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Abstract. Business intelligence and reporting tools rely on a database
that accurately mirrors the state of the world. Yet, even if the schema and
queries are constructed in exacting detail, assumptions about the data
made during extraction, transformation, and schema and query creation
of the reporting database may be (accidentally) ignored by end users, or
may change as the database evolves over time. As these assumptions are
typically implicit (e.g., assuming that a sales record relation is append-
only), it can be hard to even detect that a mistaken assumption has been
made. In this paper, we argue that such errors are consequences of unin-
tended contextual dependence, i.e., query outputs dependent on a variable
characteristic of the database. We characterize contextual dependence,
and explore several strategies for efficiently detecting and quantifying
the effects of contextual dependence on query outputs. We present and
evaluate our findings in the context of a concrete case study: Detecting
temporal dependence using a database management system with ver-
sioning capabilities.

1 Introduction

The goal of analytical modeling is to reflect as accurately as possible the real
world. However, with data often being machine-generated, people are increas-
ingly realizing that “a single version of the truth ceases to be absolute and
becomes relative and contextual.”1 Being able to relate the results of a query to
the contextual assumptions on which the base data is built is thus increasingly
critical for providing accurate and timely results.

In this paper, we explore the notion of data context: First, we identify contex-
tual dependence as a relationship between query outputs and implicit contextual
filters on the data being used. Then, we address a concrete class of contextual
dependence: temporal dependence, which occurs when a query result depends on
data that changes over time. Finally, we survey and evaluate multiple strategies
for what we call dependence analysis: the detection of contextual dependence in
query results.

1 http://blogs.forrester.com/boris_evelson/12-12-12-top_10_bi_

predictions_for_2013_and_beyond
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1.1 Motivation

The root challenge of contextual analysis arises across a variety of domains. We
will discuss three specific domains that directly benefit from contextual analysis.

Contextual Dependence Errors in ETL Processes. Extract, Tranform,
Load (ETL) is the process by which data is typically introduced into a data man-
agement system. Because of the nature of ETL, contextual assumptions about
or dependencies in a data set or its structure can be omitted or misrepresented.
ETL processes typically mask the source data and the transformation — only
the final result is loaded into the analytical warehouse. For example when an
ETL process aggregates data, individual values are lost and an outlier might
skew the results in a misleading way. As a consequence, end-users who are not
aware of such masked properties of the original data may inadvertently issue
queries that mischaracterize it.

Example 1. Consider an ETL process that periodically dumps an OLTP cus-
tomer database to an OLAP database for analysis. At the moment the ETL
process runs, Alice’s credit account balance might be $10,000. This simplified
representation is natural, but might be misleading for analysts — for example,
Alice’s typical credit balance of $0 might be masked by a recent purchase.

Dependence analysis is a first step towards ensuring user awareness of masked
properties (e.g., by visually annotating query results). Identifying tuples and
attributes that change with variations in the ETL process can serve as a quick
mental sanity check for end-users, to ensure that these variations are expected
and/or within acceptable tolerances. Note that this issue could be addressed
by a carefully designed ETL process if queries are known apriori, or handled
aposteriori in query logic if this dependence can be identified or tracked. Context
analysis eases the burden of detecting dependence in the first place.

Optimizing Operational Business Intelligence. Operational business intel-
ligence, sometimes referred to as real-time business intelligence uses the analysis
of real-time or low latency data to enable a continual view into what is happen-
ing, and to support decision making for a company. While integration, processing
and analysis of near-real-time information is needed across the board, it can re-
quire significant cost in software, hardware and staff to develop and deploy [9].

We believe that a fully real-time decision query support system might not
always be the best answer for operational BI. For example, consider a threshold
on the inventory of certain items. In order to decide whether new items need
to be ordered, there is no real need to constantly evaluate the exact number of
items currently on the shelves until an inflection point is crossed which marks
the boundary of inventory. In the past, such thresholds have been determined
manually and were typically static. Predicting the optimal thresholds based on
live sales data has resulted in higher efficiency and profits. However, creating
these models can be very challenging and costly. Contextual analysis on the
time domain could suggest models, again easing the burden on end users.
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Volatility Analysis. Similarly, by analyzing the historic volatility for certain
columns, a system could autonomously provide insight into another big BI data
quality problem: missing data. For example, if a column historically has a certain
update rate, and suddenly that rate changes outside of the norm, the system can
notify the user accordingly.

