information as follows:

CPI(cqi) = (2Pen(cqi) − 1) · C(cqi) (3)

where C(cqi) is the cost of confirming cqi. This approach
is also illustrated in Figure 2. We start from the root and
greedily compute CPI for candidate questions in the root’s
children. As seen in Figure 2, candidate question A has
the smallest CPI, A is the optimal question. Therefore, we
consider the branch where A is the root. First, we confirm
A for the ground truth and update Q(D). If Q(D) is still not
sufficiently accurate, we keep greedily calculating CPI for all
the root’s children until achieving the desired accuracy.

3.1.3 AMETCS-approximate minimum expected to-
tal cost with sampling

When calculating U(Q(D)) in AMETC, the most time
consuming part is to calculate the probability distribution
of the question results P. Sampling according to the distri-
bution of candidate questions reduces the computation time.
Furthermore, the users can have more control of the com-
putation time and the query result accuracy. More samples
lead to higher precision of the query results, but cause longer
computation time.

3.2 Ordering K-Candidate Question Sets
Previously, we assumed that candidate question formulas

for each tuple t do not share candidate questions in common
and each tuple has the same importance to the query results.
We now generalize CPI to work across multiple tuples by a
weighted sum of the independent penalties.

Pen′(cqi) =
U(Q(D\cq+i)) · pi + U(Q(D\cq−i)) · (1− pi)

W
(4)

Min Cost METC AMETC AMETCS Random
112.1729 151.2639 151.2639 174.3010 226.2738

Table 2: Average cost of querying diseases together.

Pen(cqi) =

|fcqi |∑
j

Pen′(cqi) (5)

where fcqi denotes the formulas that contain cqi, |fcqi | de-
notes the number of these formulas, pi is cqi’ s probability
distribution in fcqi . fcqi is in a tuple t, and W is the impor-
tance of the tuple t to the query results.

4. EXPERIMENTS
We have conducted experiments using the UCI machine

learning Dermatology Data Set [2]. It contains 34 attributes
which are used to diagnose erythematosquamous diseases.
The data set was split into training and testing data. We
have used the training data to construct queries represent-
ing diagnosis of diseases and testing data to run experiments.
We have constructed a classification tree object using train-
ing data. Each node in the tree is an attribute. A set
of attributes together classify the training data into corre-
sponding diseases. We have obtained the set of attributes
for each disease and used them to construct a query for each
disease. Then the queries were issued on the test data. An
example query might be:

select ‘lichen planus’ from Testdata

where f20 < 0.5 and f27 < 0.5 and f15 < 0.5 and

f5 < 0.5 and f7 < 1.5 and f26 < 0.5 and

f22 < 1.5 and f30 < 2.

where fi is the ith attribute. We have selected eight at-
tributes that are involved in the five diseases and randomly
replaced 80% of their data values with variables represent-
ing incomplete data. Incomplete data is 19% of the whole
training data set. The probability distribution of a candi-
date question has been estimated by the distribution that
the ground truth takes of the whole answer set. There are
two kinds of attributes: clinical attributes and histopatho-
logical attributes. The values of clinical attributes are easy
to obtain, therefore, we set the confirming cost of candidate
questions formed by those attributes to 1 while histopatho-
logical attributes are comparatively difficult to obtain and
we set their confirmation cost to 30 based on the laboratory
examination cost.

We have compared the average cost obtained by each
method. In Figure 3, the min cost method assumes we know
the ground truths of all candidate questions and chooses the
optimal candidate question path to solicit user feedback.
This is impossible in practice, but it serves as an optimal
lower bound on confirmation cost. NMETC measures the
best possible performance we can achieve without knowing
the ground truths of candidate questions, which is a practi-
cal lower bound. From the result we can see the performance
of AMETC and NMETC are very close. For AMETCS, the
number of samples is half of the number of valid candidate
question paths. The average cost of AMETCS increases
compared to AMETC. However, as we show in Figure 4,
the computation time decreases to almost half of AMETC.
Thus AMETCS is suitable for big data cleaning.

