Recap — Tons of Options

Physical Layout - Records in Page / Fields in Record

- Delimited — Separator character splits fields (') / records ('n')
- Fixed Width — Each field/record has a predictable / known size
- Directory — Each field/record has a fixed-size header/footer indicating where each field begins

Indexing

- Primary Hash — Put full records into a hash table (O(1) lookup, but only for == predicates)
 - Static vs Dynamic
- Primary Tree — Put full records into a tree-structure (O(log(N)) lookup, works for any ==, >, < predictate)
 - B+Tree
 - LSM Tree
- Secondary (Hash or Tree) — Index just record IDs in to avoid multiple copies of the entire record

Sorting

- In Memory
- External

Group-By Aggregation

- 1-Pass Hash — Build a hash-table in memory to store each group and its current aggregate value
- Sort First — After sorting on group-by columns, all elements in a group adjacent (O(Nlog(N)) time)
- 2-Pass Hash — Organize data into hash buckets, then do a 1-pass hash for each bucket

Joins

- Nested Loop Join — Foreach s in S : Foreach r in R : if test(s, r) : emit(s, r)
- Block-Nested Loop Join — Same, but add 2 more layers of loop, loading in blocks
- Index-Nested Loop Join — Replace inner loop with an index lookup based on the outer loop
- Sort/Merge Join — Sort both sides of the join first, then scan over the two lists in parallel
- 2-Pass Hash Join — Group data from both sides into parallel buckets, then do an in-memory join on each bucket.
- 1-Pass Hash Join — Build an in-memory hash table for one side, then use it for an index-nested loop join ewith the other.
- 1-Pass Tree Join — Build an in-memory tree index for one side, then use it for an index-nested loop join with the other.

Messy!

- Assuming you make each choice exactly once, 864 options!
 - Generally more!
- Violating separation of concerns
 - Programmers need to think about what they want to compute AND how to compute it, all at the same time
- Can we fix it? Yes, but we need two things:
 - We need a way to reason about “equivalent” options.
 - We need a way to evaluate which option is “best”.

Reasoning about Equivalent Options

- Basic idea: Create a language (or “Algebra”) to describe computations
- Common theme: Every expression in this language defines a table
 - Like Math: 1 + 1 ≠ “Bob”… it’s a number instead
 - X,Y are tables, X (?) Y is also a table (if we decide on ‘?’ correctly)
- What are the elements of this language (a “Relational Algebra”)?
 - Need some sort of atomic, leaf value… just “a table” with an explicit value
The basic operations we discussed at the start:
- Filter (also called Select) — σ
- Map (also called [Generalized] Projection) — π
- Union — U

The stuff we talked about in the last few classes seemed useful
- Sort — τ
- Aggregation (and Group-By Aggregation) — γ
- Cross Products (and Joins) - x (and \bowtie)

Some other useful tools:
- Convert Bags to Sets (Distinct) — δ
- Take the first k records (Limit) — L

Let's try a few things:
- If R is a table, then so is $\sigma(R)$
 - \ldots and so is $\pi(\sigma(R))$
 - \ldots and so is $\pi(\sigma(R \times S))$
- The "join" pattern $\sigma(R \times S)$ occurs often — and we have more efficient algorithms for it
 - \ldots so we give it a shorthand: $R \bowtie S$
- \ldots Also a few other common shorthands:
 - $R \bowtie_{(r.ship = s.ship)} S \rightarrow R \bowtie_{s.ship} S$
 - Also called a 'natural join': And of equality predicates on all columns with the same name

Example: Come up with 2-3 separate queries for the Last Names of all Captains of a Ship Located at Bajor
- $\pi_{\text{Last Name}}(\sigma_{\text{Loc}='Bajor'}(\text{Locations} \bowtie_{\text{ship}} \text{Captains}))$
- $\pi_{\text{Last Name}}(\sigma_{\text{Loc}='Bajor'}(\text{Locations})) \bowtie_{\text{ship}} \text{Captains}$
- $\pi_{\text{Last Name}}(\pi_{\text{Last Name,ship}}(\sigma_{\text{Loc}='Bajor'}(\text{Locations}))) \bowtie_{\text{ship}} \text{Captains}$
 - These are all equivalent queries!