In this paper, we characterize the notion of contextual analysis using time
as a context in Sections 3 and 4. In Section 5 we survey and adapt multiple
strategies, both exact and approximate, for detecting and quantifying the extent
of temporal dependence in a query result. We implement these strategies on a
commercial database system and present the result of our evaluation of their
performance and accuracy in Section 6.

2 Related Work

There has been much work on the use of database versioning to track the evo-
lution of data over time [7, 8, 18, 21], and on providing low latency access to
temporal and versioned data using temporal indexing methods [22, 16]. Many ex-
isting production-grade databases support SQL 2011’s bi-temporal features [15];
This and related research efforts are basic technology enablers for our own work.
Our primary focus is on performing query analysis in-situ over existing database
applications by using transaction-time support already in the database. We eval-
uate and compare a range of strategies based on Monte-Carlo sampling, temporal
queries, and provenance.

Our first approach uses Monte-Carlo sampling [11], a technique used in ap-
proximate query answering [19], and for probabilistic data [13]. We employ sim-
ilar strategies to estimate the evolution of a query result over time.

We also explore the use of temporal database techniques [17, 5, 24] to opti-
mize query evaluation. Point-in-time semantics allow non time-aware queries
to be posed over temporal data, but do not admit an efficiently queryable
data representation. Techniques for compiling point-in-time queries into interval-
semantics queries [17] are a potential strategy for us, as they allow non-temporal
queries to be evaluated efficiently over a version history.

Finally, we consider CTables and related work on provenance and incomplete
information [12, 26, 4]. These strategies modify query execution to be aware of
annotations tracking provenance [26, 4] or missing information [12]. We employ
a simplified form of these techniques to connect pre-computed summaries of data
variability in query inputs with the corresponding query outputs.

3 Data Context

In this paper we adapt the model of context proposed by Bertossi et. al. [2], and
treat the relations of a database as views over a “global” database instance ex-
tended with additional contextual metadata. The Bertossi model classifies data
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as being of either high or low quality using a set of predicates over both the
database and its surrounding context. Different quality metrics are achieved by
varying the set of predicates considered. Rather than using a binary classifier,
we instead consider context as establishing an enumerable space of possible in-
terpretations.

The space of possible interpretations is captured by a singleton relation C
with attributes encoding factors implicitly assumed by a database developer
and/or the user posing a query. For example, the context relation might consist
of a user’s current location, a database designer’s choice of Fahrenheit or Celsius,
and/or a vector of exchange rates over time. Let G be a global database instance
with schema SG. We define a context-aware database instance DC as a database
instance with schema SG and relations RC ∈ DC defined as views over G:

RC(x)⇐ φG(x) ∧ C(x)

Here φG(x) is an arbitrary conjunctive query over G. We refer to the relation
C as the context of DC . DC captures the effects of context C under the set of
assumptions that form C.

Given a query Q(DC) and a set C of contexts (i.e., instances of C), the
goal of context analysis is to determine if and how Q(DC) depends on C. We
refer to such dependencies as table-, tuple-, or attribute-level dependence in Q,
depending on what parts of Q(DC) are affected.

Example 2. An analyst is working with a database G which includes temperature
readings, and poses a query Q(G). Using units of temperature as an assump-
tion, there might be two possible contexts: one in which G’s temperatures are
in Celsius, and another in which they are in Fahrenheit. This gives us two in-
stances Dc, Df , respectively. The query Q(G) can now be restated as a choice
between the results of either Q(Dc) or of Q(Df ), depending on which contextual
assumption is true. If Q(Dc) ≡ Q(Df ), we say that Q does not have a contextual
dependence. Similarly, a tuple present only one of Q(Dc) and Q(Df ) exhibits a
tuple-level context dependence.

We are not only interested in the presence of context dependence, but in
quantifying its impact. Following the literature on representing and querying
incomplete information [12, 1, 13, 14], one form of impact is to measure the subset
of C for which a given tuple is present in Q(DC) (the tuple’s confidence). Another
is to generate visualizations and analytical summaries (moments, boundaries, or
trends) for individual attribute values in the output. Such analyses generally take
the form of a query aggregating over all possible contexts. This common, simple
structure admits a range of different evaluation strategies. Our goal in this paper
is to enumerate and evaluate four such strategies: (1) A naive, evaluation for
each context, (2) a monte-carlo based sampling strategy, (3) a strategy based on
query rewriting, and (4) an approximation strategy that composes precomputed
partial analyses.

