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ABSTRACT

Database access logs are the canonical go-to resource for
tasks ranging from performance tuning to security auditing.
Unfortunately, they are also large, unwieldy, and it can be
difficult for a human analyst to divine the intent behind typ-
ical queries in the log. With an eye towards creating tools
for ad-hoc exploration of queries by intent, we analyze tech-
niques for clustering queries by intent. Although numerous
techniques have already been developed for log summariza-
tion, they target specific goals like query recommendation or
storage layout optimization rather than the more fuzzy no-
tion of query intent. In this paper, we first survey a variety
of log summarization techniques, focusing on a class of ap-
proaches that use query similarity metrics. We then propose
DCABench, a benchmark that evaluates how well query sim-
ilarity metrics capture query intent, and use it to evaluate
three similarity metrics. DCABench uses student answers
to query construction assignments to capture a wide range
of distinct SQL queries that all have the same intent. Next,
we propose and evaluate a query regularization process that
standardizes query representations, significantly improving
the effectiveness of the three similarity metrics tested. Fi-
nally, we propose an entirely new similarity metric based
on the Weisfeiler-Lehman (WL) approximate graph isomor-
phism algorithm, which identifies salient features of a graph
— or in our case, of the abstract syntax tree of a query.
We show experimentally that distances in WL-feature space
capture a meaningful notion of similarity, while still retain-
ing competitive performance.
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1. INTRODUCTION

*The first three authors contributed equally and should be
considered a joint first author

Database access logs are used in a wide variety of set-
tings, including evaluating employee workforce allocation,
database performance tuning [1|, benchmark development [2]
database auditing [3|, and compliance validation [4]. As the
basic unit of interaction between a database and its users,
the sequence of SQL queries that a user issues effectively
models the user’s behavior. Queries that are similar in na-
ture imply that they might be issued to perform similar
duties. Examining a history of the queries serviced by a
database can help database administrators with tuning, or
help security analysts to assess the possibility and/or ex-
tent of a security breach. However, logs from enterprise
database systems are far too large to examine manually. As
one example, our group was able to obtain a log of all query
activity at a major US bank for over a period of 19 hours.
The log includes nearly 17 million SQL queries and over 60
million stored procedure execution events. Even excluding
stored procedures, it is unrealistic to expect any human to
manually inspect all 17 million queries.

Let us consider an analyst (let’s call her Jane) faced with
the task of analyzing such a query log. She might first at-
tempt to identify some aggregate properties about the log.
For example, she might count how many times each table is
accessed or the frequency with which different classes of join
predicates occur. Unfortunately, such fine-grained proper-
ties do not always provide a clear picture of how the data is
being used, combined, and/or manipulated. To get a com-
plete picture of the intent of users and applications interact-
ing with the database, Jane must look at entire queries. So,
she might turn to more coarse—grained properties, like the
top—k most frequent queries. Here too she would run into a
problem. Consider the following two queries:

SELECT username FROM USER WHERE rank = "admin"
SELECT username FROM USER WHERE rank = "moderator"

They differ only in the value of a single constant: “admin” or
“moderator.” When counting queries, should she count these
as the same query or two different queries? If she chooses
to count them together, are there perhaps other “similar”
queries that she should also count together, like for example:

SELECT username FROM USER WHERE dept = "Finance"

Of course, the answer depends on the content of the log,
the database schema, database records, and numerous other
details that may not be available to Jane immediately when
she sits down to analyze a log and group similar queries
together. As a result, this type of log analysis can quickly
become a tedious, time-consuming process.

Even just communicating the intent behind a single query
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accurately remains a research challenge [5]. Thus, in this pa-
per we focus on a specific part of the log summarization and
ask “How can we group or cluster queries by their intent?”
Similar questions have been studied extensively [6H14], al-
beit aimed at specific goals like view selection or query rec-
ommendation. For us, the motivating use case is free-form
exploration, making similarity of intent a more abstract,
“fuzzy” notion.

We make the notion of similarity of intent more precise
through a new benchmark that we propose in this paper:
The database course assignment benchmark (DCABench).
A key feature of most database coursework is exam or home-
work questions where students are asked to translate english
prose into SQL. Student-written queries are appealing for
several reasons. First, queries are implicitly labeled by their
ground-truth clusterings — For each question the student
is attempting to accomplish a specific stated task. Second,
scoring information (if available) serves as ground truth for
the distance metric. Higher-rated queries should be closer
to the centroid of a cluster of queries. For our evaluation,
we use two sets of queries, a large and un-scored set of stu-
dent queries released by IIT Bombay [15] and a smaller but
scored set of queries gathered at the University at Buffalo
and released as part of this publication. We use this bench-
mark to evaluate three existing query distance metrics from
the literature [12H14].

None of these measures perform as well as desired, so we
propose a pre-processing step to create more regular, uni-
form query representations by leveraging query equivalence
rules and data partitioning operations. As we show, this
process significantly improves the quality of all three dis-
tance metrics, very significantly in the case of a metric pro-
posed by Aligon et. al. [13]. After regularization, the Aligon
metric becomes very effective at identifying queries in our
workload.

Finally, we present a new approach to constructing dis-
tance metric based on the observation that, since SQL is a
declarative language, query intent will be reflected in the
query’s structure and its abstract syntax tree (AST). The
AST of a query is a tree structure that captures hierarchical
relationships between elements of the query. For example,
as seen in Figure @ the query AST’s root node might have
the query’s Columns (i.e., Target, or SELECT), FROM, and
WHERE clauses as children. Our approach, based on the
Weisfeiler-Lehman subgraph isomorphism algorithm, defines
features based on subtrees of the AST and uses the result-
ing feature space to cluster queries. The resulting clusters
are groups of queries with significantly overlapping ASTs.
Our experiments show that this distance metric is accurate,
outperforms the Aligon metric in a few respects, and es-
tablishes a promising direction for future research on query
intent similarity.

