
Fuzzy Prophet: Parameter Exploration in
Uncertain Enterprise Scenarios

Oliver Kennedy
∗

, Steve Lee
†
, Charles Loboz

†
, Slawek Smyl

†
, Suman Nath

‡

∗
EPFL & Cornell,

†
Microsoft Corporation,

‡
Microsoft Research

oliver.kennedy@epfl.ch, {stevlee, cloboz, slsmyl, sumann}@microsoft.com

ABSTRACT
We present Fuzzy Prophet, a probabilistic database tool for con-
structing, simulating and analyzing business scenarios with uncer-
tain data. Fuzzy Prophet takes externally defined probability dis-
tribution (so called VG-Functions) and a declarative description of
a target scenario, and performs Monte Carlo simulation to com-
pute probability distribution of the scenario’s outcomes. In addi-
tion, Fuzzy Prophet supports parameter optimization,where proba-
bilistic models are parameterized and a large parameter space must
be explored to find parameters that optimize or achieve a desired
goal. Fuzzy Prophet’s key innovation is to usefingerprintsthat can
identify parameter values producing correlated outputs of a user-
provided stochastic function and to reuse computations across such
values. Fingerprints significantly expedite the process of parameter
exploration in offline optimization and interactive what-if explo-
ration tasks.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Database Applications—Scien-
tific databases, Statistical databases

General Terms
Design, Performance

Keywords
Probabilistic database, Monte Carlo, Black box, Simulation

1. INTRODUCTION
There is an increasing need for enterprises to evaluate various

business scenarios to assess and manage their financial, engineer-
ing, and operational risks arising from uncertain data. For example,
as part of an enterprise analytics team at Microsoft Windows Azure
cloud platform, we often need to simulate a large range of permu-
tations of a scenario in order to identify which business decisions
will optimize certain goal or lead to a desired outcome. For exam-
ple, consider the task of deciding when to purchase new hardware
in a datacenter. For this, we need to construct a scenario from var-
ious predictive models for resource (e.g., CPU core) demand and
availability. By repeatedly evaluating the scenario with different

∗Work performed while interning at Microsoft Research

Copyright is held by the author/owner(s).
SIGMOD’11,June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

purchase dates, we can identify a purchase date that provides a de-
sirable tradeoff between maintenance costs and the risk of running
out of capacity. Scenarios of such nature are not specific to Win-
dows Azure and occur in many enterprises. However, due to in-
herent uncertainty in input models, simulating and evaluating such
complex business scenarios can be extremely challenging without
effective tools.

At Microsoft, we have developed the Fuzzy Prophet system,
which aims to streamline the process of designing and simulating
business scenarios on uncertain models. Fuzzy Prophet is a tool
for constructing parameterized business scenarios and interactively
exploring the effects of varying different parameters. Its workflow
consists of three stages: (1) Analysts use specialized tools like R to
model individual characteristics of a system. (2) Individual models
are declaratively combined into a full business scenario, describing
different system characteristics and the consequences of their in-
teraction (e.g., demand for and availability of CPU cores, and the
consequent risk of not having enough). (3) Fuzzy Prophet helps
users identify a set of parameter values that optimize or achieve de-
sired goals specified either by a constrained optimization problem,
or by interacting with the user.

The first two steps in Fuzzy Prophet’s workflow are ideally ad-
dressed by probabilistic database (PDB) systems[1, 2, 4, 5, 7, 8].
In a probabilistic database, probability distributions may be instan-
tiated, stored, and queried using (nearly) standard SQL semantics.
Several PDB systems, MCDB [4] and PIP [5] in particular, allow
users to specify arbitrary probability distributions by using stochas-
tic black-box variable generation functions (typically referred to as
VG-Functions). Fuzzy Prophet is built as a wrapper around sim-
plified PDB functionality, loosely based on MCDB, and built into
Microsoft SQL-Server. VG-Functions enable the use of specialized
tools for model instantiation, while SQL links baseline models into
progressively more complex models, and entire business scenarios;
hierarchically specifying the scenario allows each tier of the model
to be thoroughly and independently validated.

Repeatedly evaluating a VG-Function, only making small
changes to its parameter values can be wasteful; the function’s out-
put distributions for similar parameter values might be correlated.
However, forcing users to specify the (potentially) complex inter-
actions between a VG-Function and its parameters negates the gen-
erality and simplicity of defining models through VG-Functions.

The primary contribution of Fuzzy Prophet is a novelfinger-
printing technique (discussed in greater depth in [6]) that identifies
correlations between executions of a VG-Function with different
parameter values. When simulating the outcome of two different
parameterizations of the same scenario, these correlations allow us
to re-map the simulation’s output from one parameterization to the



Figure 1: The architectural design of Fuzzy Prophet.

other and reduce the work associated with re-evaluating different
permutations of the scenario.