Time as Context. A particularly important instance of contextual dependence
occurs when a relation’s context changes over time. This class of dependence is
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frequently opaque to users, making it extremely hard for humans to detect.
Moreover, many commercial databases already have transaction time and/or
versioning capabilities and natively provide support for views of data parame-
terized by time. This makes the detection of contextual dependences feasible to
implement, even for databases already deployed in production.

Example 3. Returning to Example 1, an analyst decides to run a new promotion
for customers with low balances. Without realizing the volatility of the balance
attribute, the analyst queries for all customers with a balance under $1000 and
mistakenly excludes Alice due to her recent purchase. The OLTP database’s
version history can be used to correctly answer the analyst’s query, only after
the analyst comes to realize that an error has occurred. Temporal dependence
analysis can serve as a quick sanity check for the analyst, allowing her to quickly
discover the potential error.

To define the view RC , we take a context C consisting of a single attribute:
time chosen from an enumerable time horizon of interest. The view Rt defines
the state of relation R at the point in time t. We refer to a contextual dependence
where time is the primary feature of the context as a temporal dependence. For
the remainder of this paper we will focus on detecting temporal dependence in
queries.

4 Detecting Temporal Dependence

We consider three levels of detail when searching for temporal dependence in
query results: (1) Detecting temporal dependence in the entire result relation:
Does the set of customers with balances under $1000 change over time?, (2) De-
tecting temporal dependence in individual result attributes: Does Alice’s balance
change over time?, and (3) Quantifying the effects of temporal dependence on
the results: How much does Alice’s balance change over time?.

Naive Temporal Dependence Analysis. As a baseline, we consider a naive
strategy based on a process called temporal query normalization [17, 5, 24].
Normalization identifies a minimal set of time intervals over which the results of
a query Q are guaranteed to be unchanged. This is accomplished by enumerating
the full list of versions at which a change is applied to any base relation referenced
by Q (versions(Q) for short). The query is evaluated once for each version in
versions(Q), producing a set of result relations (a set of sets) RQ = {Q(Dt) | t ∈
versions(Q)}. Clearly, if |RQ| > 1 then Q has a temporal dependence.

This approach presents two immediate challenges: First, detecting (and quan-
tifying) row-level changes with respect to time requires matching corresponding
rows between relations in RQ. Second, this approach can require substantial
wasteful re-evaluation of large portions of the query, especially if each version
makes only minor changes to the base relation. We first consider the question of
row matching, and return to evaluation strategies in Section 5.
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4.1 Row Matching

We would like to be able to identify not only row-level differences (i.e., insertions
and deletions), but also cell-level differences (i.e., updates to individual data val-
ues). To accomplish this, it is necessary to match rows across query evaluations
on different versions of the database — Was a row of the output modified (i.e.,
a cell-level change) or replaced in its entirety (i.e., a row-level change)?

We would like to match query output rows according to conceptual equiv-
alence if at all possible, pairing two outputs if they correspond to the same
conceptual entity. We consider three classes of queries for which it is possible to
exactly detect conceptual equivalence:

Aggregate Queries The group-by attributes of an aggregate query act as a
unique identifier, or key for each output tuple.

Distinct Queries The distinct attributes of a query act as a key.

Single-Relation Queries The key (if available) of the relation being queried
is used to identify each output tuple. For base relations that do not have keys
(i.e., bags), we use the relation’s physical row identifier attribute as a key.

For queries that do not fall into one of the above categories, we approximate
conceptual equivalence through a form of why-provenance [6, 3]. To support
non-aggregate join queries, we compute a new key for each query output by
composing the keys of each input source. The projection targets of the query are
then extended with the key. Throughout the rest of this paper, we will assume
that all queries have been transformed according to this process, and that the
key is known.

4.2 Impact Assessment and Visualization

A copy of the query is evaluated over each version in a user-specified time horizon
of interest: t1 . . . tN . We abuse notation and treat t as the entire contextual
interpretation C, and define AS-OF [18] queries as Qt(D) := Q(Dt) Visual
annotations such as colored highlights (or asterisks in a purely text-based setting)
on the query output convey two pieces of information to users:

1. Rows present in the current output are marked if they were not present in
the output at some point in the time horizon of interest. The entire output
table is marked if rows in the table were removed at some point in the time
horizon of interest.