Concretely, the contributions of this paper are: (1) A sur-
vey of SQL query similarity metrics in existing literature,
(2) DCABench, a new benchmark and evaluation method-
ology for query similarity metrics, (3) A regularizing pre-
processing step that improves the accuracy of query simi-
larity metrics, (4) A query similarity metric based on the
Weisfeiler-Lehman (WL) approximate graph isomorphism
algorithm [16] as a promising direction.

Experimental results show that our naive distance func-
tion not only mirrors intuitive notions of similarity as well as
others, but has performance competitive with similar clus-

tering techniques from the literature.

This paper is organized as follows. We start by perform-
ing a literature survey on log summarization and SQL query
similarity in Section [2] In Section [3} we evaluate the accu-
racy and performance of query similarity evaluation tech-
niques. We introduce our core contribution, a query regu-
larization techniques in Section [ and propose a new simi-
larity metric in Section We discuss our experiment results
and findings in Section [§] Finally, we conclude by identify-
ing the steps needed to deploy query log summarization into
practice using the techniques evaluated in this paper in Sec-
tion [

2. BACKGROUND AND SURVEY

Analyzing query logs mostly relies on the structure of
queries [17] although their motivations are different; some
methods prefer using the log as a resource to collect infor-
mation to build user profiles, and the others utilize struc-
tural similarity to perform tasks like query recommenda-
tion [8}9,/11], performance optimization [12], session identi-
fication [13] and workload analysis [14].

Agrawal et al. |7] aim to rank the tuples returned by the
SQL query based on the context. They create a rule set for
the contexts and evaluate the result of queries that belongs
to the context according to the ruleset. They consider the
similarity of the context and SQL query by creating vectors
out of them and measure the cosine distance.

Chatzopoulou et al. |11] aim to assist non-expert users
of scientific databases by tracking their querying behavior
and generating personalized query recommendations. They
deconstruct an SQL query into a relational algebra tree as a
bag of fragments. Each distinct fragment is a feature, with a
weight assigned to it indicating its importance. Each feature
has two types of importance: (1) within the query and (2)
for the overall workload. Similarity is defined upon common
vector-based measures, like cosine similarity measure. A
summarization/user profile for this approach is just a sum
over all single query feature vectors that belong to their
workload.

Yang et al. |9], on the other hand, build a graph following
the database schema from the start to the end tables of joins
for each query and group queries based on these graphs us-
ing a basic similarity function like Jaccard coefficient. Their
aim is again to assist users in writing SQL queries by analyz-
ing query logs. Giacometti et al. [§], similarly, aim to make
recommendations on the discoveries made in the previous
sessions for users to spend less time on investigating simi-
lar information. They introduce difference pairs in order to
measure the relevance of the previous discoveries. Difference
pairs are essentially the result columns that is not included
in the other result columns that correspond to a return re-
sult; hence the method depends on having access to the data.
Stefanidis et al. [10] takes a different approach, and instead
of recommending candidate queries, they recommend tuples
that may be of interest to the user. By doing so, the users
may decide to change the selection criteria of their queries
in order to include these results.

Although these methods [7H11] utilize query similarity one
way or other to achieve their purpose, they don’t directly of-
fer a way to compare query similarity. We aim to summarize
the log and the most practical way to describe a query log
is to group similar queries together so that we can provide
summaries of these groups to the users. For this purpose,



Table 1: SQL query similarity literature review

Paper title Motivation Features Feature . Distance Function
Representation
Query repl Selection
Context-sensitive Ranking . y repy Schema Vector Cosine similarity
importance ranking Rules
Query Recommendations for Quer
OLAP Discovery Driven Yo Difference pairs Set Difference query
Analysis ﬂgl recommendation
Recommending Join Queries via Query E’iloe'(: clfc)ir(lm Gravh Jaccard coeflicient
Query Log Analysis @ﬂ recommendation Joi Ifs P on the graph edges
”You may also like” Results in Recommendation of | Inner product of Vector )
Relational Databases [10] tuples two queries
The QueRIE System for Syntactic .
Personalized Query Query . element Vector Jaccar‘fi coe.zfﬁleer.lt
Recommendations ﬂﬁﬂ recommendation frequency and cosine similarity
Clustering-based Materialized View selection Selection
View Selection in Data ontimization Joins Vector Hamming distance
Warehouses mﬂ P Group By
Selection Separate sets of
Similarity Measures for OLAP . NP Joins P .
Sessions Session similarity Projection each feature Jaccard coefficient
Group By group
Term frequency
Text Mining Applied to SQL of projection,
Queries: A Case Study for the Workload analysis selection, joins, Vector Cosine similarity
SDSS SkyServer from, group by
and order by

we need to be able to measure pairwise similarity between
each query, hence we need a metric that can do so.

Aouiche et al. is the first work we encountered that
proposes a pairwise similarity metric between two SQL queries
although it is not the aim of their work. They aim to op-
timize view selection in warehouses by the queries posed to
the system. They consider the selection, joins and group
by items in the query to create vectors and use Hamming
Distance to measure how similar two queries are. While cre-
ating the vector, it doesn’t matter if an item appears more
than once or where the item is. They cluster similar queries
that creates a workload on the system and base their view
creation strategy in the system on the clustering result.

Aligon et al. studies various approaches which define
a similarity function to compare OLAP sessions. They focus
on comparing session similarity while performing a survey
on query similarity metrics, too. They identify selection
and join items as the most relevant component in a query
followed by the group by set. Inspired by the findings, they
propose their own query similarity metric which considers
projection, group by, selection and join items for queries
issued on OLAP datacubes. In our experiments, since we
do not consider the hierarchy levels in an OLAP system but
focus on databases, we consider all queries are on the same
level in the schema to adjust the formulas presented in the
paper.

Makiyama et al. approach query log analysis with a
motivation of analyzing the workload on the system, and
they provide a set of experiments on Sloan Digital Sky Sur-
vey (SDSS) dataset. They extract the terms in selection,
joins, projection, from, group by and order by items sepa-
rately, and record their appearance frequency for each query

in the dataset. They create a feature vector using the fre-
quency of these terms which they use to calculate the pair-
wise similarity of queries with cosine similarity emphasizing
that euclidean distance has poorer performance. Instead
of clustering, they perform the workload analysis with Self-
Organizing Maps (SOM).

