
PigOut: Making Multiple Hadoop Clusters
Work Together

Kyungho Jeon, Sharath Chandrashekhara, Feng Shen, Shikhar Mehra, Oliver Kennedy, and Steven Y. Ko
University at Buffalo, the State Univeristy of New York

Email: {kyunghoj|sc296|fengshen|shikharm|okennedy|stevko}@buffalo.edu

Abstract—This paper presents PigOut, a system that enables
federated data processing over multiple Hadoop clusters. Using
PigOut, a user (such as a data analyst) can write a single
script in a high-level language to efficiently use multiple Hadoop
clusters. There is no need to manually write multiple scripts and
coordinate the execution for different clusters.

PigOut accomplishes this by automatically partitioning a sin-
gle, user-supplied script into multiple scripts that run on different
clusters. Additionally, PigOut generates workflow descriptions to
coordinate execution across clusters. In doing so, PigOut leverages
existing tools built around Hadoop, avoiding extra effort required
from users or administrators. For example, PigOut uses Pig
Latin, a popular query language for Hadoop MapReduce, in a
(virtually) unmodified form. Through our evaluation with PigMix,
the standard benchmark for Pig, we demonstrate that PigOut’s
automatically-generated scripts and workflow definitions have
comparable performance to manual, hand-tuned ones. We also
report our experience with manually writing multiple scripts for
a set of federated clusters, and compare the process with PigOut’s
automated approach.

I. INTRODUCTION

Hadoop [1] has gained tremendous traction from both
academia and industry since its release, having been widely
adopted by industry [2] and inspiring numerous publications
in academic conferences and journals in the past few years.
What started with MapReduce and HDFS, has now grown into
a full ecosystem with many more components (e.g., Pig [3],
[4], a dataflow language and execution system, and Oozie [5],
a workflow scheduler), making Hadoop as a one-stop shop for
all cluster computing needs.

Due in part to Hadoop’s ease of use and management,
even relatively small organizations or departments are spinning
up Hadoop infrastructures for internal use. This prolifera-
tion of Hadoop instances is driving a need for federated
(i.e., inter-cluster) functionality to support joint processing
of distributed data sets stored in different clusters. Example
scenarios are numerous—multi-organization coalitions, collab-
orations across different administrative domains within a single
organization, or even collaboration between on-site clusters
and infrastructures deployed on cloud-computing backends.
Workflow systems like Oozie, and others [6], [7] provide
support for inter-cluster workflows. However, fixed workflows
are hard to adapt to changing cloud pricing schemes, resource
availability, organizational policies, and international laws. In
short, creating and managing multi-cluster workflows is still
quite hard.

This paper proposes PigOut, a system that enables multiple
Hadoop clusters to work together. PigOut addresses two main
challenges critical for multi-cluster support—ease of program-
ming and ease of management. Ease of programming means

that a program spanning multiple clusters should be easy to
write, relative to a single-cluster program. Ease of management
means that administrators of a Hadoop cluster should not
need to expend additional effort maintaining new software
infrastructure or enforcing internal organizational policies.

We make careful design decisions to address these chal-
lenges in PigOut. First, we achieve ease of programming by
leveraging Pig, a popular component in Hadoop ecosystem,
that already provides ease of programming for a single cluster.
Pig provides a high-level language and a runtime and internally
generates a series of MapReduce jobs. Writing a Pig program
(called a script) is easier [8] than writing pure MapReduce
jobs, which makes it a popular choice among Hadoop users.
PigOut essentially extends this benefit of Pig to federated
clusters by automatically partitioning individual Pig scripts
for execution on different clusters. From the user’s point of
view, there is little difference between writing a script for a
single cluster and multiple clusters. Second, we achieve ease of
management by designing PigOut as a front-end that interfaces
with multiple Hadoop clusters, i.e., we make no change to
Hadoop’s existing infrastructure components. This is possible
because PigOut partitions a script into complete stand-alone
Pig scripts, each of which is independently runnable on a
Hadoop cluster. From a cluster administrator’s point of view,
there is no difference between supporting and running a regular
Pig script and a PigOut script. Thus, different administrative
domains are free to manage their own cluster in any way
they like. PigOut only needs a Hadoop user account in all
the Hadoop clusters it uses on behalf of its user.

Specifically, we make the following contributions:

• PigOut: We present the design and implementation
of PigOut, a system that enables inter-cluster script-
ing for Hadoop. We detail how PigOut partitions a
single Pig script into multiple stand-alone scripts and
manages the execution of the scripts. We also detail
the optimization strategy PigOut uses when deciding
how to distribute script execution.

• Evaluation of PigOut: We evaluate PigOut with
Apache PigMix [9], a benchmark for Pig. Using
PigMix, we compare the execution times and behavior
between manually hand-tuned scripts and PigOut-
generated scripts running on multiple clusters. As
a result of our evaluation, we make two observa-
tions: First, hand-tuning PigMix scripts for multiple
clusters can be very time-consuming and error-prone
compared to using PigOut. Second, our performance
results show that PigOut-generated scripts can provide
performance comparable to that of hand-tuned scripts.

The rest of the paper is organized as follows. Section II

describes a motivating scenario. Sections III, IV, and V present
an overview of PigOut, the details of PigOut, and our evalu-
ation results, respectively. Section VI discusses related work
and Section VII concludes.

II. MOTIVATION

In this section, we motivate the goals of PigOut by first
showing how a developer would approach a multi-cluster data
processing task using existing Hadoop components. We start
with a simple scenario that we return to throughout the paper,
and show how a developer might manually partition the script.
Based on this discussion, we present our goals for PigOut.

A. Scenario

Alice is a data analyst at Business-User Flow (BUFlow), a
hypothetical global web analytics company with data centers
in the US, Europe, and Asia. Each data center maintains a local
Hadoop cluster, where it stores access logs (page_views).
Per-user information (users) is stored at BUFlow’s primary
datacenter in the US. Alice performs a routine reporting task:
estimating per-page revenue grouped by the market segment
of each user. Nominally, this is an easy task: a 2-way join,
followed by a group-by aggregate. However, the data Alice
needs to analyze is scattered across multiple clusters. Alice
needs federated data processing.