Since diseases may share common attributes and we want
to query if a patient has any of five diseases to save diagnosis

5

Figure 3: Average cost of each formula

Figure 4: Algorithms running time

time. We have issued a query that considers all five diseases
together. We have applied the modified penalty function (5)
in CPI. As the result shows in Table 2, each cost is smaller
than the sum of querying each disease separately and the
patient and doctor’s time are saved.

5. RESEARCH PLAN
To overcome the assumptions and limitations of the cur-

rent framework we propose the following research plan: (1)
We want to generalize candidate questions to include non-
boolean atoms. In this way, same incomplete data in differ-
ent candidate questions can be confirmed in one confirma-
tion round. (2) The current framework assumes the proba-
bility distributions for incomplete data are given. However,
this is not always feasible. We want to make use of the exist-
ing reliable data to estimate the probability distribution of
incomplete data. (3) In many domains, there exist models
that can be utilized to increase query result accuracy with-
out consulting users. Currently, in the UDLM component,
we mainly utilized the user-defined models to preprocess in-
complete data at no cost. We want to explore how to learn
models from system-user interactions. For instance, in data
integration, possible schema matches are candidate models,
one of which is a correct match. We can treat each candidate
model as probabilistically related to the real model. We can
integrate these candidate models with our current frame-
work and adjust the confidence of a model on confirmation.
The probability will converge on true model. This learned
model will be utilized adaptively in subsequent queries. (4)
Our current framework considers user feedback is always
correct. However, humans may make mistakes. In crowd-
sourcing, humans may provide incorrect answers to tasks
accidentally or on purpose. In medical expert systems, user
feedback is obtained based on test results by machines. The
test results may not be 100% accurate. We want to build
a user profile to record the credibility of user feedback. We
need to decide how to integrate this profile with our frame-

work and based on the correctness of the decisions made
based on the feedback, update the credibility of the profile.

6. CONCLUSION
This paper proposes a mechanism to obtain accurate query

results from incomplete data with low confirmation cost and
quick response time. We presented a framework based on
incremental soliciting of user feedback. As part of the frame-
work, we developed a penalty function that measures the
uncertainty of the query results. We introduced a concept
called CPI which considers confirmation cost to bias the
penalty measurement towards smaller-cost candidate ques-
tions. We described experiments on a medical dataset and
showed our approach outperformed other strategies.

7. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,

S. Nabar, T. Sugihara, and J. Widom. Trio: A system
for data, uncertainty, and lineage. In VLDB, 2006.

[2] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[3] R. Cheng, E. Lo, X. S. Yang, M.-H. Luk, X. Li, and
X. Xie. Explore or exploit?: Effective strategies for
disambiguating large databases. 2010.

[4] A. Freitas, A. Costa-Pereira, and P. Brazdil.
Cost-sensitive decision trees applied to medical data.
In Data Warehousing and Knowledge Discovery. 2007.

[5] J. Huang, L. Antova, C. Koch, and D. Olteanu.
Maybms: A probabilistic database management
system. In SIGMOD, 2009.

[6] T. Imieliński and W. Lipski, Jr. Incomplete
information in relational databases. J. ACM, 1984.

[7] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD, 2008.

[8] O. Kennedy and C. Koch. Pip: A database system for
great and small expectations. In ICDE, 2010.

[9] S. Lomax and S. Vadera. A survey of cost-sensitive
decision tree induction algorithms. ACM Comput.
Surv., 2013.

[10] A. Marcus, E. Wu, D. R. Karger, S. Madden, and
R. C. Miller. Demonstration of qurk: a query
processor for humanoperators. In SIGMOD, 2011.

[11] A. Marcus, E. Wu, S. Madden, and R. C. Miller.
Crowdsourced databases: Query processing with
people. In CIDR, 2011.

[12] M. Núñez. The use of background knowledge in
decision tree induction. Mach. Learn., 1991.

[13] A. G. Parameswaran and N. Polyzotis. Answering
queries using humans, algorithms and databases. 2011.

[14] B. Qarabaqi and M. Riedewald. User-driven
refinement of imprecise queries. In ICDE, 2014.

[15] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. 2000.

[16] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, 2001.

[17] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. 2011.

[18] M. Tan and J. C. Schlimmer. Cost-sensitive concept
learning of sensor use in approach and recognition. In
MLSB12, 1989.

6