A summary of these methods is given in Table [[] Our
work takes the initiative to evaluate the performance of the
three methods [12H14] that offers pairwise similarity metrics
in Section[3]due to the lack of direct performance evaluation
for the query similarity metrics in the given studies.

3. DCABEenNcH

In this section, we introduce DCABench, a new bench-
mark for query similarity measures and use it to evaluate
three query similarity metric from our survey. Our goal is
to evaluate how well a query similarity metric captures the
intent behind a query. DCABench, the Database Course
Assignment Benchmark uses student answers to database
course assignments to precisely capture the notion of query
intent. Many database courses include homework or exam
questions where, students are asked to translate prose into
a precise SQL query. The motivation for choosing database
course assignments is threefold: First, there is minimal bias
or correlation between results, as the prose that students
are given has a completely different structure from SQL.
Second, ground truth for the intent of each query is clear:
students are attempting to accomplish the stated task. Fi-
nally, scores (if available) also provide an even more precise
metric of how close a query is to the specified task.

In subsection[3.1] we outline the datasets used for DCABench,




as well as our methodology for transcribing student answers
from text. Then, in subsection [3:2] we outline the experi-
mental methodology used to evaluate distance metrics, and
propose a set, of measures for quantitatively assessing how ef-
fective a query similarity metric is at clustering queries with
similar intent. Finally, in subsection we use DCABench
to evaluate the three distance metrics that appear in our
literature survey.

3.1 Workloads

Concretely, DCABench relies on two specific query sets:
One gathered by IIT Bombay |15] and one gathered at the
University at Buffalo and released as part of this paper E

The first dataset |15] consists of student answers to SQL
questions given in IIT Bombay’s undergraduate databases
course. The dataset consists of student answers to 14 sepa-
rate query-writing tasks, given as part of 3 separate home-
work assignments. The query writing tasks have varying
degrees of difficulty. Answers are not linked to anonymous
student identifiers, and there is no grade information. The
IIT Bombay dataset is exclusively answers to homework as-
signments, so we expect generally high-quality answers due
to the lack of time pressure, and availability of resources for
validating query correctness.

The second dataset consists of student answers to SQL
questions given as part of the University at Buffalo’s grad-
uate database course. The dataset consists of student an-
swers to 2 separate query-writing tasks, each given as part of
midterm exams in 2014 and 2015 respectively. SQL queries

were transcribed from hand-written exam answers, anonymized

for IRB compliance, and labeled with the grade the answer
was given. We expect quality to vary, as exams are closed-
book and students have limited time to complete their an-
swers. Unless indicated, we use the full dataset in our ex-
periments. However, since 50% of the grade is the failing
criterion, we assume that answers conform with the intent
of the question if the grade is over 50%.

A summary of both datasets is given in Tables [2] and [3]
Not all student responses are legitimate SQL, and so we
ignore queries that can not be successfully parsed by our
open-source SQL parselﬂ The number of queries from each
dataset that we use is given in the summary tables.

As a final concession for our initial evaluation using DCABench,

we ignore constant literals in the queries, replacing them
with placeholders. A query with its constant values replaced
by a placeholder is called a query skeleton. For example,
the two queries SELECT username FROM USER WHERE rank
= "admin" and SELECT username FROM USER WHERE rank =
"moderator" share the same skeleton because they have
exactly the same query structure modulo constant values.
Analysis using the set of query skeletons instead of origi-
nal SQL queries will reduce the number of distinct queries
processed and in general will produce similar results. The
dataset summary tables indicate how many distinct skele-
tons appear for each query-writing task. One may notice
that the number of distinct query skeletons varies in differ-
ent questions. This is because the level of difficulty of the
question given to students as well as the time students spent
on answering questions. For easy questions, we expect many
virtually identical answers and a small number of skeletons

"http://odin.cse.buffalo.edu/public_data/
2016- UB- Exam-Queries.zip
“https://github.com/UBOdin/jsqlparser

Question | Total queries | Parsable queries | Skeletons
1 55 54 3
2 57 57 4
3 71 71 56
4 78 78 30
5 72 72 51
6 61 61 5
7 7 65 42
8 79 70 51
9 80 7 67
10 74 74 29
11 69 68 23
12 70 60 14
13 72 70 64
14 67 52 28

Table 2: Summarization of IIT Bombay dataset

Year | Total queries | Parsable queries | Skeletons
2014 117 110 110
2015 60 51 51

Table 3: Summarization of UB exam dataset

(e.g., as in IIT Bombay question 1). Conversely, the more
complex questions asked for the UB Exam dataset admit a
much wider range of query variants.

In both of these datasets, the query-writing task is spe-
cific. We can expect that student answers to a single ques-
tion are written with the same intent. Thus, we would ex-
pect a good distance metric to rate answers to the same
question as close and answers to different questions as dis-
tant. Similarly, using the distance metric for clustering, we
would expect to see each query clusters to uniformly include
answers to the same question.

3.2 Clustering validation measures

In addition to workload datasets, we define a set of mea-
sures to be used for evaluating queries as part of DCABench.
Given a set of queries with labels of the their respective
tasks and a similarity metric that measures the similarity
between two queries, we want to understand how well the
metric can (1) put queries that perform the same task close
together even if they are written differently, and (2) differ-
entiate queries that perform different tasks.

In order to do that, we use ground truth cluster labels
given by the query-writing task that each query belongs to.
Using a particular similarity metric, we construct a pairwise
distance matrix for the set of queries and subsequently use
this matrix to evaluate the similarity metric. With a pair-
wise distance matrix and a labeled dataset, we can use vari-
ous clustering validation measures to understand how effec-
tive a similarity metric characterizes the partition of a set of
queries. Specifically, we will use three clustering validation
measures [18, Chapter 17]: Average Silhouette Coefficient,
BetaCV and Dunn Index.