Naively, Alice could first pull page view logs from Europe
and Asia to BUFlow’s US datacenter and run her analysis
there. However, this approach wastes significant resources:
transferring terabytes of data (or more) is slow and consumes
bandwidth. Moreover, the compute resources of the Europe
and Asia datacenters are not used at all by this approach.
A more efficient approach would be to spread the processing
over all clusters involved, i.e., writing tasks to run on different
clusters and managing the execution of the tasks regarding the
dependency and data transfer among them. Next, we discuss
how one could do this natively using Pig.

B. Manual Approach

In order to write tasks to run on different clusters and
manage the execution, Alice could benefit from leveraging two
of the components in Hadoop—Pig and Oozie. Pig is useful in
writing per-cluster tasks, while Oozie is useful in controlling
their execution. We introduce these two components first and
show how to use them in the running example.

1) Pig: Pig is a query processing engine built atop Map-
Reduce. A pig user writes a Pig script in Pig Latin [4], a
dataflow programming language. The user then submits the
Pig script to Pig and Pig compiles the script into MapReduce
jobs. Pig manages the execution of these jobs as well.

In Pig, users can specify a sequence of data transformation
steps, as they do in procedural programming languages. Each
step is a simple and high-level transformational command
that resembles relational algebra primitives, such as GROUP,
FILTER, etc.

As a concrete example, consider the scenario described in
Section II-A. Alice wants to estimate per-page revenue grouped
by the market segment of each user. So she first pulls all the
data from the Europe and Asia data centers to the US data

TABLE I. PIG LATIN COMMAND EXAMPLES.

Command Description
LOAD Specify an input
STORE Specify an output
UNION Concatenate two inputs
FILTER Select which records to retain

FOREACH Apply a set of expressions to every record
JOIN Select records from one input to put together

with records from another input
GROUP Collect records of an input based on a key

COGROUP Collect records of inputs based on a key

center. She then writes a Pig script to process all the data
together as follows (Table I shows a brief summary of the
commands used in the script):
1: us_pv = LOAD ’hdfs://us.buflow.com:8093/us_in’;
2: eu_pv = LOAD ’hdfs://us.buflow.com:8093/eu_in’;
3: as_pv = LOAD ’hdfs://us.buflow.com:8093/as_in’;
4: page_views = UNION us_pv, eu_pv, as_pv;
5: filtered = FILTER page_views BY timespent > 1;
6: projected = FOREACH filtered

GENERATE user, revenue;
7: users = LOAD ’hdfs://us.buflow.com:8093/users’;
8: p_users = FOREACH users GENERATE name, segment;
9: joined = JOIN projected BY user, p_users BY name;

10: grouped = GROUP joined BY segment;
11: result = FOREACH grouped

GENERATE group, SUM(grouped.revenue);
12: STORE result into ’hdfs://us.buflow.com:8093/out’;

The first three commands load the input data sets. Com-
mand 4 combines all page views from all input data sets. Com-
mand 5 filters page views by time. Command 6 projects two
relevant columns (user and revenue) from the combined
data set. Command 7 loads the user table. Command 8 projects
two relevant columns (name and segment) from the users
table. Commands 9 and 10 combine the two newly-generated
tables and group the data by segment. Command 11 computes
the revenue per segment and the last command stores the result.

This single-cluster Pig script is not efficient since the re-
sources in other data centers are wasted. Using Oozie described
below, Alice could use the resources in all three data centers
more efficiently.

2) Oozie: Oozie is a Hadoop workflow engine that can
control the execution of MapReduce jobs, Pig scripts, shell
scripts, and a few other types of execution units. A workflow
is described by a DAG (Directed Acyclic Graph). Each node
in the DAG is an action, which can be an execution of a script.
Each edge in the DAG is a dependency; a task is blocked until
each of its in-edge tasks are complete. Workflow descriptions
are written for Oozie with an XML based process definition
language called hPDL.

As a concrete example, consider the Alice’s scenario again.
Instead of processing all the data in one site, Alice could
make her reporting query more efficient; she could separate
the projection command into a separate script which she runs
independently on each cluster as follows:
1: page_views = LOAD ’$INPUT’;
2: filtered = FILTER page_views BY timespent > 1;
3: projected = FOREACH filtered

GENERATE user, revenue;
4: STORE projected into ’$OUTPUT’;

The resulting projected data sets are far smaller, and
can be transferred to BUFlow’s primary datacenter more

page_views = LOAD ‘$INPUT3’;
filtered = FILTER page_views
 BY timespent > 1;
projected = FOREACH filtered
 GENERATE user, revenue;
STORE projected into ‘$OUTPUT3’;

pv_1 = LOAD ‘$OUTPUT1’;
pv_2 = LOAD ‘$OUTPUT2’;
pv_3 = LOAD ‘$OUTPUT3’;
projected=UNION pv_1, pv_2, pv_3;
users = LOAD ‘$INPUT4’;
users_proj = FOREACH users GENERATE name, segment;
joined = JOIN projected BY user, users_proj BY name;
grouped = GROUP joined by segment;
result = FOREACH grouped
 GENERATE group, SUM(grouped.revenue);
STORE result into ‘$OUTPUT’;

Cluster #3

Cluster #1

Cluster #2

page_views = LOAD ‘$INPUT2’;
filtered = FILTER page_views
 BY timespent > 1;
projected = FOREACH filtered
 GENERATE user, revenue;
STORE projected into ‘$OUTPUT2’;

Cluster #1

page_views = LOAD ‘$INPUT1’;
filtered = FILTER page_views
 BY timespent > 1;
projected = FOREACH filtered
 GENERATE user, revenue;
STORE projected into ‘$OUTPUT1’;

Fig. 1. Graphical representation of Pig Latin scripts in an Oozie Workflow.
Variables prefixed with a ‘$’ are parameters provided through Oozie.

efficiently. Using Oozie, Alice could coordinate the execution
of these scripts through a workflow such as the one illustrated
visually in Figure 1.