Fuzzy Prophet can be used in an offline or offline mode. In of-
fline mode, it identifies parameter values that optimize or achieve a
desired goal. Execution is expedited by using fingerprints to avoid
redundant computation. In online mode, users are presented with
a live, progressively refined view of the effects of changing par-
ticular parameters. While interacting with the user, Fuzzy Prophet
maintains a set ofbasis distributionscontaining the output of prior
scenario evaluation runs. When evaluating the scenario with a new
set of parameter values, Fuzzy Prophet first attempts to correlate
the scenario’s output distribution for one set of parameters to one
or more basis distributions by matching their fingerprints, resulting
in a lower time to first-accurate-guess.

2. PROPHET ARCHITECTURE
Users interact with Fuzzy Prophet through one of two interfaces:

an online interface for user-directed parameter exploration, and an
offline processing interface for automated parameter optimization.
Users specify business scenarios as queries using Transact SQL
(TSQL) with Fuzzy Prophet’s PDB extensions and several pieces
of metadata. The business scenario specification includes the defi-
nitions of parameters, which appear in the query as ordinary TSQL
variables. The specification also includes metadata that either ex-
presses a set of constrained optimization goals for the offline mode,
or visualization directives for the online mode. For an example, see
Section 3.

Scenario Evaluation.In both modes, Fuzzy Prophet operates on a
cycle shown in Figure 1: (1) TheGuidecomponent directs scenario
evaluation by producing a sequence ofinstances, each representing
a concrete valuation for each parameter and model variable in the
scenario (a possible world in PDB terminology). (2) The sequence
of instances is batched and accepted by aQuery Generator, which
produces a pure TSQL query. The query is processed on a stan-
dard MS SQL Server install. (3) The results of the TSQL query
are passed to aStorage Manager, which manages the set of ba-
sis distributions. Query results are used for fingerprinting purposes
(as described below). (4) TheResult Aggregatorproduces expec-
tations, standard deviations, and other desired metrics. If Fuzzy
Prophet is being used in online mode, these metrics are displayed
to the user directly. In either case, the results are fed back to the
Guide to direct its sampling strategy.

Fingerprinting. The core of Fuzzy Prophet is its fingerprinting
technique. The fingerprint of a VG-Function is a concise and easily-

computable data structure that summarizes its output distribution.
Thus, a fingerprint can be used to efficiently determine a function’s
correlation with another function, or its own instantiations under
different parameter values. After such correlation has been de-
tected, Jigsaw can avoid expensive Monte Carlo estimation (and
the associated VG-Function invocations) for a target point in the
parameter space by using outputs for an already-explored, corre-
lated point. Moreover, when a simulation is Markovian (where the
simulation consists of a series of steps, each depending on the sim-
ulation’s output for the prior step), outputs of successive steps often
remain strongly correlated. This is particularly true for many pro-
cesses of interest that are built around discontinuities, with discrete
events occurring at random points in time (e.g., the nondeterminis-
tic date when new hardware comes online). Fingerprints can iden-
tify suchMarkovian dependencies, enabling automated generation
of simple non-Markovian estimators. These estimators, valid for
regions of the Markov chain, allow Fuzzy Prophet to skip the cor-
responding portions of the simulation.

The specific fingerprinting technique we use in this paper is based
loosely on random testing [3], a well known technique in software
engineering: the fingerprint of a parameterized stochastic function
is simply a sequence of its outputs under a fixed sequence of ran-
dom inputs (i.e., seed of its pseudorandom number generator). The
use of a fixed set of random seeds ensures a deterministic relation-
ship between correlated outputs of the stochastic functions.

Fingerprinting is discussed further in [6].

3. DEMONSTRATION
We demonstrate Prophet using a business scenario described in

Section 3.1. Our demonstration consists of two components. First,
users are introduced to the online Fuzzy Prophet interface, con-
sisting of a set of sliders for setting parameter values, and a graph
showing the per-week demand, capacity, and chance of overload
(Section 3.2). Second, Fuzzy Prophet is run in offline mode on the
same query and we will visualize how Prophet avoids redundant
computation by exploiting fingerprints (Section 3.3).

3.1 Risk vs Cost of Ownership
This demo explores a specific commonly occurring business sce-

nario: a Fuzzy Prophet end-user wishes to know when to purchase
new server hardware for their cloud service. Delaying the pur-
chases will reduce the overall cost of ownership, but increase the
chance of running out of capacity within the cloud.

This scenario, presented in Figure 2, is constructed out of two
input models forecasting the availability and demand for CPU cores
in a Windows Azure datacenter1.

The scenario employs four parameters:@current,
@purchase1, @purchase2, and@feature. Each parameter
is specified in terms of a discrete set of values, each corresponding
to one week out of the coming year. The first parameter indicates
the “current” week being simulated, the second two indicate the
week of each of two anticipated hardware purchases, and the third
indicates the week during which a particular software feature is
released.

This scenario employs two models:DemandModel and
CapacityModel, expressed using TSQL Table Generating func-
tions. TheDemandModel is a daily demand forecast expressed as
a simple gaussian. A second gaussian is added to the first after the

1This demonstration uses models representative of those that
prompted the development of Fuzzy Prophet. Data used in our sim-
ulations is arbitrarily chosen for intellectual property reasons.



