Just-In-Time Data Structures

Oliver Kennedy, Lukasz Ziarek
The University at Buffalo
{okennedy, Iziarek}@buffalo.edu

ABSTRACT

Adaptive indexing is a promising alternative to classical of-
fline index optimization. Under adaptive indexing, index
creation and re-organization take place automatically and
incrementally as a side-effect of query execution. Adaptive
indexing implementations optimize the index’s structure by
progressively rewriting it until it converges to a single ide-
alized form such as a sorted array or B-Tree. However, the
ideal representation changes over time: An adaptive index
that is initially optimal for one workload becomes subopti-
mal as the workload’s characteristics change.

In this paper we generalize adaptive indexing, adding the
ability to adjust the layout and behavior of the index to
workload changes even after convergence. This radical just-
in-time data structure approach to index construction and
maintenance allows for indexes that dynamically adapt to
changing workloads. Even with this generality, specializa-
tion is still possible. A just-in-time data structure emulates
classical adaptive indexing schemes when appropriate, while
also being able to adopt a hybrid stance tailored to a specific
workload. We show that our approach is feasible and enables
indexes that quickly pivot between different behaviors.

1. INTRODUCTION

The performance of a Database Management System is
closely coupled to the index structures it uses, making in-
dex selection an extremely important part of any database
deployment [8]. As workloads change, index structures must
adapt. Standard DBMSes often take an all or nothing ap-
proach to this problem, where indexes are discarded or built
up from scratch, incurring delays during the rebuilding pro-
cess [24]. A recently developed class of data structures called
adaptive indexes [21, 25] removes this limitation by facilitat-
ing incremental, online changes to the index. Examples of
this class include Cracker Indexes [20, 21], Adaptive Merge
Trees [18], and hybrid variants thereof [25, 32]. Adaptive in-
dexes automatically optimize their physical representation
in response to incoming queries, reusing work used to an-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

Static Index

Range
Query
Adaptive Merge

Upfront Cost

Cracking

Full Scan

\

Convergence Cost

Figure 1: Adaptive indexes present a variety of
static performance tradeoff options. A just-in-time
data structure gracefully transitions to any point on
the tradeoff curve at runtime.

swer the query to also improve subsequent queries. Given
enough time, a stable workload, and queries that touch all
data objects, an adaptive index eventually converges to a
data representation similar to that of a static index.

In practice, adaptive indexes have been shown to outper-
form classical indexing strategies during periods of high load,
when building new indexes is difficult or impossible. Each
index has a “sweet-spot” workload, as shown in Figure 1.
For example, Cracker Indexes perform well if data is fre-
quently modified, while Adaptive Merge Trees converge to
the performance of a static index far faster. However, each
of these index structures occupies only a single point on the
tradeoff curve. Even attempts at best-of-both worlds solu-
tions [25] are inevitably forced to make performance trade-
offs statically, leading to poor performance on fluctuating
workloads.

In this paper, we introduce a novel generalization of adap-
tive indexes called just-in-time data structures (JITDs'). A
JITD can adjust its behavior to match the current workload,
allowing it to dynamically reposition itself on the perfor-
mance tradeoff curve. This flexibility is a result of decou-
pling the index’s physical structure from the logic that trig-
gers change. A JITD represents data using a composable
library of components, called cogs, that abstractly repre-
sent the structural and semantic properties of the JITD’s
physical layout. Like an abstract syntax tree in a just-in-

!Pronounced jit-dees

Access
Logic

Mutation
Logic

Mutation Access

Logic Logic Abstraction Layer

Physical Structure J [Physical Structure

(a) A Traditional
Datastructure’s Design

@)

(b) A Just-In-Time
Datastructure’s Design

Figure 2: Just-in-time data structures place an ab-
straction layer between the physical representation
of encoded data, and the logic that accesses and ma-
nipulates that physical representation.

time compiler, a JITD uses this abstraction layer to apply
small, local optimizations to the index’s physical structure
at runtime. By being built on a layer of generic, composable
components, a JITD can dynamically swap out one set of
optimization rules for another. This makes it possible to ad-
just a JITD’s behavior at runtime, even on a per-operation
basis if necessary.

To make the idea of JITDs concrete, we will present an
implementation of a JITD aimed at range queries over ini-
tially unsorted data. Our range query JITD generalizes both
Cracker Indexes and Adaptive Merge Trees, and is able to
emulate the stand-alone behavior of both. As we show,
our range query JITD is able to gracefully transition be-
tween these two behaviors, enabling a wide variety of policies
for dynamically adapting the JITD to changing workloads.
Concretely, our contributions include:

1. Just-in-time data structures, a class of indexes that
dynamically adapt to match offered workloads.

2. A transformation-based approach to defining JITDs,
and an application of this approach to emulate Cracker
Indexes and Adaptive Merge Trees.

3. An initial prototype implementation of the above.

4. A detailed performance evaluation validating the fea-
sibility of just-in-time data structures.

The rest of the paper is organized as follows. In Section 2
we introduce just-in-time data structures and motivate their
design with examples. In Section 3 we provide implemen-
tation details for our prototype range-query JITD. We run
through an example sequence of operations in Section 4. An
initial performance study and validation is presented in Sec-
tion 5. Related and future work are discussed in Sections 6
and 7, respectively. We conclude in Section 8.

2. JUST IN TIME DATA STUCTURES

Just-in-time data structures create a separation between
the physical representation of the data structure and the
logic that defines how that representation changes over time.
The physical representation of a JITD is defined by a set of
generic components, or cogs, which capture the structure
and semantics of the representation. The data structure’s
logic, or policy, is then defined over these generic components
without being hardcoded for a specific physical structure. A

Cog | Description
Array An array of N key/value pairs.