2. Individual (non-key) cells are marked if their values have changed at some
point in the past.

In addition to highlighting temporal dependence in results, we wish to present
the user with a significance metric for each case of temporal dependence. This
is accomplished by grouping tuples together by key with an aggregate function
of the form:

SELECT key, AGG(...) FROM Q1 UNION ... UNION QN GROUP BY key
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We focus on two aggregate metrics in this paper: row confidence, and attribute
boundaries. More general aggregate summaries like average, standard deviation,
and even plots over time can also serve as useful metrics or visualizations of the
significance of a specific temporal dependence.

Confidence. We use confidence to capture the significance of a row-level tem-
poral dependence. The confidence of a given row r is the fraction of time during
which it is present in the database. This may be defined in terms of versions
(e.g., as the percent of versions during which the row is present in the output),
or by weighting (e.g., by wall-clock time):

SELECT key, COUNT(*) / N FROM Q1 UNION ... UNION QN GROUP BY key

Boundaries. Boundaries or ranges capture the significance of an attribute-level
temporal dependence. The upper and lower bounds for each attribute are com-
puted by matching key attribute values across all results.

SELECT key, MakeRange(MIN(A1), MAX(A1)) AS A1, ...

FROM Q1 UNION ... UNION QN GROUP BY key

Example 4. Returning to Example 3, we would like to make it possible for the
OLAP interface to signal the analyst in one of three ways: (1) By marking the
analyst’s balance query as time-dependent, (2) By marking Alice’s presence in
the result set as time-dependent, and/or (3) By indicating that Alice is part of
the result set 99% of the time.

5 Practical Temporal Dependence Detection

This naive strategy requires many complete evaluations of the query. We now
survey a variety of specialized query evaluation techniques designed for related
scenarios, and discuss how they may be applied to support efficient detection
of temporal dependence in results. We consider three strategies: approxima-
tion algorithms including Monte-Carlo Approximation, and one we call Analysis
Composition, as well as an exact algorithm that we call Dynamic Analysis.

5.1 Monte-Carlo Approximation

Our first approach attempts to limit the amount of work performed during tem-
poral dependence detection by using Monte-Carlo approximation. Instead of
evaluating the query at every version, the query is only evaluated on a fixed set
of randomly selected sample versions S. In other words: ⋃

1≤t≤N

Qt

 ≈ QS :=

(⋃
t∈S

Qt

)

Statistical metrics for the result set are computed as in the naive approach,
but on a smaller set of sample points. Confidence values, expectations, and range
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boundaries are independent of result-set size; The process for computing these
metrics is entirely unchanged. The time complexity of detecting temporal de-
pendence in QS scales linearly in |S|, which we can control directly, rather than
in N , which we can not. The improved performance comes at the cost of result
accuracy.

5.2 Dynamic Analysis

R ⋈B S

<1,1>

<2,1>

<3,2>

<4,2>

<1,5>

<1,6>

<2,7>

R(A, B) S(B, C)

<1,1,5>

<2,1,6>

<3,2,7>

(a) (b) (c)

t1

t3

t5

t6

t2

t4

t1

t3

t6

t2

t4

t1

t3

t6

Ti
m

e

t3t3

t1

t5

t6

t3

Fig. 1. An example dataset illustrating the value of dynamic analysis. The histories of
relations R(A,B) and S(B,C) contain (respectively) 4 and 3 tuples over the interval
(t1, t6). The join of both relations is shown under dynamic analysis. Under static anal-
ysis, tuple 〈2, 1, 6〉 would be partitioned into 3 intervals: (t3, t4), (t4, t5), and (t5, t6).

The normalization process described previously operates at a coarse granu-
larity. A separate instance of the query is executed for every version where any
output changes. Instead of discarding query instances to produce an approxima-
tion, computation can be shared across successive versions.

Consider the temporal database shown in Figure 1. Naively, evaluating R ./ S
completely for each version where R or S changes (i.e., for each of (t1, t2), (t2, t3),
. . . , (t5, t6)) involves redundant computation. For example, 〈1, 1〉 ∈ R must be
joined with tuple 〈1, 5〉 ∈ S twice, once for the interval (t1, t2), and again for the
interval (t2, t3), even though neither input tuple changes at version t2.