Although this multi-cluster workflow is far more effi-
cient, it comes at the cost of code complexity. Alice now
has to maintain four scripts across three clusters, on top of
a workflow description for Oozie. Furthermore, changes in
company policy, cluster resource availability, or cloud-provider
pricing models can lead to further bifurcation of a once-simple
codebase.

C. PigOut Features

With PigOut, we aim to provide the benefit of the manual
approach described above without the complexity of writing
multiple scripts and managing the execution among them using
Oozie. PigOut provides the following three features:

• Automation: Manually writing multiple scripts and
maintaining them over time is difficult and error-
prone. PigOut allows developers to write a single
script that accesses multiple data sources spread over
different clusters, which it then automatically parti-
tions. The resulting stand-alone Pig scripts are then
deployed to their respective clusters through automat-
ically generated Oozie workflow descriptions.

• Performance: When partitioning a single script,
PigOut aims to provide performance comparable to
that of manually-written, hand-tuned scripts.

• Pig Latin Extension: As an additional feature, PigOut
extends the syntax of Pig Latin with new commands to
simplify the development of federated scripts, and to
remain in keeping with Pig’s philosophy of predictable
script execution plans. These commands are provided
to support direct manipulation of PigOut’s execution
strategy and to automate frequently occurring design
patterns. It is not necessary for developers to use this
new functionality unless desired.

Fig. 2. High-level view of PigOut: A data analyst utilizes multiple clusters
via PigOut.

In the rest of the paper, we show how we provide these
features in PigOut, starting with its design and implementation.

III. PIGOUT OVERVIEW

We first overview PigOut from the user’s point of view
using our running example of Alice the BUFlow employee
(Section II-A). We then present an overview of the internals of
PigOut. Later in Section IV, we discuss the design summarized
here in detail.

A. PigOut Scripting Overview

Figure 2 depicts the high-level architecture of PigOut.
PigOut is essentially a front-end that a user (such as a data
analyst) uses to interact with multiple clusters. From the user’s
point of view, there is little difference between writing a script
for a single cluster and multiple clusters.

More concretely, consider our running example from Sec-
tion II-A. Using PigOut, Alice could write the following script
to use three Hadoop clusters in her US, Europe, and Asia data
centers:
1: us_pv = LOAD ’hdfs://us.buflow.com:8093/input’;
2: eu_pv = LOAD ’hdfs://eu.buflow.com:8093/input’;
3: as_pv = LOAD ’hdfs://as.buflow.com:8093/input’;
4: page_views = UNION us_pv, eu_pv, as_pv;
5: filtered = FILTER page_views BY timespent > 1;
6: projected = FOREACH filtered

GENERATE user, revenue;
7: users = LOAD ’hdfs://us.buflow.com:8093/users’;
8: p_users = FOREACH users GENERATE name, segment;
9: joined = JOIN projected BY user, p_users BY name;

10: grouped = GROUP joined BY segment;
11: result = FOREACH grouped

GENERATE group, SUM(grouped.revenue)
12: STORE result into ’hdfs://us.buflow.com:8093/out’;

As shown, the only difference between this (PigOut) script
and the (Pig) script presented in Section II-B for a manual
approach is LOAD; in the first three LOAD commands, Alice
specifies different cluster URIs as input sources. The rest of
the script is exactly the same.

From this single script that Alice writes, PigOut automat-
ically generates multiple scripts and Oozie workflow descrip-
tions that makes effective use of all three BUFlow clusters.
PigOut extends Pig’s built-in LOAD and STORE commands to

Pig Script
Generator

Merging

Script execution

Oozie Workflow
Generator

Logical Plan
Generation

Logical Plan
Partitioning

Pig Latin Script

Fig. 3. PigOut System Flow

recognize full HDFS URIs1, rather than just local file paths.
This is the only modification required to turn single-cluster
pig scripts into PigOut scripts. We will return to the further
(optional) functionality that we add to PigOut in Section IV-E.
LOAD and STORE commands are executed on their local
clusters. PigOut partitions the remainder of Alice’s script
across the three clusters.

B. PigOut System Overview

Figure 3 shows how PigOut generates multiple scripts and
Oozie workflow descriptions from a single script. This is done
in five phases. The first phase is logical plan generation, where
PigOut parses the script and builds an internal representation
of it (i.e., the logical plan described in Section IV-A), a DAG
where each vertex represents a data transformation command
and each edge defines a data flow between two commands.
Prior to proceeding with its multi-cluster transformations,
PigOut first applies Pig’s native logical plan optimizations to
simplify the logical plan [4].

The second phase is logical plan partitioning. PigOut enu-
merates participating clusters (sites) based on URIs provided
in the script’s LOAD and STORE commands, and annotates
each command in the logical plan with a list of candidate sites
where the command could be executed. Once annotated in this
way, commands in the plan are chunked into subplans using a
simple heuristic described in Section IV-B2. Each subplan is
an isolated set of Pig Latin instructions that, once converted
to a script, is runnable in a single Hadoop cluster.

The third phase is merging, where PigOut further opti-
mizes the chunked logical plan. In this phase, PigOut merges
subplans in order to reduce the number of MapReduce jobs

1Currently, we assume that when there is an HDFS instance running in a
cluster, there is a corresponding Pig and MapReduce instances running in the
same cluster. This is indeed the case for most of the Hadoop installations;
however, we can relax this assumption by having additional configuration
parameters that provide Pig and MapReduce locations.

created, and maximize the potential for single-site optimization
at runtime. We detail this stage in Section IV-C.

