Recap

Cardinality (Size) Estimation

- Most of the operators are straightforward
 - \(n(R) \), \(\tau(R) \) : \(|R|\)
 - \(R \cup S : |R| + |S| \)
 - \(R \times S : |R| \times |S| \)
 - \(R \bowtie S \) : Identical to \(\sigma(R \times S) \)...

- Some are hard
 - \(\sigma(R) \)
 - \(\gamma(R) \& \delta(R) \)

Selection : Compute Selectivity (or % tuples passed through)

- Generic (Default) Heuristic:
 - Selectivity = 0.5
 - Works … mostly well 70% of the time. Very brittle and liable to break things
 - Be wary: DBMSes actually do this!

- \(R.A = \text{[Const]} \)
 - Idea 1:
 - Compute \(\text{COUNT}(\ast) \) for every value value of \(A \)
 - Gives exact selectivity
 - Idea 2
 - \(\text{Min/Max COUNT(\ast)} \)
 - Gives lower/upper bound on selectivity
 - Idea 3
 - \(\text{Avg COUNT(\ast)} = \text{Min/Max}(A) \) (for a continuous domain) + Total Count == \# distinct values of A + Total Count
 - Gives selectivity in average case, assuming a uniform distribution
 - Selectivity = Total Count / \# distinct values of A
 - Can we do better?

Selectivity Estimation

- Other types of queries

- \(R.A < \text{[Const]} \) (also works for others)
 - Idea: Collect stats: Min/Max, and assume a uniform distribution of values
 - Selectivity = \((\text{[Const]} - \text{Min}) / (\text{Max} - \text{Min})\)
 - Works for continuous data (Floats)

- \(R.A = R.B \)
 - (the Equijoin condition)
 - Idea 1: Assume no correlation
 - Becomes identical to either \(R.A = \text{const} \) or \(R.B = \text{const} \)
 - For each row, you’re testing whether \(R.B = \) Some specific, somewhat arbitrary value
 - Both \(R.A \) and \(R.B \) are an upper bound on the selectivity, so take whichever reduction gives you the lower value
 - Interesting, this magically works for foreign key relationships

- \(C1 \text{ AND } C2 \)
 - Assuming no correlation between \(C1 \) and \(C2 \): \(\text{Selectivity}(C1) \times \text{Selectivity}(C2) \)

- More complex ideas…
 - Idea 4: Intermediate… Build a Histogram
• Store COUNT(*) for smaller ranges
 e.g., For 1 from 1-100, store 10 buckets: 1-10, 11-20, etc...
 • Equality predicates are exactly the same as before.
 ▼ Range predicates:
 • If the whole bucket is in the range, the entire count is in the range
 • If part of the bucket is in the range, make a uniform distribution assumption for the bucket.

▼ Idea 5: Wavelets
 ▼ Ever seen an image on a webpage load and it’s all blocky at first and then it gets clearer?
 • That’s a progressive image.
 • How could we make a progressive histogram?
 ▼ Overview
 • Start with a completely uniform distribution
 • What information do you need in order to go from this to a 2-bucket histogram?
 ▼ Idea 1: Split Bucket Ranges Evenly (e.g., 1-100 becomes 1-50, 51-100)
 • Only need to communicate one integer Difference = (Left.Count - Right.Count)
 ▼ You have Total.Count = (Left.Count + Right.Count)
 • Left.Count = (Total.Count + Difference) / 2
 • Right.Count = (Total.Count - Difference) / 2
 ▼ Idea 2: Communicate “Median” value (e.g., [1, 45, 47, 48, 60, 72, 91, 99] becomes 1-48, 49-100)
 • Guaranteed to have an equal count on either side.

▼ Columnar Layouts
 ▼ Row-based layouts
 • Store rows together
 ▼ Columnar-LAYOUTS
 • Store attributes together
 ▼ Option 1: Array of VALUE (Index = ROWID)
 • Values with the same ROWID “join” together
 • Key advantage: Can avoid loading multiple columns.
 • Advertising datasets == 1000s of columns or more
 • Costly if you only care about 5ish
 ▼ Option 2: <ROWID, VALUE>
 • Key advantage: Can reorder. Effectively a big secondary index.
 • Often want both ROWID -> VALUE and VALUE -> ROWID
 • Can Compress w/ Run-length encoding
 ▼ Other reasons to use Arrays of values
 • Easier SIMD
 • ROWID Joins become intersections of bit vectors
 ▼ Reasons not to use columnar layouts
 • Updates are expensive
 • Inserts are prohibitive