SortedArray | ...in sorted order.
Concat A union of records in 2 child cogs.
BTree ... with keys partitioned by separator.

Figure 3: Cogs used in the range query JITD.

single JITD may implement and alternate between many dif-
ferent policies, exhibiting behavior suitable for the workload
being presented to the system, or rapidly adapting its be-
havior to fluctuating workload demands. As an example, a
JITD supporting range queries and insertions might adopt
one policy (e.g., modeled after a Cracker Index [21]) during
periods of high write activity. As write activity drops, the
JITD might switch to a different policy (e.g., one modeled
after Adaptive Merge Trees [18], which are known to have
better convergent behavior [25]). In effect, JITDs provide a
principled approach to hybridizing different data structures
that support similar APIs and use similar components.

This generality has the potential to add complexity to
data structures re-implemented as a JITD. JITD policies
must account for many different possible physical layouts,
and not just one well known structure. However, in this pa-
per, we will show through examples and experiments how
the JITD design pattern creates opportunities for synergy
between different policies, while keeping the resulting com-
plexity minimal. As our running example, we will use a
JITD that stores key-value pairs and supports two oper-
ations: Insert and Range-Scan. After providing a high-
level view in this section, we will discuss the implementation
of policies emulating Cracker Indexes and Adaptive Merge
Trees, two common adaptive indexes, in Section 3.

2.1 Cogs

Cogs are independent components that are recursively
composed to define the structure of a JITD, both in terms of
physical layout of the data, as well as semantic constraints
over that layout. Our range query JITD uses four compos-
able cogs, shown in Figure 3. The two base cogs: Array
and Concat define the physical structure of the data being
encoded by the JITD. Array represents a vector of key-value
pairs, while Concat represents the composition of two inde-
pendent collections of key-value pairs, each recursively de-
fined by a cog.

SortedArray and BTree extend the structure of Array and
Concat (respectively) with semantic properties: Records in
SortedArray cogs are stored sorted by key, while a BTree cog
partitions the key space of its child cogs with a separator.

Cogs compose: A Concat cog is defined in terms of two
additional cogs. We refer to the structure of several cogs
composed together as an assembly of cogs. The central idea
driving JITD optimization is equivalence: The same col-
lection of records can be expressed through many different
assemblies. Like bytecode in a just-in-time compiler, assem-
blies of cogs are gradually replaced with equivalent, ideally
more efficient assemblies. These transformations eventually
converge to an idealized representation of the data, which is
dictated by the policy that the JITD is currently using.

2.2 A JITD’s API

A JITD exposes a standard API, regardless of which pol-
icy is active. For example, our range query JITD exposes

two operations: Range-Scan and Insert, which operate on
a single, root cog. A generic implementation of the Range-
Scan operation is shown in Algorithm 1. This implementa-
tion is independent of the precise physical structure of the
JITD, so long as semantic constraints on the cogs are pre-
served (i.e., on BTree and SortedArray). Moreover, this
algorithm makes the best possible use of available struc-
ture. With copy-free constant-time iterator concatenation
(o), only one operation (Filter on line 4) introduces any
more than a logarithmic cost.

The generic implementation of the Insert operation is even
simpler. New data is merged into the root via a Concat cog.
A naive Insert implementation is shown in Algorithm 2.

Algorithm 1 Scan(low, high[, cog])

Input: low, high: the range of keys to return.
Input: cog: The cog to scan (default: the root cog).
Output: iter: Iterator on records in the range low —high.
1: if cog is a SortedArray then
2: iter <« iterator on cog.data
from BinarySearch(cog.data,low)
to BinarySearch(cog.data,high)
3: else if cog is a Array then
4: iter <« iterator on Filter(cog.data,low,high)
5: else if cog is a Concat then
6: iter < Scan(low,high, cog.left)
o Scan(low,high, cog.right)
7: else if cog is a BTree then
8: if cog.separator < low then

9: iter < Scan(low, high, cog.right)

10: else if cog.separator > high then

11: iter + Scan(low,high, cog.left)

12: else

13: iter < Scan(low, cog.separator, cog.le ft)

o Scan(cog.separator,high, cog.right)

Algorithm 2 Insert(data[, cog])

Input: data: The data to insert.
Input: cog: The cog to insert into (default: the root cog).
Output: cog: The replacement for cog.

1: cog < Concat(cog, Array(data))

2.3 Generalized JITDs

In this paper we focus on a specific class of index struc-
tures to demonstrate the feasibility of the JITD model. How-
ever, the core principle of decomposing structure and logic
is applicable to a much broader class of indexing schemes
and data structures. Data structures with more complex
semantic predicates (e.g., R-trees [19]), can be expressed
through new cogs (e.g., a multi-dimensional BTree cog).
Data structures with more complex structural properties
(e.g., LSM Trees [29], which distinguish between disk- and
memory-resident arrays) can be expressed similarly. The
JITD model streamlines the process of hybridizing two or
more such structures.

3. IMPLEMENTING POLICIES

Calls to the JITD’s API trigger changes to its structure.
A change may occur due to the operation itself (e.g., an In-
sert), or may occur as an optimizing side-effect of the policy

<sep
DATA | ==p>

DATA,

DATA,,

Figure 4: A visualization of the CrackInTwo trans-
form (Algorithm 3). DAT A is partitioned by sep into
DATA, and DAT A, and a new BTree node is created
linking the two fragments.

the JITD is currently using. Each policy defines transfor-
mations to be triggered before, after, or during execution of
each operation. A transformation recursively rewrites the
JITD’s structure, similar to a compiler optimizing an AST
or machine code.