The fourth phase is script and workflow generation, where
PigOut uses the partitioned logical subplans to generate a
Pig script for each subplan, an Oozie workflow description
coordinating execution within a single cluster, and an Oozie
coordination plan that captures cross-cluster workflow depen-
dencies. PigOut also generates data transfer scripts that move
intermediate data among all the clusters involved. This phase
is a purely mechanical translation from our internal graph
representation back to scripts and workflow descriptions, and
is described in Section IV-D.

The last phase is script execution, where PigOut submits
the generated workflow scripts to Oozie and Pig instances
across different clusters. When the submissions are done, the
off-the-shelf Hadoop components (i.e., Oozie, Pig, HDFS, and
MapReduce) take over and execute the scripts according to the
workflow submitted.

IV. PIGOUT DESIGN AND IMPLEMENTATION

In this section, we describe six phases that PigOut uses to
generate partitioned scripts and workflow descriptions.

A. Logical Plan Generation

The first phase of PigOut involves two steps—initial logical
plan generation and logical plan optimization.

1) Initial Logical Plan Generation: When a user-provided
script is submitted for execution, PigOut first parses the
script and transforms it into an internal representation, i.e.,
a logical plan. As mentioned earlier, a logical plan is a DAG
representation of a script. Figure 4(a) shows an example logical
plan from the script we discuss in Section II (for the simplicity
of presentation, we only show two clusters, not three as in the
scenario). This initial logical plan is optimized and partitioned
into subplans for multi-cluster execution.

2) Logical Plan Optimization: Once a script is converted
to an initial logical plan, PigOut applies rule-based optimiza-
tion techniques. In doing so, we adapt some of the existing
optimization rules from the original Pig Latin compiler to our
multi-cluster context. The main purpose of this initial logical
plan optimization is to reduce the size of intermediate data that
flows from one command to the next. This is an important step
of optimization since less data means less execution time in
Pig and MapReduce. For example, consider our scenario in
Section II-A. Since only the user and revenue columns
are used throughout the script from the data sets, the rest of
the columns can be filtered out right after each LOAD.

More precisely, there are two principles in our
optimization—(i) we filter out unnecessary data as early
as possible, and (ii) we generate additional data as late
as possible. To accomplish this, we adapt the following
optimization rules from the original Pig Latin compiler:

• PushUpFilter: This rule pushes FILTER up as early
as possible to reduce the size of intermediate data.

• PushDownForEachFlatten: This rule pushes down
FLATTEN, which (roughly) generates a list of cross

(a) The logical plan of the script presented in
Section II for finding estimated revenues.

(b) The logical plan after ColumnPruner and Push-
Filter optimization rules applied and site assignment
annotations are done. Operators added and/or moved
by optimization rules are noted by bold letters.

(c) The logical plan after partitioning. Small circles
represent breakers.

Fig. 4. PigOut’s logical plan processing. The third cluster is omitted for the simplicity of presentation.

products between data items. By pushing this down
to a later stage in the plan, we can keep the size of
intermediate data in the flow low.

• ColumnPruner: Removes columns that are not used
or no longer needed.

• MapKeyPruner: Removes map keys that are not
used, so reduces the size of the record.

Figure 4(b) shows the logical plan after ColumnPruner
and PushUpFilter rules are applied (in addition to the site
assignments, which we explain in Section IV-B1). As shown,
the logical plan now filters out unused columns right after each
LOAD in order to reduce the amount of intermediate data.

B. Logical Plan Partitioning

Once PigOut finishes the logical plan generation phase,
it partitions the plan into subplans. This phase involves two
steps—site assignment and partitioning.

1) Site Assignment: The first step for logical plan partition-
ing is site assignment, where PigOut chooses one execution
site (i.e., cluster) for each vertex (i.e., command). This site
assignment is done with two sub-steps. In the first sub-step,
PigOut annotates each vertex with a list of potential execution
sites. In the second sub-step, PigOut chooses the best site for
each command based on our cost calculation.

PigOut uses the following three rules in the first sub-step:

• Rule 1: LOAD and STORE get their site assignment
from the URI specified in the original script.

• Rule 2: The site assigned for a LOAD command
gets propagated down all the way through the logical
plan until a STORE is encountered. The encountered
STORE does not inherit the site assignment.

• Rule 3: The site assigned for a STORE command
gets propagated up all the way through the logical
plan until it encounters a command that combines
multiple data flows, such as UNION and JOIN in
Figure 4(a). The encountered command does inherit
the site assignment.

These three rules naturally capture potential execution sites for
each command based on where to load input data and where
to store output data.

Figure 4(b) illustrates the site assignments for our Alice
the BUFlow employee example. Each LOAD and STORE com-
mand has a URI given to it; applying rule #1, PigOut assigns
one site to each LOAD and STORE accordingly. PigOut then
applies rule #2 and propagates the site assignment down the
logical plan from each LOAD. As shown, this results in multiple
potential execution sites for some of the commands. Lastly,
PigOut applies rule #3 and propagates the site assignment for
STORE up the logical plan. This propagation stops at JOIN
as it is a command that combines multiple data flows.

Once the candidate sites for each command are determined,
PigOut proceeds to the second sub-step of site assignment,
where it chooses the best execution site for each command.
In doing so, the primary goal is to minimize overall execution
time. Pruning techniques for enumeration-based optimization
strategies (e.g., left-deep joins, gradient descent, and A*
search) are well studied. For evaluation purposes, we adopt a
simple approach: PigOut enumerates all possible allocations
and selects the plan with the lowest cost. In the spirit of
the textbook System R cost estimation model [10], we use
rough arity estimates as an estimator for execution time, as
discussed below. PigOut does not preclude more sophisticated
cost estimation and optimization strategies. However, our
evaluation shows that the heuristics we use are practical and
provide comparable performance to that of a manual, hand-

TABLE II. SELECTIVITIES FOR COMMANDS

Command Selectivity Factor
JOIN Sum of the predecessors
UNION Sum of the predecessors
GROUP 0.24
FILTER 0.5
DISTINCT 0.25

User-defined Func 0.10

tuned approach.

