ABSTRACT

Adaptive indexing is a promising alternative to classical offline index optimization. Under adaptive indexing, index creation and reorganization take place automatically and incrementally as a side-effect of query execution. Adaptive indexing implementations optimize the index’s structure by progressively rewriting it until it converges to a single idealized form such as a sorted array or B-Tree. However, the ideal representation changes over time: An adaptive index that is initially optimal for one workload becomes suboptimal as the workload’s characteristics change.

In this paper we generalize adaptive indexing, adding the ability to adjust the layout and behavior of the index to workload changes even after convergence. This radical just-in-time data structure approach to index construction and maintenance allows for indexes that dynamically adapt to changing workloads. Even with this generality, specialization is still possible. A just-in-time data structure emulates classical adaptive indexing schemes when appropriate, while also being able to adopt a hybrid stance tailored to a specific workload. We show that our approach is feasible and enables indexes that quickly pivot between different behaviors.

1. INTRODUCTION

The performance of a Database Management System is closely coupled to the index structures it uses, making index selection an extremely important part of any database deployment [8]. As workloads change, index structures must adapt. Standard DBMSes often take an all or nothing approach to this problem, where indexes are discarded or built up from scratch, incurring delays during the rebuilding process [24]. A recently developed class of data structures called adaptive indexes [21, 25] removes this limitation by facilitating incremental, online changes to the index. Examples of this class include Cracker Indexes [20, 21], Adaptive Merge Trees [18], and hybrid variants thereof [25, 32]. Adaptive indexes automatically optimize their physical representation in response to incoming queries, reusing work used to answer the query to also improve subsequent queries. Given enough time, a stable workload, and queries that touch all data objects, an adaptive index eventually converges to a data representation similar to that of a static index.

In practice, adaptive indexes have been shown to outperform classical indexing strategies during periods of high load, when building new indexes is difficult or impossible. Each index has a “sweet-spot” workload, as shown in Figure 1. For example, Cracker Indexes perform well if data is frequently modified, while Adaptive Merge Trees converge to the performance of a static index far faster. However, each of these index structures occupies only a single point on the tradeoff curve. Even attempts at best-of-both worlds solutions [25] are inevitably forced to make performance tradeoffs statically, leading to poor performance on fluctuating workloads.

In this paper, we introduce a novel generalization of adaptive indexes called just-in-time data structures (JITDs). A JITD can adjust its behavior to match the current workload, allowing it to dynamically reposition itself on the performance tradeoff curve. This flexibility is a result of decoupling the index’s physical structure from the logic that triggers change. A JITD represents data using a composable library of components, called cogs, that abstractly represent the structural and semantic properties of the JITD’s physical layout. Like an abstract syntax tree in a just-in-
time compiler, a JITD uses this abstraction layer to apply small, local optimizations to the index’s physical structure at runtime. By being built on a layer of generic, composable components, a JITD can dynamically swap out one set of optimization rules for another. This makes it possible to adjust a JITD’s behavior at runtime, even on a per-operation basis if necessary.

To make the idea of JITDs concrete, we will present an implementation of a JITD aimed at range queries over initially unsorted data. Our range query JITD generalizes both Cracker Indexes and Adaptive Merge Trees, and is able to emulate the stand-alone behavior of both. As we show, our range query JITD is able to gracefully transition between these two behaviors, enabling a wide variety of policies for dynamically adapting the JITD to changing workloads. Concretely, our contributions include:

1. Just-in-time data structures, a class of indexes that dynamically adapt to match offered workloads.
2. A transformation-based approach to defining JITDs, and an application of this approach to emulate Cracker Indexes and Adaptive Merge Trees.
3. An initial prototype implementation of the above.

The rest of the paper is organized as follows. In Section 2 we introduce just-in-time data structures and motivate their design with examples. In Section 3 we provide implementation details for our prototype range-query JITD. We run through an example sequence of operations in Section 4. An initial performance study and validation is presented in Section 5. Related and future work are discussed in Sections 6 and 7, respectively. We conclude in Section 8.