The logic for each transformation is defined by visitor pat-
tern. Each transformation matches a specific pattern, or
assembly of cogs and defines a procedure for constructing
a new, equivalent assembly to replace it. In this section,
we illustrate transformations through policies that emulate
two common adaptive index structures: Cracker Indexes and
Adaptive Merge Trees. We then discuss the creation of hy-
brid policies.

3.1 Policy 1: Cracking

Cracker Indexes [20, 21] (also called Cracked Databases)
are a type of adaptive index that begins as an unsorted ar-
ray of records. In a Cracker Index, each range scan forces
the data to be partitioned on each range scan boundary.
Pointers to partition boundaries are maintained in a B-Tree.
This process simultaneously answers the query and brings
the data closer to being sorted, making subsequent queries
more efficient.

Used in isolation, the cracking policy mimics the behavior
of a Cracker Index through three transformations: Crack-
InTwo, Pushdown, and MergeArrays. CrackInTwo, summa-
rized in Algorithm 3, partitions an unsorted array based on
either range scan boundary, replacing the Array cog with a
BTree cog pointing to the newly fragmented arrays. Parti-
tioning is performed in-place if possible. Range Scan triggers
the CrackInTwo transformation twice, once for each scan
boundary?. BTree cogs limit which nodes are visited by
CrackInTwo to only those nodes that could contain the scan
boundary (val).

Algorithm 3 The CrackInTwo transform’s visitor

Input: cog: The Array cog being visited.
Input: val: The partition boundary to crack on.
Output: cog: A replacement cog.

1: if cog is a SortedArray then return

2: low, high < Partition(cog,val)

3: cog < BTree(val,low,high)

As presented in Section 2.2, insertions concatenate new
data onto the root. Two transformations incorporate this
new data into the existing hierarchy of BTree cogs. First,

20ur implementation also uses a more complex transfor-
mation, CrackInThree [21] that simultaneously cracks both
range scan boundaries.

Y X | DATA, || DATA,, | - -

o &

Figure 5: A visualization of the Pushdown transform
(Algorithm 4). DATA is partitioned by sep into
DATA; and DAT Ay, and pushed into the BTree node.
The subtrees X and Y remain unmodified.

— | D,WD,

D, D,

Figure 6: The MergeArrays transform (Algorithm 5)
copies a concatenation of two arrays into a single
contiguous memory region.

the Pushdown transformation shown in Algorithm 4 and illus-
trated visually in Figure 5 pushes Concat cogs down through
BTree cogs. The Array child of the Concat is partitioned,
and the resulting arrays are pushed down into the BTree
child. Similar transformations are used for several differ-
ent variations of this assembly. Pushdown is triggered before
the Range Scan operation, and visits every Concat cog that
falls within the scan boundaries, including those created by
Pushdown itself. The MergeArrays transformation shown in
Figure 6 and Algorithm 5 then copies each concatenation of
Array cogs into a single, contiguous Array. Note that un-
like updates in traditional Cracker Indexes [22], the cracker
policy does not mandate that all data ultimately reside in a
single contiguous region of memory.

Algorithm 4 The Pushdown transform’s visitor

Input: cog: The Concat cog being visited.
Output: cog: A replacement cog.
1: if cog.left is a BTree and cog.right is a Array then
2: a, b + Partition(cog.right, cog.left.separator)
3: cog < BTree(cog.left.separator,
Concat(cog.left.left,a),
Concat(cog.left.right,b))

3.2 Policy 2: Adaptive Merge

Adaptive Merge Trees [18] are a second class of adaptive
index. An Adaptive Merge Tree initially begins as a collec-
tion of sorted runs, each storing one partition of the data.
On each range query, records from each sorted partition that
fall within the range scan’s bounds are extracted and merged
together into a new partition called the primary. As records
are merged into the primary, performance approaches that
of a pure BTree. An Adaptive Merge Tree converges to
an average lookup performance of 40us per operation for a
1GB dataset, as compared to an average of 100 —1000us per
operation performance for a Cracker Index (after 5000 oper-

Algorithm 5 The MergeArrays transform’s visitor

Input: cog: The Concat cog being visited.

Output: cog: A replacement cog.

2 1, r 4+ cog.left, cog.right

2: if | is a SortedArray and r is a SortedArray then
3: cog < SortedArray(SortMerge(l,r))

4: else if [is a Array and r is a Array then

5. cog < Array(l.data o r.data)

[

Figure 7: The adaptive merge policy creates a three-
tiered structure, using a hierarchy of Concat cogs
to link partitions. Each partition consists of a se-
quence of of SortedArray cogs (D; ;) linked by BTree
cogs. The Merge transform’s visitor (Algorithm 6)
gradually merges fragments of each partition into
the leftmost partition (D; ;).

ations). This improved performance comes at the cost of a
much slower startup. Sorting data can add multiple seconds
to the cost of a read and/or write, and the initial few merge
steps can involve substantial amounts of data copying.

The adaptive merge policy mimics the behavior of an
adaptive merge tree through a transformation called Merge,
several simpler supplemental transformations, and a utility
procedure called Fxtract. Prior to each read, the SortAr-
rays transformation (not shown) replaces Array cogs with
SortedArray cogs. Arrays larger than a threshold value (10
million elements in our implementation) are broken into in-
dividual partitions, each smaller than the threshold value,
before being sorted. The resulting partitions are represented
as a hierarchy of Concat cogs, as shown in Figure 7. If the
root of the tree includes BTree cogs, these are used to limit
SortArrays to arrays in subtrees containing applicable keys.
Arrays not directly applicable to the current query remain
unsorted.