-- DEFINITION --
DECLARE PARAMETER @current AS RANGE 0 TO 52 STEP BY 1;
DECLARE PARAMETER @purchase1 AS RANGE 0 TO 52 STEP BY 4;
DECLARE PARAMETER @purchase2 AS RANGE 0 TO 52 STEP BY 4;
DECLARE PARAMETER @feature AS SET (12,36,44);
SELECT DemandModel(@current, @feature)

AS demand,
CapacityModel(@current, @purchase1, @purchase2)

AS capacity,
CASE WHEN capacity < demand THEN 1 ELSE 0 END

AS overload
INTO results;

-- ONLINE MODE --
GRAPH OVER @current

EXPECT overload WITH bold red,
EXPECT capacity WITH blue y2,
EXPECT_STDDEV demand WITH orange y2;

-- OFFLINE MODE --
OPTIMIZE SELECT @feature, @purchase1, @purchase2

FROM results
WHERE MAX(EXPECT overload) < 0.01
GROUP BY feature, purchase1, purchase2

FOR MAX @purchase1, MAX @purchase2

Figure 2: Example Business Scenario

Figure 3: Fuzzy Prophet’s online interface.

feature release date, representing additional demand resulting from
the released feature.

TheCapacity Model is is expressed as an aggregate of many
different individual models, each expressing different classes of
hardware failures, as well as expected time from new hardware pur-
chase to deployment. The model accepts a set of hardware purchase
dates, constructs (stochastically) a series of events that modify the
number of cores available during a given week, and tracks the sum
of all changes over the course of the entire year. Note that these
table generating functions are stored in the database. If an ana-
lyst develops a better model, she can update all all Fuzzy Prophet
instances using the model by simply modifying the function defini-
tions.

We demonstrate the use of Fuzzy Prophet in two modes. In on-
line mode we declare@current to be the graph’s X-Axis. Fuzzy
Prophet is asked to graph the chance of insufficient capacity, and
the expectations of system capacity and user demand. In offline
mode, results are computed for the entire parameter space, and the
query returns the latest purchase dates that keep (over the entire
year being simulated) the expected chance of overload below 5%.

3.2 Fuzzy Prophet in Online Mode
Guests are invited to arbitrarily set the values of purchase date

parameters by adjusting the sliders in Fuzzy Prophet’s GUI. The
GUI is shown in Figure 3. The simulation goal is be to evaluate the
business scenario described above with the given parameter values.
At first, Fuzzy Prophet takes a few dozen seconds to generate accu-
rate statistics of the output and an accurate rendering of the graph.
However, when guests perform a second adjustment, only portions
of the graph changed by the adjustment are re-rendered (implying
that only a small portion of the output statistics is recomputed).

Figure 4: Visualization of a 2D slice of Fuzzy Prophet’s finger-
print mappings for the Capacity model.

Users are also encouraged to note the effects of changing the
feature release date. Fuzzy Prophet’s distribution mapping capabil-
ities are able to reduce the set of weeks for which the query must
be recomputed, despite the slope of the usage graph changing.

The GUI also shows the small fragment of SQL code required
to describe the scenario. In addition, it also shows the parameter
space (in form of a 2D grid), with which parameter values have
already been explored and which values are proactively being ex-
plored anticipating their future usage.

3.3 Fuzzy Prophet in Offline Mode
We also demonstrate how Fuzzy Prophet is invoked with the

above scenario in a offline mode. The simulation goal is to de-
termine the parameter values that minimizes the total cost of own-
ership while keeping the risk of overload under a threshold. Guests
are invited to vary the simulation characteristics (e.g., starting the
simulation with a different initial capacity or a different user growth).
Guests observe as the query runs to completion, as a live-updated
view shows the simulation’s progress through the parameter space,
as well as any established mappings, as in Figure 4.

4. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing

incomplete information with probabilistic world-set
decompositions. InICDE, 2007.

[2] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and
D. Suciu. MYSTIQ: a system for finding more answers by
using probabilities. InACM SIGMOD, 2005.

[3] D. Hamlet.Encyclopedia of Software Engineering, chapter
Random testing, pages 970–978. Wiley, New York, 1994.

[4] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and
P. J. Haas. MCDB: a monte carlo approach to managing
uncertain data. InACM SIGMOD, 2008.

[5] O. Kennedy and C. Koch. PIP: A database system for great
and small expectations. InICDE, 2010.

[6] O. Kennedy and S. Nath. Jigsaw: Efficient optimization over
uncertain enterprise data. InACM SIGMOD, 2011.

[7] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom,
P. Agrawal, O. Benjelloun, A. D. Sarma, R. Murthy, and
T. Sugihara. Trio-One: Layering uncertainty and lineage on a
conventional dbms (demo). InCIDR, pages 269–274, 2007.

[8] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E.
Hambrusch, and R. Shah. Orion 2.0: native support for
uncertain data. InACM SIGMOD, 2008.