2. JUST IN TIME DATA STRUCTURES

Just-in-time data structures create a separation between the physical representation of the data structure and the logic that defines how that representation changes over time. The physical representation of a JITD is defined by a set of generic components, or cogs, which capture the structure and semantics of the representation. The data structure’s logic, or policy, is then defined over these generic components without being hardcoded for a specific physical structure. A single JITD may implement and alternate between many different policies, exhibiting behavior suitable for the workload being presented to the system, or rapidly adapting its behavior to fluctuating workload demands. As an example, a JITD supporting range queries and insertions might adopt one policy (e.g., modeled after a Cracker Index [21]) during periods of high write activity. As write activity drops, the JITD might switch to a different policy (e.g., one modeled after Adaptive Merge Trees [18], which are known to have better convergent behavior [25]). In effect, JITDs provide a principled approach to hybridizing different data structures that support similar APIs and use similar components.

This generality has the potential to add complexity to data structures re-implemented as a JITD. JITD policies must account for many different possible physical layouts, and not just one well known structure. However, in this paper, we will show through examples and experiments how the JITD design pattern creates opportunities for synergy between different policies, while keeping the resulting complexity minimal. As our running example, we will use a JITD that stores key-value pairs and supports two operations: Insert and Range-Scan. After providing a high-level view in this section, we will discuss the implementation of policies emulating Cracker Indexes and Adaptive Merge Trees, two common adaptive indexes, in Section 3.

2.1 Cogs

Cogs are independent components that are recursively composed to define the structure of a JITD, both in terms of physical layout of the data, as well as semantic constraints over that layout. Our range query JITD uses four composable cogs, shown in Figure 3. The two base cogs: Array and Concat define the physical structure of the data being encoded by the JITD. Array represents a vector of key-value pairs, while Concat represents the composition of two independent collections of key-value pairs, each recursively defined by a cog.

SortedArray and BTree extend the structure of Array and Concat (respectively) with semantic properties: Records in SortedArray cogs are stored sorted by key, while a BTree cog partitions the key space of its child cogs with a separator.

Cogs compose: A Concat cog is defined in terms of two additional cogs. We refer to the structure of several cogs composed together as an assembly of cogs. The central idea driving JITD optimization is equivalence: The same collection of records can be expressed through many different assemblies. Like bytecode in a just-in-time compiler, assemblies of cogs are gradually replaced with equivalent, ideally more efficient assemblies. These transformations eventually converge to an idealized representation of the data, which is dictated by the policy that the JITD is currently using.

2.2 A JITD’s API

A JITD exposes a standard API, regardless of which policy is active. For example, our range query JITD exposes

<table>
<thead>
<tr>
<th>Cog</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>An array of N key/value pairs.</td>
</tr>
<tr>
<td>SortedArray</td>
<td>... in sorted order.</td>
</tr>
<tr>
<td>Concat</td>
<td>A union of records in 2 child cogs.</td>
</tr>
<tr>
<td>BTree</td>
<td>... with keys partitioned by separator.</td>
</tr>
</tbody>
</table>

Figure 3: Cogs used in the range query JITD.
two operations: Range-Scan and Insert, which operate on a single, root cog. A generic implementation of the Range-Scan operation is shown in Algorithm 1. This implementation is independent of the precise physical structure of the JITD, so long as semantic constraints on the cogs are preserved (i.e., on BTree and SortedArray). Moreover, this algorithm makes the best possible use of available structure. With copy-free constant-time iterator concatenation (·), only one operation (Filter on line 4) introduces any more than a logarithmic cost.

The generic implementation of the Insert operation is even simpler. New data is merged into the root via a Concat cog. A naive Insert implementation is shown in Algorithm 2.