After ensuring that relevant arrays are sorted, the Merge
transformation shown in Algorithm 6 is applied bottom-
up to all hierarchies of Concat cogs. When used in isola-
tion, this policy only creates one such hierarchy, at the root
— we return to other cases in Section 3.3. Merge is ap-
plied to the immediate descendants of this hierarchy, again
called partitions. Records in each partition within the range
scan’s bounds are separated out using the Extract proce-
dure shown in Algorithm 7. Records not falling into one
of the range scan bounds are re-assembled and returned to

their original partitions, while records in the scan bounds are
merged together into the leftmost partition (the primary).
As an optimization, the merged records are grouped into
small blocks (10,000 records in our implementation), mak-
ing subsequent Eztracts on the primary more efficient.

Algorithm 6 The Merge transform’s visitor

Input: partitions: The immediate descendants of the hi-
erarchy of Concat cogs rooted at the cog being visited.
Input: low, high: The range of keys being requested.
Output: partitions: A list of replacement cogs.
1: for i from 1 to |partitions| do
2: lowCogli],midCog][i], highCog][i] +
Extract(partitions[i], low, high)
3: partitions[l]
BTree(low,
lowCogl[l],
BTree(high,
SortMerge(midCog[l] .. .midCog[|partitions]|]),
highCog[1)
4: for i from 2 to |partitions| do
5: partitions[i] +
BTree(low,
lowCog]i],
BTree(high, (), highCog]i]))

Algorithm 7 Extract(cog, low, high)
Input: cog: A cog to separate by keys.
Input: low, high: The range of keys being requested
Output: lowCog: A cog with keys from —oco to low.
Output: midCog: A cog with keys from low to high.
Output: highCog: A cog with keys from high to oc.
if cog is a BTree then
if cog.separator < low then
lowCog,midCog, highCog <—
Extract(cog.right,low, high)
lowCog <+ BTree(cog.separator, cog.le ft, lowCog)
else if cog.separator > high then
lowCog,midCog, highCog <
Extract(cog.left,low, high)
highCog < BTree(cog.separator,highCog, cog.right)
else
lowCog, midCog,, _ +— Extract(cog.left, low, high)
_,midCog, ,highCog < Extract(cog.right,low, high)
midCog <— BTree(cog.separator,midCog,,midCog,.)
else if cog is a SortedArray then
lowCog,midCog < Partition(cog, low)
midCog, highCog <+ Partition(midCog, high)
else if cog is a ConcatCog then
Ensure that cog was visited by Merge
Apply Extract to partitions,; as created by Merge

3.3 Hybridization and Generalization

The JITD model provides opportunities to exploit syner-
gies between policies. Semantic constraints on the structure
created by one policy can be used to minimize work in an-
other. Recall that work in a JITD is expressed as a set
of transformations following the visitor pattern. Altering a
transformation to exploit existing semantic constraints fre-
quently only requires changing the set of nodes that it visits.

Partial Sorts. The cracking policy pre-partitions data
using BTree cogs; The adaptive merge policy can use these
cogs at the root to limit which parts of the data need to
be sorted, ignoring those outside of the range scan bounds.
SortArrays is applied only to cogs falling within the range
scan bounds.

Partial Merges. The PushdownConcats transformation
creates much smaller arrays for the Merge transform to com-
bine — This can be exploited by the adaptive merge policy
by applying the Merge transform to any hierarchy of Concat
cogs rather than just the one at the root, and using BTree
cogs closer to the root to reduce the amount of data being
merged together.

Cracking Sorts. The CrackInTwo transformation ig-
nores existing SortedArray cogs created by the adaptive
merge policy, as they already support efficient range scans.

Through several minor changes to each policy, the over-
head of switching between different policies becomes mini-
mal. This enables a variety of different hybrid policies. For
example, the cracking policy exhibits better initial perfor-
mance after a write and simultaneously reduces the cost of
a subsequent switch to the adaptive merge policy for better
performance in the tail. One simple, naive hybrid policy
would start by fulfilling requests as per the cracking policy,
and eventually switch to fulfilling requests as the adaptive
merge policy. More complex policies may be defined to sat-
isfy desired throughput requirements, support variable read
priorities, to exploit other workload characteristics, or to re-
act to structural properties of the data (e.g., small Arrays
might be simply sorted outright and not cracked as in the
HCR and HCS datastructures [25]). There is significant po-
tential for future work in exploring this space of possible
optimization policies.

4. EXAMPLE

We now present an end-to-end example of how a range-
query JITD might be used. We will show how a JITD can
freely switch between policies by illustrating three different
evolutions of the same data structure as different policies
are used to respond to scan requests. The full step-by-step
example is illustrated in Figure 8. The initial state of the
JITD, illustrated in Figure 8 as state (a), is a six-record ar-
ray with keys {2,3,4,7,8,1}. Subsequent states show how
the JITD evolves as the following four operations are per-
formed under a mix of policies:

1. Scan(—o0, 5)

2. Insert({9, 5, 6})
3. Scan(6, o0)

4. Scan(2, 5)

Scan(—oco, 5): The first operation that the JITD receives
is a scan for records up through 5. State (b) illustrates the
effect of satisfying the request through the cracking policy.
As there is only one node, the CrackInTwo transform par-
titions the six element array on the key 5. As a simple
optimization, the partitioning occurs in-place, necessitating
only a single swap of 7 and 1. Two new cogs are created,
each referencing a region of the original array.