PigOut uses arity estimates as a basis for comparing
different execution plans; in the common case, a ballpark
estimate is sufficient for this purpose [10]. With this in mind,
PigOut’s arity estimator operates as follows: For cross-site
data transfer cost estimation, we first estimate how much
(intermediate) output a command would generate. We assign
a selectivity for this. A selectivity is an input-to-output ratio
estimation for each command. For example, 0.5 for FILTER
means that PigOut estimates the output size of FILTER would
be (0.7 × the input size). Table II shows the selectivities for
various commands we use in this paper. The number can be
adjusted according to data characteristics and workloads.

With a selectivity assigned for each command, we can
estimate how much intermediate data would flow for each edge
in the logical plan.

2) Partitioning: Once PigOut determines the final site
assignment for each command, it identifies all possible break
points to partition the logical plan. PigOut accomplishes this
by depth-first search. It starts from each of the top-most LOAD
commands and traverses the logical plan. For each vertex it
visits, it checks whether or not the successor of the vertex is
assigned the same site. If that is not the case, PigOut inserts
a breaker vertex, which we explain below. Otherwise, PigOut
continues its depth-first traversal.

A breaker is a special type of vertex that marks a potential
partition point. An example is depicted in Figure 4(c). Each
breaker vertex indicates that the commands before and after
the breaker can run on two different clusters. This also means
that transferring intermediate data from one cluster to another
cluster will be required at the breaker. Thus, PigOut later
converts each of these breakers to a sequence of STORE in
one cluster, data transfer from one cluster to the other, and
LOAD in the other cluster, appropriately.

C. Merging

When PigOut finishes the partitioning phase, the logical
plan is divided into multiple subplans as indicated by breakers
and each subplan is assigned to one site for execution. At this
stage, it is possible to convert each subplan to a Pig script and
execute them. However, doing it right after partitioning runs
the risk of generating too many scripts unnecessarily.

For correctness, generating and running many scripts does
not have any issue. However, performance might suffer as there
is a start-up cost associated with each script execution, e.g.,
script submission cost, Pig’s script compile cost, MapReduce
job startup cost, etc., that all add up to be non-negligible.
Thus, it is important to reduce the number of scripts without
sacrificing any other aspects of performance.

Consequently, PigOut has an additional merging phase,
where it combines multiple subplans if possible. This requires
a balance between parallelism and the number of scripts
generated. For example, we could combine the three subplans
assigned to cluster #1 (subplans #1, #2, and #4) in Figure 4(c).
This will reduce the number of scripts for cluster #1 from three
to one, potentially saving much of the additional script-running
overhead. However, this reduces opportunities for parallelism.
As shown in Figure 4(c), the first three subplans (subplans #1,
#2, and #3) are independent of each other. This means that
we can run them in parallel in clusters #1 and #2. However,
if we combined all the subplans for cluster #1 (subplans #1,
#2, and #4), we would lose the parallelism. This is because
we can start executing a script only when all the input data
is available. The script generated from the combined subplan
for cluster #1 would need to wait until cluster #2 finishes its
processing completely.

PigOut strikes the balance between parallelism and the
number of scripts by only combining subplans that have the
exact same dependency with respect to other subplans. For
example, subplans #1 and #2 in Figure 4(c) have the exact
same dependency, which is to feed the output to subplan #4.
Thus, PigOut combines them into a single subplan. We would
not lose much parallelism since they can still run alongside
subplan #3. Note that we do not lose the parallelism between
subplans #1 and #2 even if we combine them into a single
script. This is because the original Pig identifies parallel tasks
and actually runs them in parallel. Thus, PigOut relies on Pig
to run combined subplans in parallel.

D. Script and Workflow Generation

Once the initial logical plan is partitioned and merged into
subplans, PigOut converts them into Pig scripts. This phase
is purely mechanical and just involves translation of logical
subplans to scripts and workflow descriptions.

To generate the scripts, PigOut scans a plan and creates
a semantically equivalent command from each vertex. As
mentioned earlier, PigOut also transforms each breaker into
three steps, a STORE, a data transfer, and a LOAD. In addition,
PigOut generates two workflow descriptions for each subplan,
one for single cluster execution, and the other for cross-cluster
dependency resolution.

PigOut transfers data between clusters by scp. Transfer-
ring large data sets efficiently is well studied, and beyond
the scope of this paper. Hence, we chose scp, an off-the-
shelf tool, that is readily available. By leveraging off-the-shelf
data transfer tools, administrators do not need to worry about
supporting yet another data transfer tool. Moreover, Hadoop
clusters typically sit behind a firewall, which makes it difficult
to use custom data transfer tools that might require additional
configuration. For example, Hadoop provides distcp as
a data copy tool across machines, but it incurs all-to-all
communication between different Hadoop cluster nodes. This
requires much manual firewall configuration across different
administrative domains, just to support distcp. PigOut’s
transfer process is modular, allowing us to easily leverage other
off-the-shelf tools such as rsync easily.

E. PigOut Extension to Pig Latin

Even though PigOut automatically generates distributed
data flows from Pig scripts, PigOut extends the syntax mini-
mally in order to provide a way for users to describe data flows
explicitly. There are two additional commands PigOut adds to
Pig Latin. First, LOADX specifies explicitly that the input data
set will be shipped to another site without processed at or near
the data source. Second, STOREX specifies that a data set will
be shipped to the destination, after the data set is generated at a
site. Therefore, LOADX is translated into a data transfer script
followed by a LOAD command. Correspondingly, STOREX is
translated into a STORE command and a data transfer script.

V. EVALUATION

We evaluate PigOut’s performance using PigMix, a bench-
mark for Pig [9]. PigMix contains 17 Pig scripts designed
to stress-test and benchmark various Pig commands. We first
present background necessary to understand our results, and
later present the results.

A. Preliminary

Since PigMix scripts are written for a single cluster setting,
we adapt all 17 scripts for a two-cluster setting used in our
evaluation. We first present this two-cluster setting. We then
describe how we adapt PigMix scripts and manually partition
them in order to compare manual approaches to PigOut.