Algorithm 1 Scan(low, high[, cog])
\[\begin{align*}
\text{Input: low, high: the range of keys to return.} \\
\text{Input: cog: The cog to scan (default: the root cog).} \\
\text{Output: iter: Iterator on records in the range low – high.} \\
1: \text{if cog is a SortedArray then} \\
2: \quad \text{iter } \leftarrow \text{iterator on cog.data} \\
3: \quad \quad \text{from BinarySearch(cog.data, low)} \\
4: \quad \quad \text{to BinarySearch(cog.data, high)} \\
5: \text{else if cog is a Array then} \\
6: \quad \text{iter } \leftarrow \text{Scan(low,high, cog.left)} \\
7: \quad \quad \text{· Scan(low,high, cog.right)} \\
8: \text{else if cog is a BTree then} \\
9: \quad \text{if cog.separator } \leq \text{ low then} \\
10: \quad \quad \text{iter } \leftarrow \text{Scan(low,high, cog.left)} \\
11: \quad \quad \text{· Scan(low,high, cog.right)} \\
12: \quad \text{else} \\
13: \quad \text{iter } \leftarrow \text{Scan(low, cog.separator, cog.left)} \\
14: \quad \quad \text{· Scan(cog.separator, high, cog.right)} \\
\end{align*}\]

Algorithm 2 Insert(data[, cog])
\[\begin{align*}
\text{Input: data: The data to insert.} \\
\text{Input: cog: The cog to insert into (default: the root cog).} \\
\text{Output: cog: The replacement for cog.} \\
1: \text{cog } \leftarrow \text{Concat(cog, Array(data))} \\
\end{align*}\]

2.3 Generalized JITDs

In this paper we focus on a specific class of index structures to demonstrate the feasibility of the JITD model. However, the core principle of decomposing structure and logic is applicable to a much broader class of indexing schemes and data structures. Data structures with more complex semantic predicates (e.g., R-trees [19]), can be expressed through new cogs (e.g., a multi-dimensional BTree cog). Data structures with more complex structural properties (e.g., LSM Trees [29], which distinguish between disk- and memory-resident arrays) can be expressed similarly. The JITD model streamlines the process of hybridizing two or more such structures.

3. IMPLEMENTING POLICIES

Calls to the JITD’s API trigger changes to its structure. A change may occur due to the operation itself (e.g., an Insert), or may occur as an optimizing side-effect of the policy the JITD is currently using. Each policy defines transformations to be triggered before, after, or during execution of each operation. A transformation recursively rewrites the JITD’s structure, similar to a compiler optimizing an AST or machine code.

The logic for each transformation is defined by visitor pattern. Each transformation matches a specific pattern, or assembly of cogs and defines a procedure for constructing a new, equivalent assembly to replace it. In this section, we illustrate transformations through policies that emulate two common adaptive index structures: Cracker Indexes and Adaptive Merge Trees. We then discuss the creation of hybrid policies.

3.1 Policy 1: Cracking

Cracker Indexes [20, 21] (also called Cracked Databases) are a type of adaptive index that begins as an unsorted array of records. In a Cracker Index, each range scan forces the data to be partitioned on each range scan boundary. Pointers to partition boundaries are maintained in a B-Tree. This process simultaneously answers the query and brings the data closer to being sorted, making subsequent queries more efficient.

Used in isolation, the cracking policy mimics the behavior of a Cracker Index through three transformations: CrackInTwo, Pushdown, and MergeArrays. CrackInTwo, summarized in Algorithm 3, partitions an unsorted array based on either range scan boundary, replacing the Array cog with a BTree cog pointing to the newly fragmented arrays. Partitioning is performed in-place if possible. Range Scan triggers the CrackInTwo transformation twice, once for each scan boundary. BTree cogs limit which nodes are visited by CrackInTwo to only those nodes that could contain the scan boundary (val).

Algorithm 3 The CrackInTwo transform’s visitor
\[\begin{align*}
\text{Input: cog: The Array cog being visited.} \\
\text{Input: val: The partition boundary to crack on.} \\
\text{Output: cog: A replacement cog.} \\
1: \text{if cog is a SortedArray then return} \\
2: \quad \text{low, high } \leftarrow \text{Partition(cog, val)} \\
3: \quad \text{cog } \leftarrow \text{BTree(val, low, high)} \\
\end{align*}\]

As presented in Section 2.2, insertions concatenate new data onto the root. Two transformations incorporate this new data into the existing hierarchy of BTree cogs. First,
the Pushdown transformation shown in Algorithm 4 and illustrated visually in Figure 5 pushes Concat cogs down through BTree cogs. The Array child of the Concat is partitioned, and the resulting arrays are pushed down into the BTree child. Similar transformations are used for several different variations of this assembly. Pushdown is triggered before the Range Scan operation, and visits every Concat cog that falls within the scan boundaries, including those created by Pushdown itself. The MergeArrays transformation shown in Figure 6 and Algorithm 5 then copies each concatenation of Array cogs into a single, contiguous Array. Note that unlike updates in traditional Cracker Indexes [22], the cracker policy does not mandate that all data ultimately reside in a single contiguous region of memory.