Insert ({9, 5, 6}): Three records, {9,5,6} (in that or-
der) are inserted next. As per Algorithm 2, this is repre-
sented by creating a new Array cog for these records, and

(@ (2,3,4,7 8,1
(crack) *

|:| Array @ Concat
Sorted f } BTree
Array

Cog Types

U]

/si 56\ 52\ 56\
(23] el] () (o) B el

Figure 8: An example trace of optimizations applied
to a Range Query JITD, branching depending on
policy decisions. The initial state (a) consists of six
records in an unsorted array. A scan operation is
satisfied by cracking (b), followed by an insertion
of three additional records (c). The next scan is
satisfied by cracking (c — f) or adaptive merge (h —
i). The third and final scan continues from state (f)
by cracking (g) or adaptive merge (k — 1), or from
state (i) by cracking (j).

then merging it with the root in a newly created Concat cog,
as shown in state (c).

Scan(6, 00): Next, the JITD performs a scan for records
greater than 6. We illustrate this request under both the
cracking policy (d — f) as well as the adaptive merge pol-
icy (h —1i). The cracking policy applies three transforms:
Pushdown, MergeArrays, and CrackInTwo®. The Pushdown
transform partitions the array of new records, creating new
Concat cogs below the BTree cog, as shown in state (d).
Because we are only interested in keys greater than 6, the
left-hand branch of the BTree cog can be safely ignored.
The MergeArrays transform then copies the two remaining
arrays into a single, contiguous region of memory as shown
in state (e). Finally, the CrackInTwo transform partitions
the newly created Array cog, resulting in state (f).

Switching to a different policy does not require any im-
mediate layout changes to the JITD. Rather, each policy
dictates how the JITD reacts to operations applied to it.
The adaptive merge policy treats each contiguous hierar-
chy of Concat cogs as a set of partitions to be sorted and
merged. In this case, there are two partitions. The Sor-
tArrays transform ensures that all relevant Array cogs are
sorted, resulting in state (h). As before, the existing BTree
cog allows SortArrays to ignore its left-hand branch. Next,
the Merge transform extracts the fragment of each partition
that falls within the search range: 9 from the newly inserted
records, and 7 and 8 from the partition rooted at the BTree
cog. The extracted records are merged together into the
left-most partition, as shown in state (i). For this specific
operation, the entire right-hand branch of the BTree(< 5)
cog is extracted. A special singleton cog: the empty set) is
used to denote the lack of records in that range.

Scan(2, 5): The JITD is scanned for records in the range
(2,5]. Recall that state (f) was reached by responding to
Scan(6, oo) according to the cracking policy, and that state
(i) was reached by responding according to the adaptive
merge policy. We will illustrate three outcomes: State (g)
shows the effects of continuing with the cracking policy,
States (k) and (1) show the effects of switching from cracking
to adaptive merge, and state (j) shows the effects of switch-
ing from adaptive merge to cracking.

As before, the cracking policy applies Pushdown, MergeAr-
rays, and CrackInTwo. The Pushdown transform has no
work to do, so the MergeArrays transform merges the two
leftmost Array cogs together. The newly formed cog is par-
titioned by the CrackInTwo transform, resulting in state (g).

For the adaptive merge policy, the SortArrays transform
sorts partitions below the Concat cog, creating state (k).
As usual, the BTree cog at the root allows a fragment of
the JITD to remain unmodified. After sorting, records in
the scan range are extracted from each partition: 3 and 4
from the left partition and 5 from the right. The extracted
records are merged into a single SortedArray cog, creating
state (1).

Finally, we return to state (i), created by the adaptive
merge policy. Again, recall that policy changes do not re-
quire any physical changes to the JITD. Thus, the cracking
policy is applied exactly as in each previous case, through
the three transforms: Pushdown, MergeArrays, and Crack-
InTwo. The Pushdown transform partitions the SortedAr-

30ur implementation also uses a more complex variant:
CrackInThree [21]. In the interest of clarity, we present
the example only using the simpler CrackInTwo transform.

ray cog {5,6} twice. Because the array being pushed down
is sorted, each partitioning step can be performed in logn
time. The first partitioning step pushes all records down
the left-hand branch, as there are no records greater than
6. The second step splits the array into {5} and {6}. Next,
the MergeArrays transform combines the newly created {6}
SortedArray cog with the already existing {2,3,5,1} Array
cog. Finally, the CrackInTwo transform partitions and splits
the newly created cog, creating state (j).

S. EVALUATION

Our key contribution in this paper is illustrating the flexi-
bility afforded by the JITD model. In this section we assess
the performance impact of this added flexibility. We show
that the JITD form of a Cracker Index and an Adaptive
Merge Tree retains performance competitive with the origi-
nal data structures. Then, we discuss a range of policies that
the JITD implementations of these data structures enable.
We show that these policies can be used to quickly and easily
reposition the data structure’s performance characteristics
to adapt to new workloads.

5.1 Experimental Setup

Our JITD was implemented in Java 1.7. Experiments
were performed on a 2x16 core 1.8 GHz Intel Opteron with
128 GB of RAM, running RHEL 6, and OpenJDK 1.7. JVM
heap sizes were set high enough to minimize interference
from Java’s garbage collector, and experiments were run
single-threaded. Source code for our JITD implementation
and experiments is available for download®.