In this section, we adapt temporal query compilation techniques developed
by Lessa [17] to our substantially simpler setting, and present an optimized
form of temporal query normalization that we call dynamic analysis. Instead of
partitioning tuple intervals prior to query evaluation, intervals are partitioned
on-demand, as needed. Because tuples are partitioned independently, the number
of partitions created is much smaller.

Each tuple is annotated with a new pair of interval attributes start and
end, denoting the first and last version during which the tuple is present in the
database. Queries are rewritten to properly map the interval attributes of their
input relations to their output tuples.

Select, Project. Selections do not interact with intervals, and remain un-
changed. Projections are modified to preserve the interval annotating each input
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tuple. For example, the query SELECT A FROM R would be rewritten to preserve
the interval annotation: SELECT A, start, end FROM R

Join. Joins normalize output tuples on a tuple-by-tuple basis. The joined tuple
is only present in the database so long as both tuples that generated it are
present; The output tuple’s interval is the intersection of the intervals of its
sources. If this interval is empty, the tuple can be dropped immediately. For
example, the query SELECT A FROM R, S WHERE R.B = S.B is rewritten as:

SELECT A, GREATEST(R.start,S.start) AS start,

LEAST(R.end,S.end) AS end

FROM R, S WHERE R.B = S.B

AND GREATEST(R.start,S.start) < LEAST(R.end,S.end)

This process generalizes to any number of relations and projection attributes.

Aggregate. Unlike joins, an aggregate requires its inputs to be normalized
first. Consider a query of the form SELECT A, SUM(B) AS B FROM R GROUP

BY A For each version in which R is modified, the aggregate value of the group
containing the modified tuple also changes. We embed this transition into the ag-
gregate query through a synthetic relation: VSET(A, B, vers), which includes
every version where πA,B(R) changes. We compute the aggregate value for each
interval, using the versions in VSET to mark the end of each generated interval.

SELECT R.A, V.vers, SUM(B) AS B FROM R, VSET V

WHERE V.A = R.A AND vers BETWEEN R.start AND R.end GROUP BY A

Each interval is now annotated with only the end-point. We construct a sim-
ple window query to obtain the matching start points for each interval. In the
following query, the NTH VALUE aggregate is used to obtain the endpoint of the
previous interval for group A.

SELECT A, B, NTH_VALUE(vers, 1) OVER

(PARTITION BY A ORDER BY vers ROWS 1 PRECEDING) AS start,

V.vers AS end FROM QPOINT

This process generalizes trivially to multiple group-by attributes, or multiple
aggregate values. If the aggregate query involves multiple source relations, the
join component of the query is first isolated in a separate nested-from clause and
then rewritten as a normal non-aggregate query.

Acct Name Balance ROWID XID

Alice 100 r1 v1
Bob 200 r2 v1

Carol 5000 r3 v1

(a)

Acct Name Balance ROWID XID

Alice 10,000 r1 v2
Carol 5000 r3 v1
Carol 55 r4 v2

(b)

Fig. 2. The Table Acct extended with row id ROWID and transaction id XID metadata
(a) before updates, and (b) after updates.
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Example 5. Recall our running example, and consider the example Accounts re-
lation Acct shown in Figure 2a. A sequence of updates is applied to this relation
as follows, and the final relation is shown in Figure 2b.

UPDATE Acct SET Balance = Balance + 9900 WHERE Name = ’Alice’;

INSERT INTO Acct VALUES (’Carol’, 55); COMMIT; -- Creates v2

DELETE FROM Acct WHERE Name = ’Bob’; COMMIT; -- Creates v3

Acct Name Balance RID start end

Alice 100 r1 −∞ v2
Alice 10,000 r1 v2 ∞
Bob 200 r2 −∞ v2

Carol 5000 r3 −∞ ∞
Carol 55 r4 v2 ∞

(a)

Q Name Balance start end

Alice 100 −∞ v2
Alice 10,000 v2 ∞
Bob 200 −∞ v2

Carol 5000 −∞ v2
Carol 5055 v2 ∞

(b)

Fig. 3. An interval encoding of the history of the relation Acct from Figure 2 and the
result of query Q on Acct.

