Can we do better?

Observation: Trees have logarithmic access costs

- Can we do better?

Idea: Buckets

- Partition the data according to a simple, predictable, deterministic pattern

Summary Idea: Assume an $f(x)$ that gives you a number between 1 and N

- e.g., "first letter" or "first k bits"
- Allocate N pages, use $f(key)$ to figure out which page a record is supposed to live on

Pros

- Fast: $O(1)$ page accesses (ideally)

Cons

- Need to pick N correctly
- Clustering: Data is generally not uniformly distributed
 - Class names: “X”, “S” common letters: “W” completely empty

Idea: Pick a Deterministic “Reshuffling”

Hash Functions: $h(x)$ -> Transform any x into a pseudo-random value

- Pseudo-Random: Statistically unpredictable output between 0 and $2^{(# \text{ of hash bits})} - 1$
- Deterministic: $h(x)$ is always the same

Adaptation: Modulus Operator Makes #s between 1 and N

- % = Modulus = Remainder after Division
 - $5 \% 2 = 1$
 - $5 \% 3 = 2$
• 6 % 3 = 0
• 7 % 3 = 1
• 8 % 3 = 2

▼ If h(x) gives you a number between 0 and [Some arbitrarily big number]

• h(x) % N gives you a number between 0 and N-1

▼ As long as N << [Some arbitrarily big number], the result is still “random enough”

• Deviation from uniform random capped at N / [Some arbitrarily big number]

• Unless [Some arbitrarily big number] % N = 0… then randomness perfectly preserved

▼ Overall Solution:

• Allocate N pages

• h(key) % N tells you on which page the record with ‘key’ lives

• Use “overflow pages” to handle cases where you need to put too much data in one page.

▼ Pros

• Fast: O(1) page accesses (ideally)

• Data is distributed more uniformly

▼ Cons

• Only supports == tests

• We still don’t know how to pick N… and what if the “best” N changes?

▼ Idea: “Dynamic” Hashing

▼ Problem: Changing N requires re-hashing everything

• Example:
  ```python
def h(x):
    return x; # Bad, but easy “hashing” fn
  ```

• Data: 1, 2, 5, 8, 9, 11
- Now: $N = 5$
 - 1 -> 1, 2 -> 2, 5 -> 0, 8 -> 3, 9 -> 4, 11 -> 1

- Change: N to 6
 - 1 -> 1, 2 -> 2, 5 -> 5, 8 -> 2, 9 -> 3, 11 -> 5

- Observation: Jumping between multiples of N make reshuffling easier
 - If $h(x) \mod 5 = 4$
 - Then $h(x) \mod 10 = Either \ 4 \ or \ 9$

- Decide how to split on a bit-by-bit basis:
 - Use 1 bit (2 pages), 2 bits (4 pages), 3 bits (8 pages), etc...
 - But make the decision on a page-by-page basis
 - Use an “index” that tracks which pages correspond to which hash buckets

- If you need to split a page
 - Check to see if you need to double the number of hash buckets
 - If so, clone the index: Buckets N to $2N-1$ start off pointing to the same pages as Buckets 1 to $N-1$
 - Allocate a new page
 - Re-hash the contents of the page, using one more bit than before.
 - Records that have a 1 for the extra bit go to the new page, records with a 0 stay in place
 - Point the appropriate index entry(ies) at the new page
 - The same happens in reverse to merge two pages together

- To pull this off, you need to track...
 - The number of buckets in the index
 - Which pages have been allocated
 - For each allocated page, how many bits of hash are being used for records on that page.