All experiments begin with an initially unsorted array of
100 million records stored row-wise. Each record consists
of an 8-byte integer key field, and an 8-byte payload field.
The resulting structure is analogous to a sideways cracker
index [23]. The resulting dataset was approximately 1.6 GB.
Each read operation reads a randomly selected range of keys

SELECT key, payload FROM R
WHERE key >= low AND key < high

low was selected randomly, and high was selected relative to
low to return approximately 2 to 3 thousand records. A total
of 10,000 reads were performed. At the 5,000 read mark, an
array containing an additional 10 million random records
(about 160 MB) was inserted into the data structure. As
per the Insert operation (Algorithm 2), the structure’s root
was replaced by a concatenation of the original root and a
new unsorted array cog containing the new data.

5.2 Primitive JITD Policies

Figures 9.a and 9.b show the raw performance of the
cracking and adaptive merge policies, as presented in
Sections 3.1 and 3.2, respectively. Cracking’s initial per-
formance is sub-second and quickly converges to millisec-
ond latencies, as transformations manipulate data in-place.
Adaptive merge has an extremely high upfront cost of about
33 seconds for the initial sort (also performed in-place), and
again for about 3 seconds after the write. The merge pro-
cess requires a substantial number of memory copies, so for
the next two thousand iterations performance alternates be-
tween merges costing 1-20ms, and fast-path reads that do

“http://github.com/okennedy/jitd/

not require a merge, and cost 30-40us. This performance
is comparable to experiments performed by Idreos et al. [25].
We attribute the slower convergence and lower initial cost of
the adaptive merge policy to a chunking optimization in [25]
that merges batches of data with each read. A similar opti-
mization is feasible in our own framework.

5.3 Hybrid Policies

Swap and transition implement two different hybrid poli-
cies. Under the swap policy, the JITD simulates the crack-
ing policy for the first 2000 operations after a write and
then switches immediately to fulfilling requests according to
the adaptive merge policy. The data structure remains un-
changed after each policy switch, but new requests are sat-
isfied using the new policy’s transforms. The resulting data
structure is a synthesis of both cracker indexes and adap-
tive merge trees. Performance results for the swap hybrid
policy are presented in Figure 9.c. The cracking policy’s
Pushdown transformation reduces the amount of work re-
quired for each sort operation, lowering the adaptive merge
policy’s per-read cost. The transition between policies is
performed gracefully, and the resulting data structure actu-
ally performs better than either pure merge or pure cracking.
Swap’s initial post-write performance is comparable to pure
cracking, and the first set of writes after switching to the
adaptive merge policy take on the order of 100ms as com-
pared to the 3 seconds required to sort the 160 MB of data
written. Then, at the tail, performance quickly converges to
the sub-millisecond latency of the adaptive merge policy’s
tail.

The performance of the transition policy is presented in
Figure 9.d. Like the swap policy, each write resets the JITD
to the cracking policy. After 1000 iterations, the JITD be-
gins a gradual transition from the cracking to the adaptive
merge policy. Each request is satisfied with a randomly se-
lected policy, starting with a 100% chance to satisfy requests
as per the cracking policy, and linearly transitioning to a
100% chance to satisfy requests according to the adaptive
merge policy. This shows that a JITD is able to seamlessly
switch back and forth between the two primitive policies on
a per-operation basis. Moreover, note the tri-modal distribu-
tion of latencies once the transition period begins: Requests
satisfied according to the cracking policy continue to oper-
ate consistently in the 1ms range, while requests satisfied
by the adaptive merge policy alternate between 10-100ms
if a merge is required, and 30-40us for fastpathed requests.
Even though the variance in read latencies of the data struc-
ture as a whole increases during the transition period, any
variance-intolerant scan operation can still be fulfilled with
the consistent latency of the cracking policy.

A side-by-side throughput comparison of all four JITD
policies is shown in Figure 10. Both swap and transition mir-
ror the behavior of the cracking policy for the first thousand
operations, both initially and after the write. Conversely,
in the tail, both swap and transition mirror the convergent
behavior of the adaptive merge policy, which begins to out-
perform the cracking policy. The adaptive merge policy is
able to exploit work done by the cracking policy, resulting
in a softer performance dip after it is put into use. The two
primitive policies, and the two hybrid policies presented rep-
resent only a small sampling of what is possible, but demon-
strate that a JITD can quickly pivot to meet the demands of
new workloads.

10

Reads

0.1 :
001 M :
0.001 PG
0.0001 |- PRGNS REeR o
1e-05 i

Time (s)

0 2000 4000 6000

Iteration

8000 10000

(a) Primitive Policy: Cracking

10

Reads

0.1
0.01
0.001
0.0001
1e-05

Time (s)

0 2000

4000 6000
Iteration

(c) Hybrid Policy: Swap

8000 10000

10

Reads

0.1
0.01
0.001 f
0.0001
1e-05

Time (s)

0 2000 4000 6000

Iteration

8000 10000

(b) Primitive Policy: Adaptive Merge

10
1

01
0.01 §
0.001 |
0.0001
1le-05

Reads

Time (s)

10000

0 2000

4000 6000
Iteration

(d) Hybrid Policy: Transition

Figure 9: Read performance trace for the range-query JITD in four different modes with a write after 5,000
reads. A 33 second read spike for the first read under the Adaptive Merge policy is not shown.

Cracking —4— Swap —3¢—
10000 Merge —e— Transition —a&—
2
S 1000
2
S 100
>
e
= 10
A I
0 2000 4000 6000 8000 10000
Iteration

Figure 10: Average throughput for Figure 9.