Algorithm 4 The Pushdown transform’s visitor
Input: cog: The Concat cog being visited.
Output: cog: A replacement cog.
1: if cog.left is a BTree and cog.right is a Array then
2: a, b ← Partition(cog.right, cog.left.separator)
3: cog ← BTree((cog.left.separator, cog.left.left, a),
Concat(cog.left.left, a),
Concat(cog.left.right, b))

3.2 Policy 2: Adaptive Merge
Adaptive Merge Trees [18] are a second class of adaptive index. An Adaptive Merge Tree initially begins as a collection of sorted runs, each storing one partition of the data. On each range query, records from each sorted partition that fall within the range scan’s bounds are extracted and merged together into a new partition called the primary. As records are merged into the primary, performance approaches that of a pure BTree. An Adaptive Merge Tree converges to an average lookup performance of 40µs per operation for a 1GB dataset, as compared to an average of 100 – 1000µs per operation performance for a Cracker Index (after 5000 operations). This improved performance comes at the cost of a much slower startup. Sorting data can add multiple seconds to the cost of a read and/or write, and the initial few merge steps can involve substantial amounts of data copying.

The adaptive merge policy mimics the behavior of an adaptive merge tree through a transformation called Merge, several simpler supplemental transformations, and a utility procedure called Extract. Prior to each read, the SortArrays transformation (not shown) replaces Array cogs with SortedArray cogs. Arrays larger than a threshold value (10 million elements in our implementation) are broken into individual partitions, each smaller than the threshold value, before being sorted. The resulting partitions are represented as a hierarchy of Concat cogs, as shown in Figure 7. If the root of the tree includes BTree cogs, these are used to limit SortArrays to arrays in subtrees containing applicable keys. Arrays not directly applicable to the current query remain unsorted.

After ensuring that relevant arrays are sorted, the Merge transformation shown in Algorithm 6 is applied bottom-up to all hierarchies of Concat cogs. When used in isolation, this policy only creates one such hierarchy, at the root — we return to other cases in Section 3.3. Merge is applied to the immediate descendants of this hierarchy, again called partitions. Records in each partition within the range scan’s bounds are re-assembled and returned to

Algorithm 5 The MergeArrays transform’s visitor
Input: cog: The Concat cog being visited.
Output: cog: A replacement cog.
1: l, r ← cog.left, cog.right
2: if l is a SortedArray and r is a SortedArray then
3: cog ← SortedArray(SortMerge(l, r))
4: else if l is a Array and r is a Array then
5: cog ← Array(l.data ⊎ r.data)
their original partitions, while records in the scan bounds are merged together into the leftmost partition (the primary). As an optimization, the merged records are grouped into small blocks (10,000 records in our implementation), making subsequent Extracts on the primary more efficient.

Algorithm 6 The Merge transform’s visitor
Input: partitions: The immediate descendants of the hierarchy of Concat cogs rooted at the cog being visited.
Input: low, high: The range of keys being requested.
Output: partitions: A list of replacement cogs.
1: for i from 1 to |partitions| do
 2: lowCog[i], midCog[i], highCog[i] ← Extract(partitions[i], low, high)
3: partitions[1] ← BTree(low,
 4: lowCog[1],
 5: BTree(high,
 6: SortMerge(midCog[1]...midCog[|partitions|]), highCog[1]))
4: for i from 2 to |partitions| do
5: partitions[i] ← BTree(low,
 6: lowCog[i],
 7: BTree(high, { }, highCog[i]))