The analyst poses a query Q := SELECT Name, SUM(Balance) FROM Acct

GROUP BY Name, and wishes to detect temporal dependence in the output. To
begin, the internal representation of Acct uses an interval encoding as shown in
Figure 3a. Following the dynamic analysis rules, Q is rewritten as follows.

SELECT Name, Balance, NTH_VALUE(pt, 1) OVER

(PARTITION BY Name ORDER BY pt ROWS 1 PRECEDING) AS start,

pt AS end

FROM (SELECT A.Name, V.pt, SUM(Balance) FROM Acct, (

SELECT DISTINCT Name, start AS pt FROM Acct

UNION SELECT DISTINCT Name, end AS pt FROM Acct

) V WHERE V.A = R.A AND V.pt BETWEEN R.start AND R.end

GROUP BY Acct.Name, V.pt

) QPOINT

Finally, the impact assessment process of Section 4.2 aggregates the result to
obtain confidence and range values. Name is a key for Q, resulting in the following
summary relation:

Q Name Balance confidence
Alice [100, 10000] 1
Bob [200, 200] 0.75

Carol [5000, 5055] 1

Alice’s balance is highly volatile, but her account is open for all four versions
resulting in a confidence of 1. Bob’s account balance is stable, but he closes his
account in v3. Carol opened a new account in v2, but the query only returns
the total balance for each customer; The small fluctuation in her balance reflects
this.
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5.3 Analysis Composition

Finally, we consider an approach inspired by the C-Tables [12] encoding for
incomplete information. Instead of analyzing queries directly, this approach in-
stead composes already precomputed results to approximate the result of a full
analysis.

A C-Table encodes many possible instantiations of a base relation in a com-
pact encoding using labeled nulls to represent missing attribute values, and tuple
annotations to mark tuples that only exist in a subset of all instantiations. Al-
though originally targeted at representing incomplete information, C-Table-style
encodings have been applied to other forms of partial information, including
probability distributions [1, 14, 20] and generalized provenance [10]. Exact prob-
ability computations for C-Table queries can be #P complete [1], so we instead
use a simpler uncertainty model based on pessimistic error bounds.

Precomputation. For each base relation R, we precompute a summary relation
S(R), which contains the output of a full temporal dependence analysis of the
trivial query SELECT * FROM R as described in prior sections. As an additional
optimization before analyzing each base relation, we determine which columns
are fixed, and which are time-dependent within the time horizon of interest by
performing a COUNT DISTINCT grouping by the full relation schema.

Based on the sets of fixed and time-dependent columns, S(R) tracks ranges
for each time-dependent attribute and confidence values for each row. Con-
cretely, the schema sch(S(R)) includes: (1) a confidence attribute, which we
label CONF , (2) all of the fixed attributes in sch(R), and (3) two attributes
amin and amax for each time-dependent attribute a ∈ sch(R) representing upper
and lower bounds for the attribute, respectively.

This compact encoding discards the specific distribution of values that each
time-dependent attribute can take, as well as any temporal correlations that
might exist between attributes. When querying this data, we make two simplify-
ing assumptions: First, we compensate for discarding correlations by computing
only pessimistic, worst-case bounds on the ranges output for each attribute. Sec-
ond, for confidence computations, we assume a uniform distribution for values
in each range.

SPJ Query Rewriting. Consider a query Q(R1, . . . , Rn) which we wish to
analyze for temporal dependence. Given summary relations S(R1), . . . , S(Rn),
we wish to construct a query Q′(S(R1), . . . , S(Rn)) that approximates the results
of a full temporal dependence analysis on Q. We initially consider SPJ queries:

SELECT F1, ..., Fj, D1, ..., Dk FROM R1, ..., Rn WHERE φ ∧ ψ

where F and D are fixed and time-dependent attributes, respectively, and φ is
a boolean formula over both types of attributes, while ψ is a boolean formula
exclusively over fixed attributes. Adapting the rules for C-Tables query rewrit-
ing [12] to our simplified model, the following three transformations are applied.
(1) Time-dependent attributes are replaced by their corresponding range at-
tributes Dmin, Dmax, (2) The confidence of the output relation is computed as
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the product of confidences of the input relations, and (3) The expression φ does
not produce a binary truth value, but rather a confidence value that is combined
with confidence values from the input sources. The above query is rewritten as:

SELECT F1, . . . , Fj , D1,min, D1,max, . . . , Dk,max,
COMPUTE CONF(φ)×R1.CONF × . . .×Rn.CONF

FROM R1, . . . , Rn WHERE ψ

Here, COMPUTE CONF(φ) computes the probability of φ being satisfied, assuming
that each Di uniformly takes values in the range [Di,min, Di,max].