Silhouette coefficient. : For every data point in the dataset,
its silhouette coefficent is a measure of how similar it is to its
own cluster in comparison to other clusters. In particular,
the silhouette coefficient for a data point i is measured as
% where a(i) is the average distance from 4 to all
other data points in the same cluster and b(7) is the min-
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imum distance from ¢ to all other data points from other
clusters. The range of silhouette coefficient is from —1 to
1. We denote s(i) to represent silhouette coefficient of data
point . (@) is close to 1 when s(i) is close to other data
points from the same cluster more than data points from
different clusters, which represents a good match. On the
other hand, s(¢) which is close to —1 represents that the
data point i stayed in the wrong cluster as it is far away
from data points within the same clusters while it is close
to the data points from different clusters. Since silhouette’s
coefficient represents a measure of degree of good match for
each data point, to validate the effectiveness of the distance
metric given a query partition, we will consider the average
silhouette coefficients among all data points (all queries) in
the dataset.

BetaCV measure. : The BetaCV measure is the ratio of
the total mean of intra-cluster distance to the total mean of
inter-cluster distance. The smaller the value of BetaCV, the
better the similarity metric characterizes the cluster parti-
tion of queries on average.

Dunn Index. : The Dunn Index is defined as the ratio
between minimum distance between query pairs from differ-
ent clusters and the maximum distance between query pairs
from the same cluster. In other words, this is the ratio be-
tween closest pairs of points from different clusters over the
largest diameter among all clusters. Higher values of the
Dunn Index indicate better the worst-case performance of
the clustering metric.

3.3 Experimental results
We now apply DCABench to three similarity metrics pre-

viously discussed in Section Makiyama’s similarity ,
Aligon’s similarity and Aouiche’s similarity . The
aim of the experiment is to evaluate which similarity metric
that can capture well the tasks performed by queries. We
re-implemented each of these similarity metrics in Java and
evaluated them using the three clustering validation mea-
sures discussed in subsection [3:2] to evaluate three similarity
metrics. In our experiment, the implementation of all three
similarity metrics is done in Java. Tests were performed un-
der MacOS 10.11.6 on a 2.2 GHz Intel Core i7 with 16GB
of 1600 MHz DDR3 memory using the HotSpot Server JVM
1.8.0_45.

Figure [1] shows a comparison of three similarity metrics
using each of the three quality measures (Silhouette, Be-
taCV and Dunn). As can be seen in Figure|[l} Aligon seems
to work the best for both datasets under the Average Silhou-
ette Coefficient and BetaCV measures. Aligon also performs
well on the Dunn Index, coming in first on the UB dataset,
and second-best for IIT Bombay. Especially given that the
Dunn Index measures only worst-case performance, Aligon’s
metric seems to be ideal for the DCABench workloads.

As a reminder, in Aligon’s similarity metric, similarity be-
tween two SQL queries is computed using a weighted combi-
nation of group-by similarity, selection similarity and mea-
sure similarity. This shows that even a fairly simple ap-
proach can capture well the query semantic. For a closer
look of Aligon’s similarity metric, Figure [2] shows the dis-
tribution of Silhouette coefficients for each query and their
respective tasks.

As another observation from the distribution of silhouette
coefficients in Figure[2] there are still quite a few queries that



seems to be put into incorrect clusters in both UB Exam
dataset and IIT Bombay dataset, especially for question 7
of IIT Bombay dataset. This leads us to the next question
we address in this paper: Can we improve these numbers?
In the next section, we present a query regularization step
which improves the effectiveness of these three similarity
metrics at measuring similarity of intent.

4. REGULARIZATION

The grammar of SQL is declarative. By design, users can
write queries in the way they feel most comfortable, letting
well-established equivalence rules dictate a final evaluation
strategy. As a result, the same end goal can be expressed
through many different equivalent queries. Consider the fol-
lowing (contrived) example:

EXAMPLE 1. Sub-query nesting

1. SELECT R.r WHERE R.r>1 FROM
(SELECT * FROM R WHERE R.r<4);

2. SELECT R.r WHERE R.r<4 FROM
(SELECT * FROM R WHERE R.r>1);

In spite of being guaranteed to produce identical results,
the AST's for both queries are quite different with respect to
sub-trees they contain. Let’s consider another slightly more
subtle example:

EXAMPLE 2. OR-UNION Ambiguity

1. SELECT * FROM R
WHERE R.r<1 OR R.r>4;

2. SELECT * FROM R WHERE
R.r<1 UNION SELECT *
FROM R WHERE R.r>4;

For this example, the two queries produce identical results
because R.r < 1 and R.r > 4 are mutually exclusive condi-
tions.

Although general query equivalence is NP-complete [19],
we can still significantly improve clustering quality by stan-
dardizing certain SQL features into “more regular” forms.
We note that this regularization process is orthogonal to the
choice of distance metric and our experiments show improve-
ments for most of the distance metrics we compare against.
In this section, we describe the transformations that we ap-
ply to regularize queries and address some of the limitations
of regularization.

4.1 Regularization Rules

Standardize Expressions. We normalize all boolean-
valued expressions by converting them to disjunctive normal
form (DNF). The choice of DNF is motivated by the ubiquity
of conjunctive queries in most database applications, as well
as by the natural correspondence between disjunctions and
unions that we will exploit later.

Second, we attempt to reduce expressions. For example,
the expression 141 would be replaced by 2. We also attempt
to detect tautologies and contradictions in boolean-valued
expressions, allowing us to replace the entire expression with
a fixed value.

Similarly, expressions involving commutative and associa-
tive operators (e.g., +, X, A, and V) have many equivalences.
For example, there are there are 6 ways to write the expres-
sion A + B 4+ C. We standardize such expressions by using
the hash of each operand to define a canonical order.

Finally, we remove redundant expression elements: (1)
BETWEEN predicates are replaced by the corresponding com-
parisons. (2) Greater-than operators (>, >) are replaced
with their corresponding lesser-than operators (<, <). (3)
common functions like isnull are inlined into the expres-
sion. For example isnull(X,Y) becomes CASE WHEN X IS
NULL THEN Y ELSE X END.