Algorithm 7 Extract(cog, low, high)
Input: cog: A cog to separate by keys.
Input: low, high: The range of keys being requested.
Output: lowCog: A cog with keys from −∞ to low.
Output: midCog: A cog with keys from low to high.
Output: highCog: A cog with keys from high to ∞.
1: if cog is a BTree then
 2: if cog.separator ≤ low then
 3: lowCog, midCog, highCog ← Extract(cog.right, low, high)
 4: lowCog ← BTree(cog.separator, cog.left, lowCög)
 5: else if cog.separator ≥ high then
 6: lowCog, midCog, highCog ← Extract(cog.left, high, low)
 7: highCog ← BTree(cog.separator, highCog, cog.right)
 8: else
 9: lowCog, midCog, highCog ← Extract(cog.left, low, high)
 10: _midCog, _highCog ← Extract(cog.right, low, high)
 11: midCog ← BTree(cog.separator, midCog, _midCog)
 12: highCog ← BTree(cog.separator, highCog, _highCog)
 13: else if cog is a SortedArray then
 14: lowCog, midCog ← Partition(cog, low)
 15: midCog, highCog ← Partition(midCog, high)
 16: else if cog is a ConcatCog then
 17: Ensure that cog was visited by Merge
 18: Apply Extract to partitions, as created by Merge

3.3 Hybridization and Generalization

The JITD model provides opportunities to exploit synergies between policies. Semantic constraints on the structure created by one policy can be used to minimize work in another. Recall that work in a JITD is expressed as a set of transformations following the visitor pattern. Altering a transformation to exploit existing semantic constraints frequently only requires changing the set of nodes that it visits.

Partial Sorts. The cracking policy pre-partitions data using BTree cogs; The adaptive merge policy can use these cogs at the root to limit which parts of the data need to be sorted, ignoring those outside of the range scan bounds. SortArrays is applied only to cogs falling within the range scan bounds.

Partial Merges. The PushdownConcats transformation creates much smaller arrays for the Merge transform to combine — This can be exploited by the adaptive merge policy by applying the Merge transform to any hierarchy of Concat cogs rather than just the one at the root, and using BTree cogs closer to the root to reduce the amount of data being merged together.

Cracking Sorts. The CrackInTwo transformation ignores existing SortedArray cogs created by the adaptive merge policy, as they already support efficient range scans.

Through several minor changes to each policy, the overhead of switching between different policies becomes minimal. This enables a variety of different hybrid policies. For example, the cracking policy exhibits better initial performance after a write and simultaneously reduces the cost of a subsequent switch to the adaptive merge policy for better performance in the tail. One simple, naive hybrid policy would start by fulfilling requests as per the cracking policy, and eventually switch to fulfilling requests as the adaptive merge policy. More complex policies may be defined to satisfy desired throughput requirements, support variable read priorities, to exploit other workload characteristics, or to react to structural properties of the data (e.g., small Arrays might be simply sorted outright and not cracked as in the HCR and HCS datastructures [25]). There is significant potential for future work in exploring this space of possible optimization policies.

4. EXAMPLE

We now present an end-to-end example of how a range-query JITD might be used. We will show how a JITD can freely switch between policies by illustrating three different evolutions of the same data structure as different policies are used to respond to scan requests. The full step-by-step example is illustrated in Figure 8. The initial state of the JITD, illustrated in Figure 8 as state (a), is a six-record array with keys {2, 3, 4, 7, 8, 1}. Subsequent states show how the JITD evolves as the following four operations are performed under a mix of policies:

1. Scan(−∞, 5)
2. Insert({9, 5, 6})
3. Scan(6, ∞)
4. Scan(2, 5)

Scan(−∞, 5): The first operation that the JITD receives is a scan for records up through 5. State (b) illustrates the effect of satisfying the request through the cracking policy. As there is only one node, the CrackInTwo transform partitions the six element array on the key 5. As a simple optimization, the partitioning occurs in-place, necessitating only a single swap of 7 and 1. Two new cogs are created, each referencing a region of the original array.