SPJA Query Rewriting. Aggregation is handled differently based on the ag-
gregate function. Non-group-by aggregates always have a single row as output,
fixing their confidence at 1. The confidence of a group is the cumulative prob-
ability that at least one tuple belonging to the group exists. Aggregates over
time-dependent attributes are replaced with an expressions that compute hard
upper and lower bounds of each as follows:

– MAX(D): The pessimistic upper bound on the maximum aggregate is the maxi-
mum of all Dmax in the group. A lower bound could be computed similarly, but
we must also account for the possibility that tuples may be removed from the
aggregated value if they do not have 100% confidence. The pessimistic lower
bound is the lowest value of Dmin contained in a tuple with 100% confidence,
or −∞ if no such tuple exists.

– MIN(D): The upper and lower bounds are computed as the inverse of MAX.
– SUM(D): The pessimistic upper (resp., lower) bound includes contributions

from all positive (resp., negative) integers Dmax (resp. Dmin), as well as all
negative (resp., positive) integers in tuples with a 100% confidence.

– COUNT(∗): The pessimistic upper and lower bounds are the total number of
tuples, and the total number of tuples with 100% confidence respectively.

– AVG(D) is computed as SUM(D)
COUNT(D)

6 Experiments

System Configuration. Experiments were performed on a commercial database
system2 with temporal query support and our query-rewriting front-end. The
commercial database system was deployed on 2x8-core 2.6 GHz Intel Xeon pro-
cessor system with 32GB of RAM, RHEL 6.5, and 4 300GB 10kRPM HDDs in
a RAID 5 configuration. The front-end was deployed on a 3.7 GHz Intel i7 with
16GB of RAM, OS X 10.9, and a 256 GB SDD, connected to the server through
a 100 mb/s ethernet network.

Benchmark Workload. We based our evaluation on the TPC-H bench-
mark [25] workload and dataset generators. In order to simulate real-world tem-
poral dependence in the data, we extended TPC-H’s synthetic update generator
with additional events as follows:
2 The commercial database system remains anonymous due to its licensing agreement.
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– (a) Place Order (44%): An orders row and its matching lineitem rows as
generated by the TPC-H update generator are inserted into the database. The
customer who placed the orders has their acctbal debited the price of the
order, and the availqty fields of matching part records are also adjusted.

– (b) Cancel Order (9%): An orders row and its matching lineitem rows as
selected by the TPC-H delete generator are deleted from the database.

– (c) Pay Supplier (9%): The acctbal field of a supplier row selected uni-
formly at random is set to 0.

– (d) Customer Pays (9%): The acctbal field of a customer row selected
uniformly at random is set to 0.

– (e) Buy Part (9%): An amount is selected uniformly in the range [1, 1000],
and a partsupp row is selected uniformly at random. The availqty, and
supplier.acctbalance fields are updated accordingly.

– (f) Change Part Price (9%): A part row is selected uniformly at random,
and its retailprice field is multiplied by a value uniformly chosen in the
range [0.95, 1.1].

– (g) MSRP Changes (2%): A part.brand value is selected uniformly at
random, and all matching part rows have their retailprice fields multiplied
by a value uniformly chosen in the range [0.95, 1.1].

– (h) Supplier Price Change (9%): A supplier row is selected uniformly at
random, and all corresponding partsupp fields have their supplycost multi-
plied by a value uniformly chosen in the range [0.95, 1.1].

Experiments were run on a database initialized with a 1 GB TPC-H Dataset
(Scaling Factor 1.0). The database’s temporal features were then activated, and
a sequence of approximately 100,000 events from the synthetic workload were
applied to the database with a new version created after each event.

Algorithms. We consider the four temporal dependence detection strategies
strategies presented in Sections 4 and 5. Naive denotes naive normalization,
MonteCarlo-X denotes Monte Carlo sampling with X versions chosen uniformly
at random, Dynamic denotes dynamic normalization, and Composable denotes
composable analyses.