Flatten FROM-Nesting. As in example [I} nested sub-
queries can exist in a FROM clause. When the sub-query is not
an aggregate or DISTINCT query, it can be flattened into its
parent expression. Terms in the sub-query’s SELECT clause
(i.e., target terms) are inlined into the parent query, tables
in the sub-query’s FROM clause are added to the parent query,
and the sub-query’s WHERE clause is combined conjunctively
with the parent.

Flatten Predicate-Nesting. Nesting can also occur in
expressions, for example through the EXISTS predicate. Con-
sider the following two equivalent queries:

ExaMpPLE 3. EXISTS-JOIN ambiguity

1. SELECT DISTINCT * FROM Student WHERE
EXISTS(SELECT * FROM Score WHERE
Score.grade>60 AND Score.StudentID=Student.ID)

2. SELECT DISTINCT * FROM Student JOIN Score WHERE
Student .ID=Score.StudentID AND Score.grade>60

The equivalence between these two queries is an example of
nested query de-correlation [20]. We apply a similar form
of nested query de-correlation, albeit in two independent
stages. Because not all nested queries can be de-correlated
safely, the first stage serves to eliminate redundancy. The
EXISTS predicate is general enough to capture the remaining
three nested query predicates (IN, ANY, and ALL). Queries
including the latter three are rewritten:

x IN (SELECT y ...) becomes

EXISTS (SELECT * ...WHERE x = y)
x < ANY (SELECT y ...) becomes

EXISTS (SELECT * ...WHERE x < y)
x < ALL (SELECT y ...) becomes

NOT EXISTS (SELECT * ...WHERE x > y)

Flatten Sub-queries in EXISTS. Next, if possible, EXISTS
predicates are de-correlated. To ensure that we can safely
de-correlate the predicate, we check whether two safety con-
straints are satisfied:

1. EXISTS predicates must be in a purely conjunctive WHERE
clause. No disjunction or nested negation.

2. The parent query is either a SELECT DISTINCT or a
duplicate-insensitive aggregate [21] (e.g. maxz(1,1) =
maz(1), but sum(1,1) # sum(1))

The decorrelation process itself moves the query nested
in the EXISTS into the FROM clause of its parent query. The
(formerly) nested query’s WHERE clause is then moved into
the parent’s WHERE clause. If the input query is of the form:

SELECT ... FROM R WHERE

EXISTS (SELECT ... FROM S WHERE q)

then the output query will have the form:
FROM R, (SELECT ...

SELECT ... FROM S) WHERE q



Flatten Sub-queries in NOT EXISTS. Queries with negated

EXISTS predicates (i.e., NOT EXISTS), can also be de-correlated

if the same set of safety constraints is satisfied. To de-
correlate a NOT EXISTS predicate, we use the set-difference
operator EXCEPT. If the input is of the form:

SELECT ... FROM R WHERE

NOT EXISTS (SELECT ... FROM S WHERE q)

then the output will be of the form

(SELECT ... FROM R) EXCEPT
(SELECT ... FROM R, (SELECT ...

OR-UNION transform.

Recall the equivalence between logical OR and UNION
in Example Naively, we might convert the DNF-form
predicates into UNION queries:

FROM S) WHERE q)

TRANSFORMATION 1. o(c,v..ven)(@) = U
i€(1...N)

However, duplicates caused by the possible correlation be-
tween clauses in DNF will break the equivalence of this
rewrite. Consider the following query

ExaAMPLE 4. Correlated clauses

SELECT sum(score) FROM exam WHERE score>61 OR pass=1

Suppose criterion for passing the exam is 60, then students
who pass the exam are highly overlapped with students with
score higher than 61 and the rewritten query is not equiva-
lent. As a result, we should only convert mutually exclusive
ORs.

Naively, we might generate a sequence of mutually exclu-
sive OR statements using Shannon expansion [22]. Unfortu-
nately, Shanon expansion can create an exponential number
of clauses, further exploding the number of features that
need to be created.

A second alternative is to define a new form of duplicate-
sensitive union, essentially a form of set-union (i.e., UNION
DISTINCT) that relies on tuple provenance [23] to limit du-
plicate values. Although it may not be reasonable to expect
queries with this duplicate-sensitive union to be evaluated
efficiently, the query itself is never evaluated, but simply
compared against other queries.

It turns out that in cases without sub-queries nested in
predicates, there is still value in remapping ORs into UNIONSs.
Consider the following instance of tautology-based SQL in-
jection [24].

EXAMPLE 5. Tautology in Disjunction
1. SELECT * FROM R WHERE R.r>1 OR 1=1
2. SELECT * FROM R WHERE R.r>1

Although the above two queries are quite structurally sim-
ilar, the set of rows returned will be very different. Trans-
forming OR into UNION in example [5| will partition the
query into two independent parts, making it easier to detect
that one of the partitions returns all rows of R.

Aggregate functions will prevent us from fully serving this
purpose. Adding aggregate maz to query 1 in example [f

EXAMPLE 6. OR-UNION transform under aggregate
SELECT max(R.r) FROM R WHERE R.r>1 OR 1=1

(00:(Q))

SELECT max(R.r) FROM ( (SELECT * FROM R WHERE R.r>1)
UNION (SELECT * FROM R WHERE 1=1) )

UNION stays in FROM clause after regularization because
of maz. To pull up UNION above maz(R.T), we make copies
of maz(R.r) and distribute them into each component query
under UNION. Note that this transformation does not re-
tain equivalence, we need one more step of max aggregate
to recover the correct result. Trade-off is that pulling up
UNION to the top is friendlier for analysis and comparison
purpose. In short, our goal of regularization is to turn any
query into a UNION of conjunctive queries |25] without any
sub-query nesting.

Next we discuss regularization for CASE expressions as
they add in ambiguity.