Insert({9, 5, 6}): Three records, {9, 5, 6} (in that order) are inserted next. As per Algorithm 2, this is represented by creating a new Array cog for these records, and
then merging it with the root in a newly created Concat cog, as shown in state (c).

Scan(6, ∞): Next, the JITD performs a scan for records greater than 6. We illustrate this request under both the cracking policy (d – f) as well as the adaptive merge policy (h – i). The cracking policy applies three transforms: Pushdown, MergeArrays, and CrackInTwo. The Pushdown transform partitions the array of new records, creating new Concat cogs below the BTree cog, as shown in state (d). Because we are only interested in keys greater than 6, the left-hand branch of the BTree cog can be safely ignored. The MergeArrays transform then copies the two remaining arrays into a single, contiguous region of memory as shown in state (e). Finally, the CrackInTwo transform partitions the newly created Array cog, resulting in state (f).

Switching to a different policy does not require any immediate layout changes to the JITD. Rather, each policy dictates how the JITD reacts to operations applied to it. The adaptive merge policy treats each contiguous hierarchy of Concat cogs as a set of partitions to be sorted and merged. In this case, there are two partitions. The SortArrays transform ensures that all relevant Array cogs are sorted, resulting in state (h). As before, the existing BTree cog allows SortArrays to ignore its left-hand branch. Next, the Merge transform extracts the fragment of each partition that falls within the search range: 9 from the newly inserted records, and 7 and 8 from the partition rooted at the BTree cog. The extracted records are merged together into the left-most partition, as shown in state (i). For this specific operation, the entire right-hand branch of the BTree cog is null. A special singleton cog: the empty set ∅ is used to denote the lack of records in that range.

Scan(2, 5): The JITD is scanned for records in the range (2, 5]. Recall that state (f) was reached by responding to Scan(6, ∞) according to the cracking policy, and that state (i) was reached by responding according to the adaptive merge policy. We will illustrate three outcomes: State (g) shows the effects of continuing with the cracking policy, States (k) and (l) show the effects of switching from cracking to adaptive merge, and state (j) shows the effects of switching from adaptive merge to cracking.

As before, the cracking policy applies Pushdown, MergeArrays, and CrackInTwo. The Pushdown transform has no work to do, so the MergeArrays transform merges the two leftmost Array cogs together. The newly formed cog is partitioned by the CrackInTwo transform, resulting in state (g).

For the adaptive merge policy, the SortArrays transform sorts partitions below the Concat cog, creating state (k). As usual, the BTree cog at the root allows a fragment of the JITD to remain unmodified. After sorting, records in the scan range are extracted from each partition: 3 and 4 from the left partition and 5 from the right. The extracted records are merged into a single SortedArray cog, creating state (l).

Finally, we return to state (i), created by the adaptive merge policy. Again, recall that policy changes do not require any physical changes to the JITD. Thus, the cracking policy is applied exactly as in each previous case, through the three transforms: Pushdown, MergeArrays, and CrackInTwo. The Pushdown transform partitions the SortedArray cog.

\[\text{3}\text{Our implementation also uses a more complex variant: CrackInThree [21]. In the interest of clarity, we present the example only using the simpler CrackInTwo transform.}\]
ray cog \{5, 6\} twice. Because the array being pushed down is sorted, each partitioning step can be performed in log \(n\) time. The first partitioning step pushes all records down the left-hand branch, as there are no records greater than 6. The second step splits the array into \{5\} and \{6\}. Next, the MergeArrays transform combines the newly created \{6\} SortedArray cog with the already existing \{2, 3, 5, 1\} Array cog. Finally, the CrackInTwo transform partitions and splits the newly created cog, creating state \((j)\).

5. EVALUATION

Our key contribution in this paper is illustrating the flexibility afforded by the JITD model. In this section we assess the performance impact of this added flexibility. We show that the JITD form of a Cracker Index and an Adaptive Merge Tree retains performance competitive with the original data structures. Then, we discuss a range of policies that the JITD implementation of these data structures enable.

We show that
these policies can be used to quickly and easily reposition the data structure’s performance characteristics to adapt to new workloads.