6. RELATED WORK

Adaptive indexing [16, 17] has become a popular mecha-
nism for incrementally adjusting indexes dynamically based
on workload. Adaptive indexes allow a database or data
warehouse to improve performance by leveraging work that
needs to be performed to resolve a query, to also improve
the indexing structure. Database Cracking [20, 21, 22] was
the first to pioneer this scheme. Other schemes have fol-
lowed, including Adaptive Merge Trees [18] as well as several
variants that combine the features of both implementations
allowing for both merging and cracking [25]. In all of these
proposals and systems, the underlying index implementation
makes static performance tradeoffs, resulting in a canonical
representation that can no longer be adjusted to changes in

broad workload characteristics. JITDs are a generalization
of adaptive indexing, whose goal is to allow continual shifts
in the underlying index structure. A steady state is only
reached if the workload itself reaches a steady state. JITDs
are well suited to workloads that have distinct phases, mir-
roring common trends in internet traffic.

SMIX [32] is an adaptive indexing structure, that like
JITDs, does not have an explicitly steady state that the
indexing scheme tends towards. SMIX allows for indexes to
both dynamically grow and shrink. This is accomplished by
introspecting the index and collecting information on which
portions of the index are useful and what portions of the in-
dex are not useful. Based on this collected information the
index is augmented. We believe this approach can be syn-
ergistic with JITDs, allowing for further refinement of the
index. We believe the SMIX approach can be encoded in a
JITD’s policies, by encoding information gathering during
access of specific cogs composing the index structure itself.

Legorithmics [26] takes an approach similar to JITDs for
optimizing traditional database algorithms. Using a library
of algorithmic components and a memory hierarchy specifi-
cation, the Legorithmics compiler specializes canonical algo-
rithms for databases (e.g., Sort) to new memory hierarchies.

Building Block Databases.

Over a decade ago, Chaudhuri et al. [10] advocated a low-
level RISC style database architecture, which would provide
target applications and end-users with a sufficient, but min-
imal feature-set, thus avoiding the overheads of supporting
unneeded functionality. More recent efforts have begun to
realize this vision [5, 7, 12, 14, 27]. Of particular note is
OctopusDB [13], which uses a single shared log structure to

record all database updates, and treats user defined materi-
alized views as a building block. We believe that the JITD
approach to indexing structure design will be of particular
use in building block databases, acting as a basis for specify-
ing how such databases compute, organize, and query data.

Memoization.

There has been much work on memoization and self ad-
justing computation [1] over recent years. We believe that
JITDs can benefit from such techniques to further improve
performance. Selective [2] and partial [33] memoization can
be leveraged to improve reads and scans over JITDs. Self ad-
justing computation can be leveraged to express more com-
plex JITDs, providing a mechanism to try out multiple dif-
ferent representations. Self adjusting computation has been
proposed for streaming big data [3, 11], and preliminary
efforts exploring the use of self-adjusting computation for
datastructure design appear in the Synthesis Kernel [30].

7. FUTURE WORK

In this paper, we demonstrate the feasibility of the JITD
model. However substantial work remains to fully realize
JITDs. In this section, we present a number of opportunities
for research on just-in-time data structures. Our hope is that
as JITDs mature, they will eventually form the basis for an
entire class of just-in-time databases.

7.1 Rewrite Policies

In this paper, we demonstrate the feasibility of JITDs
through four specific transform policies. To fully realize
JITDs, it will be necessary to develop a general process for
designing policies for specific workloads: How should the
JITD organize its data? What kind of transforms will con-
verge to the specified organizational structure? Under what
conditions should the transforms be triggered?

Of particular interest to us are cases where the “ideal”
data layout is data- or workload-dependent. Unlike the cases
explored in this paper, where all policies eventually converge
to a sorted array, data structures for multi-dimensional data,
highly volatile data, or supporting computationally intensive
search predicates may need to rapidly adapt their layouts in
response to subtle changes in data or workload.

JITDs present a rich space of optimization alternatives.
This rich space enables such small and subtle changes, at
the cost of an explosion of the optimization search space.
Streamlining the policy design process is thus an incredibly
important step towards making JITDs practical. We expect
initial solutions to borrow heavily from traditional database
tuning optimizers [9]. In the longer term, we see policy deci-
sions in a JITD becoming analogous to just-in-time compi-
lation, where live feedback [32] and trial and error are used
to guide optimization in real-time.

7.2 A Cog Programming Model

Transformations and data accessors can be defined gener-
ally for any data structure built from the cog abstraction.
However, the cog abstraction is not static; Every new class
of structural or semantic property included in the JITD re-
quires a new type of cog. Managing the resulting explo-
sion of interactions between cogs and transformations will
require adapting existing programming language techniques.
For example, object-orientation abstractions like inheritance

and mixins can be used to provide backwards-compatibility
for newly defined cogs.

This new programming model will require considerable
compiler and runtime support as well. Pattern matching
used to identify candidate assemblies that are suitable for
a given transform can be expressed declaratively through
graph queries. In this form, compiler techniques like code-
inlining and partial evaluation can be adapted to accelerate
pattern matching.

7.3 Procedure Cogs

In this paper, we introduced cogs as an abstraction for the
structural and semantic properties of a data representation.
Cogs also form a useful abstraction for procedural relation-
ships, like the suspended executions used in Okasaki-style
lazy data structures [28]. For example, a cog could encode
the following procedure:

map(Ax. x + 1)

This cog would represent the set of records resulting from
adding 1 to every value in the set represented by its single
child x. The resulting structure captures partial evaluation
strategies such as Stickies [15], and forms a basis for dis-
tributed replication [4].

