CSE 350

Advanced Data Structures

Topic 10: Hash-Based Storage 🃦 🥘 🎹

Review: Modular Arithmetic

		2	3	4	1 15	6	7
		1 2 1	1 2 3	 	5	6	7
	4 9			17	. 1.3	19	15
1 6 1 1 6 1	17	1 18 1	19	1 Z16 1		22 n	23

The pseudo random, Uniform over [o, Max] M

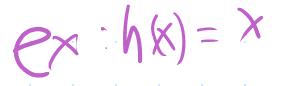
Bi

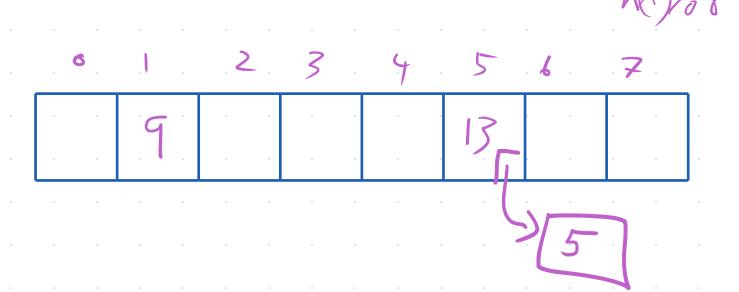
H(x) Deterministic: h(x) = h(x) = h(x)

Statistically independent h(x) f h(x') forx f x'

any sequence of bits

Hash function


h(x) moll has the same proporties


"h(x) %N"

(if V << Max)

Examples **SHA256** MD5 BCrypt MurmurHash3

Review: Hash Tables

Expected number of items in each bucket

N = Number of Records

B = Number of Buckets

What happens if the buckets overflow?

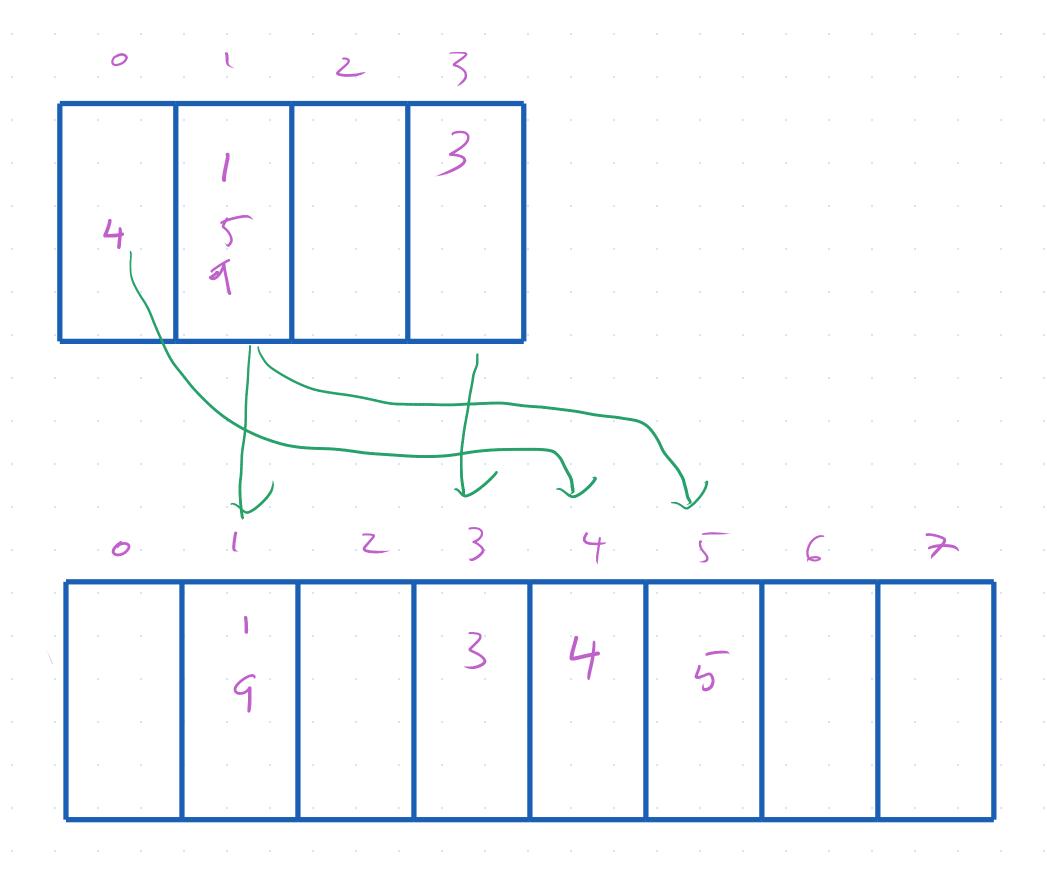
Resize to 2x origins | Size

(Amertizes to 8(1) per insert)

What changes when we store buckets on disk?

-Welike Spatial locality: Make B ~ P

We want ~ P verords


Rent siket

Still one + 0 to

Fetch all

-Resizing Becomes Suusper Extensive Gread Entire Hish Table & Write it Brick

Resizing the Hash Table

Dynamic Hashing Data D-rectors To grew directory, append a copy of the existing direct ! Ly 7. h(x) 6.2N= ? h(x) % N = T > h(x) % 2N = I + NOFach data page goes to one of two new data In Memery
(, r Buffer M1) Pages

Directory has 2 Pentring Extras Track-directory Lepts (D) -data Paye depty (d) = Data page stores records
that hash to $\frac{1}{100} = \frac{1}{100}$ I fata page tills of L) d = D? 4) Double directory 52c Deregtenew page for h(x)= [+2d @ depty d+1]
4) increase page kepty to d+1
bre hasy the page

-More complicated -More complicated -Less spatial (ocality

Prolibio reside events

No libio reside events

Spreadout

Smore resilient to bad hash for

Hash Partitioning: Aggregation

group-by aggregation-) Neod Momory to hold etach group 2 9 10 UPS 3 (e (o rd 9) 9-723 Tfrotenough space for all groups you (usually) get randomy(cess)

Idea voe hash to partition Jaabaab --- Cda Pick B so that each partition is very likely to fit in Monday.

1. Read installittle at a little at a time 2 Keep ane file open per lartition append records to the right file $\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right)$ 3. Rerendeach partition file one at a time D(N) 10 S

 $N_{3}N_{1}Z_{3}$