1) Evaluation Setting: We use two heterogeneous Hadoop
clusters in our experiments. One cluster (Cluster #1) consists
of 5 machines, each with 4 CPU cores (one Intel Xeon
X3430 2.40GHz), 16 GB of RAM, and one 160 GB disk for
OS/applications and one 1 TB disk for data. The other cluster
(Cluster #2) consists of 16 machines, each with 4 CPU cores
(one Intel Xeon E5-2403 1.80 GHz), 48 GB of RAM, four 1
TB disks. A node in Cluster #1 communicates to each other
through 1 Gb/s Ethernet, but Cluster #2 has 10Gb/s networks
for internal communication. The two clusters communicate
over 1 Gb/s link. Each cluster runs on Ubuntu Linux 10.04
(Cluster #1) and Red Hat Enterprise Linux 6 (Cluster #2).
Both clusters run Hadoop MapReduce 1.0.4 and Apache Oozie
4.0.1.

Although two clusters are located within the general do-
main of our university, they are separated from each other
since each sits behind its own firewall. In addition, they are
managed separately; Cluster #2 is a shared Hadoop cluster
for our department, and Cluster #1 is a cluster managed by
our research group. Thus, this mimics a real-world setting
where two Hadoop clusters belong to different administrative
domains.

2) PigMix Adaptation: PigMix scripts are written for a
single-cluster setting, and we need to adapt them for our two-
cluster setting. In order to understand how we adapt PigMix
scripts, consider our running example in Section II-A, which
in fact represents the base scenario for all PigMix scripts
as well as our adaptation process. In our running example,
there are two tables processed together, page_views and
users. Similarly, every PigMix script processes either a
single page_views table or both page_views and users
tables together. The only difference from script to script is
which columns from these tables are processed and how.

Starting from these scripts, we make the following three
changes. First, we spread page_views across two clusters
and place users in one cluster. Second, for each LOAD
command that reads page_views in a PigMix script, we
replace it with two LOAD commands, one reading from one
cluster, the other from the other cluster. Third, for each STORE
command, we provide the URI of the cluster that has the
users table. Since other parts are untouched, the resulting
scripts are nearly identical to the originals except LOAD and
STORE commands. We have put all our adapted PigMix scripts
on our website at: http://pigout.cse.buffalo.edu.

In our experiments, we directly feed these adapted PigMix
scripts to PigOut, so that PigOut can automatically process
them. In addition, we manually partition each script and write
workflow descriptions for comparison, as described next.

3) Manual Partitioning: In order to establish the baseline
for comparison, we have manually partitioned all 17 PigMix
scripts and compared their performance to that of PigOut’s
automatically partitioned scripts. However, since manual par-
titioning for a script is essentially hand-optimization, there is a
very high degree of freedom available. This makes it difficult
to quantify how much optimization has gone into a script
for manual partitioning. For this reason, we also discuss our
strategy for manual partitioning below. In addition, we have put
all our manually partitioned scripts on our website for further
perusal at: http://pigout.cse.buffalo.edu.

Our manual partitioning involves two passes. First, we per-
form mostly-mechanical manual partitioning for each adapted
PigMix script. This process resembles what Alice does in
our running example—(i) we first write a script for each
cluster that reads the cluster’s own data set (page_view) and
projects columns to be processed, and (ii) we write another
script that processes the projected data sets together.

After this, we proceed to our second pass where we analyze
the script at hand to perform deeper optimization. Mainly, we
look for opportunities for distributed processing; for example,
if a total summation needs to be done over two data sets,
then we perform a partial summation of each data set in each
cluster first, then ship the results to one cluster for the final
summation.

Once we are done with our hand-optimization, we then
generate Oozie workflow descriptions for all clusters that
coordinate the overall execution of the scripts.

B. Discussion: Manual Partitioning Experience

While manually partitioning adapted PigMix scripts, we
have found out that the manual approach is time-consuming
and error-prone. At first, it took 3 to 4 hours for us to correctly
craft a series of workflows over federated clusters from a single
script. Later, we were able to use some of the already-written
scripts and workflow descriptions as templates, since several
PigMix scripts are structured in a similar way. Even then, it
still took several dozen minutes to correctly partition a single
script and generate Oozie workflows. We expect that manually
partitioning scripts with a new structure (e.g., adding a new
cluster, or adapting to a policy change) would again require
several hours of effort.

0

2

4

6

8

10
Cluster #1

0 50 100 150 200 250 300 350 400 450
Time in seconds

0

5

10

15

20

25

30

N
um

be
ro

ft
as

ks

Cluster #2

Map
Shuffle
Merge
Reduce
Data Transfer

(a) L3: Manually partitioned

0

2

4

6

8

10
Cluster #1

0 50 100 150 200 250 300 350 400
Time in seconds

0

5

10

15

20

25

30

N
um

be
ro

ft
as

ks

Cluster #2

Map
Shuffle
Merge
Reduce
Data Transfer

(b) L3: PigOut partitioned

Fig. 5. L3 execution behavior

0

2

4

6

8

10
Cluster #1

0 500 1000 1500 2000 2500 3000 3500 4000
Time in seconds

0

5

10

15

20

25

30

35

N
um

be
ro

ft
as

ks

Cluster #2

Map
Shuffle
Merge
Reduce
Data Transfer

(a) L9: Manually partitioned

0

2

4

6

8

10
Cluster #1

0 500 1000 1500 2000 2500 3000 3500 4000
Time in seconds

0

5

10

15

20

25

30

35

N
um

be
ro

ft
as

ks

Cluster #2

Map
Shuffle
Merge
Reduce
Data Transfer

(b) L9: PigOut partitioned

Fig. 6. L9 execution behavior

There were two main sources of difficulty in manual parti-
tioning. The initial difficulty was that we had to reason about
the nature of data and how the data was spread over multiple
clusters, in order to come up with a good optimization strategy.
A simple example is a filter operation; without understanding
the data, there is no way to tell how much a filter operation
would reduce the data set.