Contingent values and CASE expression transla-
tion. CASE expressions introduce if-then-else logic flow con-
trol in SQL language. Consider the two CASE expressions

EXAMPLE 7. CASE expression ambiguity
1. CASE WHEN A.a < 3 THEN X WHEN A.a < 4 THENY ELSE Z
2. CASE WHEN A.a > 4 THEN Z WHEN A.a > 3 THENY ELSE X

In CASE statements, conditions are implicitly correlated be-
cause a condition is evaluated only if all of its predeces-
sors are not satisfied. Rephrasing the CASE as an unordered
set of disjoint conditions helps to resolve ambiguity from
this implicit correlation by making the correlation explicit.
Concretely, each condition is conjuncted with the negation
of its predecessors in the statement. Continuing the exam-
ple above, in statement 1, the second WHEN clause becomes
—(A.a <3)ANAa <4

As a result of transformation, the WHEN clauses of both
statements mirror one-another, checking for values in the
range [3,4]. Also note that the resulting CASE statement
partitions its input set, and can easily be re-cast as a UNION
(also a common technique in query optimization). Given a
query of the form

SELECT ... CASE WHEN X1 THEN A1 ...
WHEN XN THEN AN ...

we emit a query of the form

(SELECT A1 ... WHERE X1) UNION ... UNION

(SELECT AN ... WHERE (NOT X1) AND ... AND XN)

In the above transformation, Boolean-valued CASE statement
(i.e., those already appearing in a where clause) can be flat-
tened as a form of implication: A — B = (-AV B).

4.2 Evaluation

We next evaluate the effectiveness of regularization by ap-
plying it to each of the three metrics described in Section [3]
We use DCABench, and compare the quality of each mea-
sure both with and without regularization. Note that ques-
tions in UB exam require student to write queries fulfilling
textually similar but semantically distant intents in order to
test whether students comprehend the subject. Hence we
expect regularization helps all these three algorithms cor-
rectly distinguishing answers written under different ques-
tions. However, as student answers are noisy and some do
not conform with the intent required, we minimize noise in
the clustering results by considering only student answers in
the UB exam dataset that received a grade of over 50%.

Figure [3] shows the three validation measures for each of
the three similarity metrics, both with and without regular-
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Figure 3: Clustering validation measures for each metric with and without regularization step

ization. As we observe from the Figure, regularization sig-
nificantly improves the Average Silhouette Coefficient and
BetaCV measures for all similarity metrics. The Dunn in-
dex is relatively unchanged for the IIT Bombay dataset, and
shows slight signs of worsening with regularization on the
UB Exam dataset. This is not unexpected: Regularization
simplifies queries and as a result all queries become more
similar.

Note that for (a) in Figure [3] on UB exam dataset, the
boost in performance of the other two algorithms is not
comparable to Aligon. Because only Aligon treats features
created under different functional clause of the query(e.g.
SELECT, FROM) as independent and not comparable. In UB
dataset, nested sub-queries are frequent and regularization
flattens sub-queries and merges their functional clauses to-
gether with the parent. Aligon essentially generates a sep-
arate feature vector for each merged functional clause. For
the other two algorithms, total weight of features from vec-
tor of SELECT clause can be overwhelmed by the vector of
FROM clause when vectors are merged into one. Generally
speaking, merged SELECT clause offers larger distinguishing
power than merged FROM clause after regularization. Hence
the benefit from regularization is degraded for the other two
algorithms.

S. SIMILARITY METRIC

As a declarative language, the abstract syntax tree (AST)
of a SQL statement acts as a proxy for the intent of the
query author. We thus argue that structural similarity is
a meaningful metric for query similarity. FOr instance, we
can group a query @ with other queries that have nearly (or
completely) the same AST as Q. This structural definition
of intent has seen substantial use already, particularly in the
translation of natural language queries into SQL [26].

SELECT
|

[0 ] o | [

fooun | [omn ][ = |

’ rank ‘ username

EalEz

Figure 4: An abstract syntax tree of query SELECT rank,
username FROM USER WHERE rank <> "admin".

As explained in Section existing similarity metrics mainly
utilize the columns from specific parts of the query; mak-
ing use of the combination of projection, selection, joins, or
group by items. However, we claim that having the same set
of items does not necessarily imply that these queries have
similar intents, even when they operate on similar domains.
Consider the following example:

EXAMPLE 8. Queries accessing same columns

1. SELECT username FROM USER
WHERE rank = "admin"

2. SELECT COUNT(username), rank FROM USER
WHERE rank <> "admin"
GROUP BY rank

For the remainder of this paper, we will use @ to denote
both the query itself as well as its tree encoding. The queries
@1 and @2 in Example [8] share the same set of columns;
username, and rank. Nevertheless, it is obvious that Q1
aims to list all usernames with admin rank, while Q2 in-
tends to count the number of users for every rank except
the ones with admin rank. While having overlapping sets of
items indicates a potential similarity, the intent behind these
queries are completely different. This problem can easily be
solved if we utilize the query ASTs. The AST of WHERE
clause expressions of both queries can be seen on Figure

‘ rank H “admin” ‘ ‘ rank ‘ ‘ “admin” ‘

(a) The subtree of expression (b) The subtree of expression
@Q1:rank = "admin" @Q2:rank <> "admin"
Figure 5: Two example subtrees

According to other similarity metrics surveyed in Sec-
tion[2] the expressions rank = "admin" and rank <> "admin"
are the same, because the only grammar item they would
consider while calculating pairwise similarity is the column
rank. We, on the other hand, argue that we need to consider
all items and all expressions. Table [d] shows all features we
can utilize.

When we construct feature vectors v1 and vy by counting
the appearance of each feature in @)1 and Q2 respectively,
we end up with the vectors listed in Table



Table 4: Feature set of @1 and Q2

Feature Item
1 rank
2 =
3 <>
4 “admin”
5 rank = “admin”
6 rank <> “admin”
Features
Vectors T T2 T3 T4T576
V1 1|11(0(1]1]0
Vg 1({0|1]1f0]|1

Table 5: Feature vectors constructed for queries Q1 and Q2
(See Example .

Pairwise similarity between the two queries can now be
computed using cosine similarity:

. V1 - V2
sim(Q1, Q2) = cos(v1,v2) = ————— = 0.5
’ ’ [[va]] - [[v2]]
This construction process is essentially the feature extrac-
tion scheme based on the Weisfeiler-Lehman test of isomor-
phism on graphs.