6.1 Performance Evaluation

Our experiments used a representative set of the TPC-H query workload includ-
ing queries 1, 3, 9, and a lightly modified version of query 20. These queries cover
a spread of functionality, requirements, and base relation update classes. Perfor-
mance results are presented in Figure 4. We used each algorithm to analyze a
single query for both confidence and attribute bounds, changing the time horizon
of interest. For composable analysis, the pre-computation of each base-relation’s
analysis is not counted by our results, however even for the largest relation the
process took less than two minutes. Results are presented in in Figure 4.

Query 1. is an aggregate query over a single table and consistently produces a
set of four output rows. Without temporal query logic enabled, the query takes
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Fig. 4. Algorithm performance relative to size of the time horizon of interest. Note
the log scale on the x axis.
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Fig. 5. Accuracy of the approximate algorithms on TPC-H Queries 1 (a-c) and 9 (d-f).
Each line represents the relative error introduced by the algorithm on a single attribute
query output or the tuple confidence (CONF).
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approximately 3 seconds to evaluate. As shown in Figure 4a, the approximate al-
gorithms outperform the exact ones. Recall that for aggregates, dynamic analysis
subdivides the versions created across all groups being output. Correspondingly,
Dynamic analysis remains a constant factor (approximately 3–4 times) faster
than the Naive strategy. Both approximate strategies show an expected near
constant-time performance. The bulk of the work for the Monte Carlo approach
is in generating a constant number of samples, while the size of each base re-
lation summary remains roughly constant as the number of versions grows —
note that the cost of generating the summaries is linear in the number of versions
considered.

Query 3. is an aggregate query over a three-way hierarchical join. Without
temporal query logic enabled, the query takes approximately 1.5 seconds to
evaluate. As before, the approximate methods show linear scaling. However,
Dynamic analysis also shows linear scaling. This is due to the hierarchical nature
of the query. The query produces one output for each row of orders that satisfies
the predicate. Update classes (a) and (b) insert and remove orders together with
their corresponding lineitem, ensuring no attribute-level temporal dependence
in the aggregate values.

Query 9. is an aggregate query over a six-way join grouping on a dimension
attribute. Without temporal query logic enabled, this query takes approximately
3.5 seconds to compute. The number of groups is capped at the 25 nations in the
TPC-H Schema, all of which are affected by updates in the base data. As before,
Dynamic analysis is a constant factor faster than Naive analysis. We also note
a slight linear increase in the cost of the Monte Carlo approach as the number
of versions considered approaches 10,000. As this same pattern appears in our
results for query 20 experiment, we suspect that this slight increase is due to the
join width.

Query 20. is a non-aggregate query over multiple tables. We made two minor
modifications to this query: (1) We manually applied a standard decorrelation
rewrite [23], and used a SELECT DISTINCT query to emulate the EXISTS pred-
icate. (2) We avoid non-numeric values in the query results, and compute the
set of supplier account balances rather than the set of supplier addresses. With-
out temporal query logic enabled, this query takes approximately 5 seconds to
compute.

6.2 Accuracy

Figure 5 shows a comparison of accuracy metrics for the approximation meth-
ods. Composable analysis is quite accurate, generating estimates to within four
nines for most aggregate values. In Query 1, a significant error appears in the
COUNT ORDER attribute. This is a consequence of composable analysis’ pessimistic
lower bound estimate. Any row with a confidence value lower than 1 is dropped
from the lower bound; The upper bound is accurate. For Query 9, the accu-
racy actually increases as more versions are considered: this is an artifact of the
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actual confidence getting closer to the pessimistic bound. The monte-carlo meth-
ods fared significantly better at estimating the aggregate values computations.
However, they did not identify some output groups, creating an extremely high
confidence error.

7 Conclusions

In this paper, we identified an important class of queries: Context analysis
queries, which vary one or more contextual attributes to identify dependence on
the context. We explored context analysis in the domain of versioned/temporal
databases, and identified three strategies for leveraging temporal features in
existing database systems to detect temporal dependence in existing queries:
Sampling, Dynamic Analysis, and Composable Analysis. We evaluated these
strategies on a commercial database system and found that Composable Anal-
ysis substantially out-performs the other strategies. This performance comes
at the cost of accuracy, in particular when computing confidence values. As ex-
pected, Dynamic Analysis provided the best performance of the non-approximate
strategies.
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