The other main source of difficulty was that the debug/rerun
cycle in manual partitioning process involved an extremely
heavy-weight trial and error process that spans multiple clus-
ters. Even on a single cluster, MapReduce startup costs can
lead to multi-minute trial runs. This phenomenon is amplified
further still when using multiple scripts and workflow descrip-
tions. Not only is the execution latency higher, but errors can
trigger a need for coordinated fixes across multiple scripts,
leading to further errors and consequent debug/rerun cycles.

Using PigOut had a clear benefit over this, since there was
no manual labor involved. Once a PigMix script was adapted,
we were able to run it right away through PigOut. For example,

we were able to get the results of all adapted PigMix scripts
within a matter of a few hours with PigOut.

C. Performance Comparison

The main purpose of our performance evaluation is to
demonstrate that PigOut’s automated approach provides com-
parable run-time performance to that of a manual approach. In
all our experiments, each of the two clusters contains 10GB of
page_views and Cluster #1 contains 128MB of users as
well. With these input data sets, processing of a script mostly
finishes within several minutes. However, there are some
scripts that take longer as well, e.g., several tens of minutes.
We believe that this skewed workload with more small jobs
reflects the reality—a recent measurement study [11] analyzed
seven Hadoop cluster traces from Facebook and Cloudera and
reports that MapReduce jobs vary much in size but mostly
small. For example, over 90% of all the jobs in the traces took
less than several minutes.

Table III compares the execution times for all the scripts.

0
1
2
3
4
5
6

Cluster #1-1

0
5

10
15
20
25
30
35

Cluster #2

Map
Shuffle

0 200 400 600 800 1000 1200 1400 1600
Time in seconds

0
1
2
3
4
5
6

N
um

be
ro

ft
as

ks

Cluster #1-2

Data Transfer
Merge
Reduce

(a) L3: Manually partitioned with 3 clusters

0
1
2
3
4
5
6

Cluster #1-1

0
5

10
15
20
25
30
35

Cluster #2

Map
Shuffle

0 200 400 600 800 1000 1200 1400 1600
Time in seconds

0
1
2
3
4
5
6

N
um

be
ro

ft
as

ks

Cluster #1-2

Data Transfer
Merge
Reduce

(b) L3: PigOut partitioned with 3 clusters

Fig. 7. L3 execution behavior with 3 Hadoop clusters

TABLE III. EXECUTION TIME COMPARISON IN SECONDS.

Script Manual PigOut (PigOut − Manual) PigOut Compile
L1 1999 2048 49 5.491
L2 303 380 77 5.160
L3 568 532 -36 5.489
L4 406 373 -33 4.661
L5 429 415 -14 4.806
L6 481 437 -44 4.712
L7 488 436 -52 5.094
L8 1205 1558 358 5.091
L9 3849 3922 73 4.670

L10 4034 4024 -10 5.096
L11 663 590 -73 5.263
L12 516 480 -36 6.355
L13 426 481 55 4.706
L14 624 605 -19 5.404
L15 596 528 -58 5.780
L16 431 422 -9 5.094
L17 4542 4679 137 5.389

Figures 5 and 6 provide an in-depth look into the run-time
behavior of each case. In all our results, we follow PigMix’s
naming scheme, even though we have adapted all the scripts. In
addition to execution times, “PigOut Compile” shows how long
it takes to generate partitioned scripts and Oozie descriptions
for PigOut.

From Table III, we make two observations. First, the exe-
cution times are similar, i.e., the difference is typically within
a couple of minutes. The reason is generally because PigOut
generates a similar set of scripts and workflow descriptions as
those we generate by hand. Second, PigOut can be either faster
or slower than the manual approach, depending on the script.
The largest difference is for L8, where PigOut takes around
350 seconds longer than the manual. Part of this difference is
due to Oozie; before executing a script, Oozie verifies that all
its input data is available by polling HDFS for the existence
of the input data every minute. Due to this polling interval,
there can be a delay in executing a script.

We use L3 and L9 as representatives to highlight some of
the execution behavior of PigOut. In Figure 5, we can observe
that both the manual approach and PigOut show execution
times close to each other for map tasks, reduce tasks, and data
transfers. This is due to the fact that both approaches generate

similar scripts for execution. In Figure 6, we can observe that
the beginning part of the execution only has Map tasks. In fact,
these map tasks do not do any processing except reading of
the input data sets. PigOut could replace these map tasks with
a shell script that simply reads the input data from HDFS to
optimize the performance further.

In Figure 7, we further examine the behavior of PigOut
by running L3 over 3 clusters. For this experiment, we split
Cluster #1 into two clusters, Cluster #1-1 (3 nodes with one
master node and two worker nodes) and Cluster #1-2 (2 nodes
with one master/worker node and one worker node). Similar to
the experiments discussed previously, each cluster has a 10 GB
page_view table, and Cluster #1-1 has 180 MB of users
table. As shown, the execution of PigOut behaves in a similar
way to the manually partitioned one. Only notable difference
is the first 400 seconds in Cluster #1-1, where there is some
extra processing done by PigOut. The reason for this behavior
is that PigOut tries to maximize the opportunities of parallelism
as discussed in Section IV-C; thus, we can observe in Figure 7
that PigOut utilizes all three clusters in the beginning intead
of letting one cluster stay idle for a few hundred seconds.
However, it does not translate into any performance again in
the case shown in Figure 7. The reason is the same as before;
due to the Oozie polling interval for checking data availability,
there can be a delay in between executing jobs.

VI. RELATED WORK

The idea of processing data sets over distributed sites is not
new. Federated database systems (FDBS) have been developed
to use and manage a set of autonomous and possibly hetero-
geneous but cooperating database systems [12]. In scientific
computing, there are many workflow systems in the literature
such as Pegasus [6] and Kepler [7] that allow users to express
multi-step computational/data tasks. These existing systems
evidence that federated data processing is necessary in many
domains. PigOut applies the same concept to Hadoop in order
to offer the same benefits in Hadoop clusters.