What is Equivalent?
- Two expressions are equivalent if they’re guaranteed to produce the same output
Equivalent Expressions

They look the same, but one is good, one is evil

(No Beard) ≠ (Beard)

(Leonard Nimoy) = (Zachary Quinto)

Two different expressions of the “same” character
RA Equivalencies

Selection

\[\sigma_{c_1 \land c_2} (R) \equiv \sigma_{c_1} (\sigma_{c_2} (R)) \quad \text{(Decomposable)} \]

\[\sigma_{c_1 \lor c_2} (R) \equiv \delta (\sigma_{c_1} (R) \cup \sigma_{c_2} (R)) \quad \text{(Decomposable)} \]

\[\sigma_{c_1} (\sigma_{c_2} (R)) \equiv \sigma_{c_2} (\sigma_{c_1} (R)) \quad \text{(Commutative)} \]

Projection

\[\pi_a (R) \equiv \pi_a (\pi_{a \cup b} (R)) \quad \text{(Idempotent)} \]

Cross Product (and Join)

\[R \times (S \times T) \equiv (R \times S) \times T \quad \text{(Associative)} \]

\[(R \times S) \equiv (S \times R) \quad \text{(Commutative)} \]

Try It: Show that \(R \times (S \times T) \equiv T \times (R \times S) \)

Selection and Projection

\[\pi_a (\sigma_c (R)) \equiv \sigma_c (\pi_a (R)) \]

Selection commutes with Projection

(but only if attribute set \(a \) and condition \(c \) are compatible)

\(a \) must include all columns referenced by \(c \)

Show that

\[\pi_a (\sigma_c (R)) \equiv \pi_a (\sigma_c (\pi_{a \cup \text{col}_a (c)} (R))) \]

When is this rewrite a good idea?
Join

$$\sigma_c(R \times S) \equiv R \bowtie_c S$$

Selection combines with Cross Product to form a Join as per the definition of Join (Note: This only helps if we have a join algorithm for conditions like c)

Show that

$$\sigma_{(R.B=S.B) \land (R.A>3)}(R \times S) \equiv \sigma_{(R.A>3)}(R \bowtie_{(R.B=S.B)} S)$$

When is this rewrite a good idea?

Selection and Cross Product

$$\sigma_c(R \times S) \equiv (\sigma_c(R) \times S)$$

Selection commutes with Cross Product (but only if condition c references attributes of R exclusively)

Show that

$$\sigma_{(R.B=S.B) \land (R.A>3)}(R \times S) \equiv \sigma_{(R.A>3)}(R \bowtie_{(R.B=S.B)} S)$$

When is this rewrite a good idea?
Projection and Cross Product

\[\pi_a(R \times S) \equiv (\pi_{a_1}(R)) \times (\pi_{a_2}(S)) \]

Projection commutes (distributes) over Cross Product (where \(a_1 \) and \(a_2 \) are the attributes in \(a \) from R and S respectively)

Show that

\[\pi_a(R \bowtie_c S) \equiv (\pi_{a_1}(R)) \bowtie_c (\pi_{a_2}(S)) \]

(under what condition)

How can we work around this limitation?

\[\pi_a((\pi_{a_1 \cup(\text{cols}(c) \cap \text{cols}(R))}(R)) \bowtie_c (\pi_{a_2 \cup(\text{cols}(c) \cap \text{cols}(S))}(S))) \]

When is this rewrite a good idea?

RA Equivalencies

Union and Intersections are **Commutative** and **Associative**

Selection and Projection both commute with both Union and Intersection

When is this rewrite a good idea?
Example

\[\pi_{R.A, T.E} \]
\[\sigma(R.B = S.B) \land (S.C < 5) \land (S.D = T.D) \]

SELECT R.A, T.E
FROM R, S, T
WHERE R.B = S.B
 AND S.C < 5
 AND S.D = T.D