7.4 Out-of-Core Cogs

So far, we have presented JITDs entirely in the context
of main-memory data structures. Adapting JITDs for disk-
resident data layouts requires restructuring transformations,
accounting for the need to perform sequential reads and
writes. Hyder [6] and LSM Trees [29, 31] are both examples
of a similar restructuring applied to naive BTrees. When
combined with procedural cogs, we believe that out-of-core
JITDs will form a basis for log rewriting [4], a powerful gen-
eralization of checkpointing.

8. CONCLUSIONS

In this paper, we introduced the idea of just-in-time data
structures (JITDs), and showed how the JITD model could
be applied to range query data structures. JI'TDs decouple
the logic and physical representation of an index data struc-
ture, and allow multiple behaviors, or policies to collectively
manipulate a standardized library of physical layout build-
ing blocks, or cogs. Through a specific JITD implementa-
tion, we have shown that this approach is feasible, and can
be used as a principled approach to hybridizing different
data structures.

9. ACKNOWLEDGEMENTS

The authors would like to thank Daniel Zinn for several
enlightening discussions contributing to this paper, and the
reviewers for their insightful comments. The authors would
also like to acknowledge the contributions of Ankur Upad-
hyay to the system as a whole.

10. REFERENCES
[1] U. A. Acar, A. Ahmed, and M. Blume. Imperative
self-adjusting computation. In POPL, 2008.
[2] U. A. Acar, G. E. Blelloch, and R. Harper. Selective
memoization. In POPL, 2003.
[3] U. A. Acar and Y. Chen. Streaming big data with
self-adjusting computation. In DDFP, 2013.

[4]

[21]
[22]

[23]

[24]

[25]

[26]

S. Agarwal, D. Bellinger, O. Kennedy, A. Upadhyay,
and L. Ziarek. Monadic logs for collaborative web
applications. In WebDB. ACM, 2013.

Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic.
DBToaster: Higher-order delta processing for
dynamic, frequently fresh views. PVLDB, 2012.

P. A. Bernstein, C. Reid, and S. Das. Hyder—A
Transactional Record Manager for Shared Flash.
CIDR, 2011.

H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R.
Atreya, and K. Olukotun. A domain-specific approach
to heterogeneous parallelism. In PPoPP, 2011.

S. Chaudhuri and V. Narasayya. AutoAdmin “what-if”
index analysis utility. In SIGMOD, 1998.

S. Chaudhuri and V. Narasayya. Self-tuning database
systems: A decade of progress. In VLDB, 2007.

S. Chaudhuri and G. Weikum. Rethinking database
system architecture: Towards a self-tuning RISC-style
database system. In PVLDB, 2000.

Y. Chen, U. A. Acar, and K. Tangwongsan.
Functional programming for dynamic and large data
with self-adjusting computation. In SIGPLAN, 2014.
N. Conway, W. R. Marczak, P. Alvaro, J. M.
Hellerstein, and D. Maier. Logic and lattices for
distributed programming. In SoCC, 2012.

J. Dittrich and A. Jindal. Towards a one size fits all
database architecture. In CIDR, 2011.

C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. SIGMOD, 1989.

J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy
evaluation of transactions in database systems. In
SIGMOD, 2014.

G. Graefe, F. Halim, S. Idreos, H. Kuno, and

S. Manegold. Concurrency control for adaptive
indexing. PVLDB, 2012.

G. Graefe, S. Idreos, H. Kuno, and S. Manegold.
Benchmarking adaptive indexing. In TPC-TC, 2011.
G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In EDBT, 2010.

A. Guttman. R-trees: A dynamic index structure for
spatial searching. SIGMOD Record, 14(2):47-57, June
1984.

F. Halim, S. Idreos, P. Karras, and R. H. C. Yap.
Stochastic database cracking: Towards robust
adaptive indexing in main-memory column-stores.
PVLDB, 2012.

S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR, 2007.

S. Idreos, M. L. Kersten, and S. Manegold. Updating
a cracked database. In SIGMOD, 2007.

S. Idreos, M. L. Kersten, and S. Manegold.
Self-organizing tuple reconstruction in column-stores.
In SIGMOD, 2009.

S. Idreos, S. Manegold, and G. Graefe. Adaptive
indexing in modern database kernels. In EDBT, 2012.
S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged:
Adaptive indexing in main-memory column-stores.
PVLDB, 2011.

Y. Klonatos, A. Notzli, A. Spielmann, C. Koch, and
V. Kuncak. Automatic synthesis of out-of-core

27]

(28]

29]

30]
(31]

32]

33]

algorithms. In SIGMOD, 2013.

T. Neumann. Efficiently compiling efficient query
plans for modern hardware. VLDBJ, 4(9):539-550,
June 2011.

C. Okasaki. Purely Functional Data Structures.
Cambridge University Press, New York, NY, USA,
1999.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta
Informatica, 33(4):351-385, 1996.

C. Pu, H. Massalin, and J. loannidis. The synthesis
kernel. Computing Systems, 1(1):11-32, 1988.

R. Sears and R. Ramakrishnan. bLSM: a general
purpose log structured merge tree. In SIGMOD, 2012.
H. Voigt, T. Kissinger, and W. Lehner. SMIX: Self-
managing indexes for dynamic workloads. In SSDBM,
2013.

L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan.
Partial memoization of concurrency and
communication. In ICFP, 2009.