The domain of scientific computing has also widely
adapted Hadoop MapReduce. As a result, several systems

integrate Hadoop into existing workflow systems, albeit limited
to a single Hadoop instance setting. Wang et al. [13] presents
how to integrate Hadoop MapReduce with Kepler [7], a
popular scientific workflow system. Recent work along the
same line includes G-Hadoop [14] and Kondikoppa et al. [15].

Practitioners have also discussed the idea of a hybrid cloud,
which deploys a computational infrastructure on private, on-
premise systems as well as public cloud services, due to
concerns over data and computation privacy. HybrEx [16],
Sedic [17], Tagged MapReduce [18] propose a model of
utilizing multiple clouds via MapReduce programming model
while addressing concerns in processing private and sensitive
data in public clouds.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented PigOut, a federated data process-
ing system over multiple Hadoop clusters. PigOut takes care
of all aspects of automation, including script and workflow
generation, data transfer, and optimization suitable for cross-
cluster execution. PigOut does not require any additional effort
from existing Hadoop users or cluster administrators since
it supports Pig Latin’s syntax out of the box and leverages
standard, off-the-shelf Hadoop components without any mod-
ification. Our experiments show that PigOut produces scripts
and execution plans that can provide comparable performance
to that of manual, hand-tuned scripts and plans.

Our future work mainly includes incorporating other strate-
gies in various phases. Currently, PigOut uses heuristics for
script optimization and a simple tool for data transfer. Al-
though our experiments show that these are practically enough
to use as-is, we plan to look into other optimization strate-
gies and data transfer tools that might give us even better
performance. Another possible enhancement is to support cus-
tomizable error recovery schemes. While generating workflow
definitions, PigOut can specify how to react to failures. If a
user gives hints in scripts, PigOut could specify a proper error
recovery routine for each generated script. For example, if one
of the data sources is not considered critical in the final result,
PigOut can specify Oozie to proceed even in a case that the
fetching and filtering part of the workflow fails or cannot be
run because the cluster is unavailable.

REFERENCES

[1] Apache, “Apache Hadoop,” http://hadoop.apache.org, accessed May 27,
2014.

[2] “Altior’s AltraSTAR - Hadoop storage accelerator and optimizer now
certified on CDH4 (Cloudera’s distribution including Apache Hadoop
version 4),” http://goo.gl/QIUeoX, 2012, retrieved on June 26, 2014.

[3] Apache, “Apache Pig: high-level dataflow system for Hadoop,” http:
//pig.apache.org, accessed May 27, 2014.

[4] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in SIGMOD ’08.

[5] Apache, “Apache Oozie workflow scheduler for Hadoop,” http://oozie.
apache.org, accessed May 27, 2014.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C.
Jacob, and D. S. Katz, “Pegasus: a framework for mapping
complex scientific workflows onto distributed systems,” Sci. Program.,
vol. 13, no. 3, pp. 219–237, Jul. 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1239649.1239653

[7] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the kepler system: Research articles,” Concurr. Comput. : Pract.
Exper., vol. 18, no. 10, pp. 1039–1065, Aug. 2006. [Online]. Available:
http://dx.doi.org/10.1002/cpe.v18:10

[8] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Ol-
ston, B. Reed, S. Srinivasan, and U. Srivastava, “Building a high level
dataflow system on top of mapreduce: The pig experience,” PVLDB,
2009.

[9] Apache, “PigMix,” https://cwiki.apache.org/confluence/display/PIG/
PigMix, accessed June 24, 2014.

[10] M. Blasgen, M. Astrahan, D. Chamberlin, J. Gray, W. F. King, B. Lind-
say, R. Lorie, J. W. Mehl, T. Price, G. R. Putzolu, M. Schkolnick,
P. Selinger, D. R. Slutz, H. R. Strong, I. L. Traiger, B. Wade, and
R. Yost, “System R: An architectural overview,” IBM Systems Journal,
vol. 20, no. 1, pp. 41–62, 1981.

[11] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802–1813, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.14778/2367502.2367519

[12] A. P. Sheth and J. A. Larson, “Federated database systems for
managing distributed, heterogeneous, and autonomous databases,”
ACM Comput. Surv., vol. 22, no. 3, pp. 183–236, Sep. 1990. [Online].
Available: http://doi.acm.org/10.1145/96602.96604

[13] J. Wang, D. Crawl, and I. Altintas, “Kepler + hadoop: A
general architecture facilitating data-intensive applications in scientific
workflow systems,” in WORKS. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1645164.1645176

[14] L. Wang, J. Tao, H. Marten, A. Streit, S. Khan, J. Kolodziej, and
D. Chen, “Mapreduce across distributed clusters for data-intensive
applications,” in IPDPSW PhD Forum, May 2012.

[15] P. Kondikoppa, C.-H. Chiu, C. Cui, L. Xue, and S.-J. Park, “Network-
aware scheduling of mapreduce framework on distributed clusters
over high speed networks,” in Proceedings of the 2012 Workshop on
Cloud Services, Federation, and the 8th Open Cirrus Summit, ser.
FederatedClouds ’12. New York, NY, USA: ACM, 2012, pp. 39–44.
[Online]. Available: http://doi.acm.org/10.1145/2378975.2378985

[16] S. Y. Ko, K. Jeon, and R. Morales, “The hybrex model for
confidentiality and privacy in cloud computing,” in Proceedings of
the 3rd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’11. Berkeley, CA, USA: USENIX Association, 2011, pp.
8–8. [Online]. Available: http://dl.acm.org/citation.cfm?id=2170444.
2170452

[17] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan, “Sedic: Privacy-
aware data intensive computing on hybrid clouds,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 515–526.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046767

[18] C. Zhang, E.-C. Chang, and R. H. Yap, “Tagged-mapreduce: A general
framework for secure computing with mixed-sensitivity data on hybrid
clouds,” in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, May 2014, pp. X–X.