5.1 Experimental Setup

Our JITD was implemented in Java 1.7. Experiments were performed on a 2x16 core 1.8 GHz Intel Opteron with 128 GB of RAM, running RHEL 6, and OpenJDK 1.7. JVM heap sizes were set high enough to minimize interference from Java’s garbage collector, and experiments were run single-threaded. Source code for our JITD implementation and experiments is available for download\(^4\).

All experiments begin with an initially unsorted array of 100 million records stored row-wise. Each record consists of an 8-byte integer key field, and an 8-byte payload field. The resulting structure is analogous to a sideways cracker index [23]. The resulting dataset was approximately 1.6 GB. Each read operation reads a randomly selected range of keys

\[
\begin{align*}
\text{SELECT} & \quad \text{key, payload FROM R} \\
\text{WHERE} & \quad \text{key > low AND key < high}
\end{align*}
\]

\(\text{low}\) was selected randomly, and \(\text{high}\) was selected relative to \(\text{low}\) to return approximately 2 to 3 thousand records. A total of 10,000 reads were performed. At the 5,000 read mark, an array containing an additional 10 million random records (about 160 MB) was inserted into the data structure. As per the Insert operation (Algorithm 2), the structure’s root was replaced by a concatenation of the original root and a new unsorted array cog containing the new data.

5.2 Primitive JITD Policies

Figures 9.a and 9.b show the raw performance of the cracking and adaptive merge policies, as presented in Sections 3.1 and 3.2, respectively. Cracking’s initial performance is sub-second and quickly converges to millisecond latencies, as transformations manipulate data in-place. Adaptive merge has an extremely high upfront cost of about 33 seconds for the initial sort (also performed in-place), and again for about 3 seconds after the write. The merge process requires a substantial number of memory copies, so for the next two thousand iterations performance alternates between merges costing 1-20ms, and fast-path reads that do not require a merge, and cost 30-40\(\mu\)s. This performance is comparable to experiments performed by Idreos et al. [25].

We attribute the slower convergence and lower initial cost of the adaptive merge policy to a chunking optimization in [25] that merges batches of data with each read. A similar optimization is feasible in our own framework.

5.3 Hybrid Policies

Swap and transition implement two different hybrid policies. Under the swap policy, the JITD simulates the cracking policy for the first 2000 operations after a write and then switches immediately to fulfilling requests according to the adaptive merge policy. The data structure remains unchanged after each policy switch, but new requests are satisfied using the new policy’s transforms. The resulting data structure is a synthesis of both cracker indexes and adaptive merge trees. Performance results for the swap hybrid policy are presented in Figure 9.c. The cracking policy’s Pushdown transformation reduces the amount of work required for each sort operation, lowering the adaptive merge policy’s per-read cost. The transition between policies is performed gracefully, and the resulting data structure actually performs better than either pure merge or pure cracking. Swap’s initial post-write performance is comparable to pure cracking, and the first set of writes after switching to the adaptive merge policy take on the order of 100ms as compared to the 3 seconds required to sort the 160 MB of data written. Then, at the tail, performance quickly converges to the sub-millisecond latency of the adaptive merge policy’s tail.

The performance of the transition policy is presented in Figure 9.d. Like the swap policy, each write resets the JITD to the cracking policy. After 1000 iterations, the JITD begins a gradual transition from the cracking to the adaptive merge policy. Each request is satisfied with a randomly selected policy, starting with a 100% chance to satisfy requests as per the cracking policy, and linearly transitioning to a 100% chance to satisfy requests according to the adaptive merge policy. This shows that a JITD is able to switch back and forth between the two primitive policies on a per-operation basis. Moreover, note the tri-modal distribution of latencies once the transition period begins: Requests satisfied according to the cracking policy continue to operate consistently in the 1ms range, while requests satisfied by the adaptive merge policy alternate between 10-100ms if a merge is required, and 30-40\(\mu\)s for fastpath requests. Even though the variance in read latencies of the data structure as a whole increases during the transition period, any variance-intolerant scan operation can still be fulfilled with the consistent latency of the cracking policy.