5.1 Weisfeiler-Lehman algorithm

An ideal distance measure takes into account the level of
similarity or overlap between these tree encodings and their
substructures. For two SQL queries Q1 and @2, one reason-
able measure might be to count the number of connected
subgraphs of @ that are isomorphic to a subgraph of Q.
Subgraph isomorphism is NP-complete, but a computation-
ally tractable simplification of this metric can be found in
the Weisfeiler-Lehman (WL) Algorithm [16] illustrated as
Algorithm [I] Instead of comparing all possible subgraphs of
Q1 against all possible subgraphs of ()2, the WL algorithm
restricts itself to specific types of subgraphs. It takes the
set of all query tree encodings 7" as an input and it outputs
a set of labels for each tree encoding where all the identical
subgraphs in the query log are labeled with the same value.

Given a query @, let N € (@ denote a node in Q. N
is initially labeled with the SQL grammar symbol that N
represents. The i-descendent tree of N: desc(N,i) is the
sub-tree rooted at N, including all descendants of N in @ up
to and including a depth of i. The features of i-descendent
sub-tree rooted at N: feature(N,i) is all of the possible
i-descendent trees that can be generated from V.

EXAMPLE 9. Given the tree in Figure |4}, desc(COL_ID,1)
is the tree containing the nodes COL_ID, rank, and username.
feature(N,i) is the expressions (COL_ID), (rank), (user-
name) and (rank, COL_ID, username).

EXAMPLE 10. Given the tree in Figure[], desc(WHERE,2)
is the tree containing the nodes WHERE, <>, rank, and "ad-
min". feature(N,i) is the expressions (WHERE), (<>), (rank),
("admin"), (WHERE, <>), (rank, <>, "admin") and (WHERE,
rank, <>, "admin").

The WL algorithm identifies a query ) by all possible
i-descendent trees that can be generated from Q:

1d(Q) = { desc(N,7) | N € Q Ai € [0,depth(Q)] }

Algorithm 1 Weisfeiler—-Lehman Algorithm

1: procedure WEISFEILER-LEHMAN
2: for each tree Q € T do

3: H <+ depth(Q)
4: for h< 1;h < H;h++ do
5: for each node N € Q do
6: f < CreateFeature(
expressions in {N (J V N.children})
7 if featureSet.get(f) # null then
8: N « featureSet.get(f)
9: else
10: featureSet.put(f)
11: end if
12: if IsLeaf(VN.children) then
13: N.IsLeaf = true
14: end if
15: end for
16: end for
17: end for

18: end procedure

Here depth(Q) is the maximum distance from the root of @
to a leaf. To make this comparison efficient, subtrees are
deterministically assigned a unique integer identifier, and
the query is described by the bag of @Q’s i-descendent tree
identifiers. Thus two query trees with an isomorphic subtree
will both include the same identifier in their description.
The bag of identifiers is encoded as a feature vector and
allows a distance function like euclidean distance or cosine
distance to measure the similarity (or rather dis-similarity)
of two queries.

The algorithm operates from top to the bottom, exhaus-
tively identifying what expressions each node should carry.
The leaf (bottom) nodes are always the grammar atoms,
hence cannot be splited into smaller items. Once a full iter-
ation from top to the bottom of the AST finishes, each node
would carry its own value and the expression derived from
its children’s. Once the children of a node finalize, namely,
they don’t get assigned any new expressions, that parent
node is marked as finalized, too. Until all of the nodes are
finalized in the AST, the algorithm goes on. Hence, from the
smallest grammer atom to the full query itself become a fea-
ture. This process guarantees the extraction of all possible
expressions in the query as a feature deterministically.

Figure [6] shows how the WL algorithm is applied on the
AST of the query given in Figure First, every distinct
node of the AST gets labeled with a unique integer. If
the same node appears more than once, each instance is
labeled with the same integer. As the algorithm progresses,
the dotted box emphasizes the region being examined, while
the text below represents new labels being synthesized from
existing labels. Grey nodes have been fully labeled, while
white nodes are still being processed.

5.2 Clustering using the similarity metric

In our experiments, we use cosine similarity as the simi-
larity metric. We could have used Euclidean or Manhattan
distance, too, but in that case we would need to have an
additional normalization step; for instance, when we com-
pare two queries with only one feature different from each
other, our result would be 2 units. However, when we com-
pare two queries with hundreds of features in common, but
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Figure 6: Weisfeiler-Lehman algorithm applied on AST
given in Figure [4]

only three features different, our result would be 3 units,
hence we would classify the latter pair more different than
the former pair. We can perform clustering of similar queries
with the pairwise similarity matrix of a query set by creating
the feature vectors with WL algorithm, and then calculating
pairwise distances with cosine similarity.

The accuracy of this method to extract important features
can be increased in various ways. In Section [ we talk
about how we can exploit the flexibility of SQL queries by
regularization. We also discuss what can be done to improve
the algorithm’s performance in Section [6} In the following
section, we show how this similarity metric compares against
the other similarity metrics evaluated in this paper.

5.3 Evaluation

In order to evaluate our the effectiveness of WL algorithm
in characterize query similarity, we compare it against three
other metrics which have been mentioned in Section 3| Fig-
ure [7] shows the comparison of all four metrics using three
different clustering validation measures. We, again, use the
UB Exam dataset with the queries graded over 50% and
IIT Bombay dataset for the same reasons explained in Sec-
tion As observed in the figure, even though WL algo-
rithm is not the best across three different measures, it is
quite competitive in comparison with other similarity met-
rics. This shows WL algorithm has a great potential for im-
provement when it is only used in its straightforward form

and hasn’t been tweaked much to adapt with the query data.