A side-by-side throughput comparison of all four JITD policies is shown in Figure 10. Both swap and transition mirror the behavior of the cracking policy for the first thousand operations, both initially and after the write. Conversely, in the tail, both swap and transition mirror the convergent behavior of the adaptive merge policy, which begins to outperform the cracking policy. The adaptive merge policy is able to exploit work done by the cracking policy, resulting in a softer performance dip after it is put into use. The two primitive policies, and the two hybrid policies presented represent only a small sampling of what is possible, but demonstrate that a JITD can quickly pivot to meet the demands of new workloads.

\(^4\)http://github.com/okennedy/jitd/
Figure 9: Read performance trace for the range-query JITD in four different modes with a write after 5,000 reads. A 33 second read spike for the first read under the Adaptive Merge policy is not shown.

Figure 10: Average throughput for Figure 9.

6. RELATED WORK

Adaptive indexing [16, 17] has become a popular mechanism for incrementally adjusting indexes dynamically based on workload. Adaptive indexes allow a database or data warehouse to improve performance by leveraging work that needs to be performed to resolve a query, to also improve the indexing structure. Database Cracking [20, 21, 22] was the first to pioneer this scheme. Other schemes have followed, including Adaptive Merge Trees [18] as well as several variants that combine the features of both implementations allowing for both merging and cracking [25]. In all of these proposals and systems, the underlying index implementation makes static performance tradeoffs, resulting in a canonical representation that can no longer be adjusted to changes in broad workload characteristics. JITDs are a generalization of adaptive indexing, whose goal is to allow continual shifts in the underlying index structure. A steady state is only reached if the workload itself reaches a steady state. JITDs are well suited to workloads that have distinct phases, mirroring common trends in internet traffic.

SMIX [32] is an adaptive indexing structure, that like JITDs, does not have an explicitly steady state that the indexing scheme tends towards. SMIX allows for indexes to both dynamically grow and shrink. This is accomplished by introspecting the index and collecting information on which portions of the index are useful and what portions of the index are not useful. Based on this collected information the index is augmented. We believe this approach can be synergistic with JITDs, allowing for further refinement of the index. We believe the SMIX approach can be encoded in a JITD’s policies, by encoding information gathering during access of specific cogs composing the index structure itself.

Legorithmics [26] takes an approach similar to JITDs for optimizing traditional database algorithms. Using a library of algorithmic components and a memory hierarchy specification, the Legorithmics compiler specializes canonical algorithms for databases (e.g., Sort) to new memory hierarchies.

Building Block Databases.

Over a decade ago, Chaudhuri et al. [10] advocated a low-level RISC style database architecture, which would provide target applications and end-users with a sufficient, but minimal feature-set, thus avoiding the overheads of supporting unneeded functionality. More recent efforts have begun to realize this vision [5, 7, 12, 14, 27]. Of particular note is OctopusDB [13], which uses a single shared log structure to
The resulting structure captures partial evaluation strategies such as Stickies [15], and forms a basis for distributed replication [4].

7.4 Out-of-Core Cogs

So far, we have presented JITDs entirely in the context of main-memory data structures. Adapting JITDs for disk-resident data layouts requires restructuring transformations, accounting for the need to perform sequential reads and writes. Hyder [6] and LSM Trees [29, 31] are both examples of a similar restructuring applied to naive B-Trees. When combined with procedural cogs, we believe that out-of-core JITDs will form a basis for log rewriting [4], a powerful generalization of checkpointing.

8. CONCLUSIONS

In this paper, we introduced the idea of just-in-time data structures (JITDs), and showed how the JITD model could be applied to range query data structures. JITDs decouple the logic and physical representation of an index data structure, and allow multiple behaviors, or policies to collectively manipulate a standardized library of physical layout building blocks, or cogs. Through a specific JITD implementation, we have shown that this approach is feasible, and can be used as a principled approach to hybridizing different data structures.

9. ACKNOWLEDGEMENTS

The authors would like to thank Daniel Zinn for several enlightening discussions contributing to this paper, and the reviewers for their insightful comments. The authors would also like to acknowledge the contributions of Ankur Upadhyay to the system as a whole.

10. REFERENCES