Beside it, we also want to explore how well WL algorithm
works when using regularization step. For this reason, we
perform another experiment to compare the effectiveness of
WL algorithm with and without regularization step. Fig-
ure shows the result of this experiment. As observed in the
figure, adding regularization step can yield an improvement
in performance of WL algorithm when considering Average
Silhouette Coefficient or BetaCV as a quality measure. On
the other hand, there is no clear improvement or even a re-
duction in clustering quality when Dunn Index is used as a
clustering validation measure. However, the same argument
from subsection can be applied here when noting that
Dunn Index only measures the extreme cases in the dataset
while Average Silhouette Coefficient and BetaCV consider
all queries in dataset when computing the measures. There-
fore, we may conclude that even though some queries at
the borderline of cluster may suffer a decrease in clustering
quality, adding regularization step into WL algorithm will
increase in its overall capability of capturing query seman-
tics and put queries that perform the same task spatially
close together.

For understanding the computational time to process a
set of queries and producing pair-wise distance matrix for
WL algorithm and its relative processing time to other sim-
ilarity metrics, we measure and report the running time of
each similarity metric with and without regularization. For
all metrics, the running time is measured 5 times and the
average value is reported. Figure [J] shows the comparison
in terms of running time among different similarity metrics.
As observed in the figure, when using regularization, the
running time is consistently reduced except for the case of
Makiyama’s similarity metric when IIT Bombay dataset is
used. For UB Exam dataset, probably because of the small
number of queries, the running time is almost comparable
among four similarity metrics. With II'T Bombay dataset
where the number of queries is nearly three times more than
the number of queries in UB Exam dataset, the difference in
running among different similarity metrics are more notable.
Although WL algorithm is slowest among four metrics when
regularization step doesn’t apply, its running time decreases
drastically when using regularization. This can be explained
by noting that the regularization step allows the query to be
converted into a more standardized form which subsequently
is more efficient in extracting features and leads to a reduc-
tion in running time.

6. DISCUSSION

We have surveyed several similarity metrics for clustering
queries and focused on three methods that offer an end-
to-end similarity metric. The survey shows that most of
the metrics make use of selection and join predicates and
consider them as the most important items for similarity
calculation. Group-by predicates follows them closely while
projection items take the third most important item set.
There are other possible feature sets that can be used in
queries like the tables accessed or the AST of a query, but
these feature sets are generally overlooked.

As shown in Figure [I} apart from the Dunn index value
for II'T Bombay dataset, Aligon et al. [13] performs the best
amongst the surveyed methods. The success of this method
can be attributed to the choice of the feature set: selec-
tion, joins, group by and projection items separately have
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their own weightings in the general calculation of the simi-
larity. Although Aouiche et al. have a similar strategy;
making use of the most important features selection, joins,
and group-by items, they don’t utilize the number of times
an item appears, or after the parsing, they don’t consider
what kind of feature an item is. This means, it does not
matter if a query has rank column in group-by, and the
other one has rank column in selection; they are considered
the same. Makiyama et al. , on the other hand, follows
Aligon et al. [13] in separating the different features, and
improves on it by making use of appearance count of items.
However, while trying to make use of every item like FROM
and Order-By predicates, they consider these low priority
predicates with same importance as the selection and join
predicates.

As can be seen in Tables [2| and [3] as the complexity or

difficulty of the question increases, the number of query
skeletons also increases, i.e., students find different ways to
solve the same problem. Especially, in Table [3] no two stu-
dents answer a question using the same structure. This phe-
nomenon motivates the need for regularization in comparing
SQL queries. As the complexity of the query increases, the
possible ways to create the query increase. Figure [3| shows
that our assumption that regularizing queries will improve
clustering quality is correct. Our proposed regularization
algorithm improves the clustering quality of all three met-
rics. One caveat is that regularization is only suitable for
query comparison purpose as some of its transformations do
not retain equivalence. In addition, once a nested sub-query
is flattened and merged with its parent, aliases in the par-
ent query pointing to it become invalid. At the same time,
names across different query bodies are merged and name
uniqueness is not guaranteed any more. Skewed names in
the query will make query comparison error-prone. Hence
we apply a recommended step before regularization that re-
names all entities in the query containing aliases.

In Section [5] we introduce a new similarity metric that is

based on the feature extraction scheme based on the Weisfeiler—

Lehman test of isomorphism on graphs where we make use
of query ASTs instead of atomic features. Even with this
naive approach, the performance of the metric is competi-
tive with the metrics surveyed in this paper as can be seen
in Figure[] The quality is further improved with the reg-
ularization scheme we proposed as shown in Figure |8} Fur-
thermore, the algorithm can be benefit greatly from feature
weighting (e.g. appointing higher weights to the features
created from selection and joins) and dimensionality reduc-
tion with PCA, ICA or other feature selection techniques.
Just like Makiyama et al. , we create many unimportant
features along with the important ones, and feature selection
can improve the accuracy of the metric greatly.



7. CONCLUSION AND FUTURE WORK

The focus of this paper is to summarize large query logs
by clustering queries by similarity of intent. We describe a
benchmark, DCABench, that captures the notion of query
intent using student answers to query-construction prob-
lems, and use this benchmark to evaluate three query sim-
ilarity metrics. We also propose a regularization technique
for standardizing query representations. Through further
experiments with DCABench, we show that regularization
significantly improves all three query similarity metrics, and
in particular the Aligon metric.

We identify the shortcomings of the current similarity
metrics and introduce a new technique based on Weisfeiler—
Lehman approximate graph isomorphism algorithm to cre-
ate feature vectors. We clearly demonstrate that the result-
ing query metric can be effective at clustering queries with
similar intent together. We show that its base performance
is comparable to the other methods, and that it scales well.

The approaches described in this paper only represent
the first steps towards tools for summarizing logs by intent.
Concretely, we plan to extend our work in several direc-
tions: First, we will explore new feature weighting strate-
gies and new labeling rules in order to capture the intent
behind logged queries better. Second, we will examine user
interfaces that better present clusters of queries — Differ-
ent feature sorting strategies in Frequent Pattern Trees (FP
Trees) [27] in order to help the user distinguish important
and irrelevant features, for example. Third, further explo-
ration on various kinds of statistics captured in FP Trees
will help us in determining the quality of the cluster, weight-
ing of features, and visualizing the summary of the clusters.
Lastly, we will investigate the effect of temporality on query
clustering.
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